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Abstract. In this paper, we introduce the concept of α-fuzzy ideals
of a distributive lattice. We prove that the set of all α-fuzzy ideals of a
lattice forms a complete distributive lattice. A set of equivalent conditions
are derived for a fuzzy ideal of a lattice to become an α-fuzzy ideal. We also
topologize the set of all prime α-fuzzy ideals of a distributive lattice. Prop-
erties of the space also studied. Moreover, a set of equivalent conditions
are given the space of all prime α-fuzzy ideals of L to become Hausdorff
and regular.
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1. Introduction

The concept of annulets and α-ideals in a distributive lattice with least element
0 is introduced by Cornish [3]. In 1986, Jayaram [5] studied prime α-ideals (in the
sense of Cornish) in a 0-distributive lattice and he introduced a topology on the set
of all prime α-ideals of a 0-distributive lattice.

On the other hand, many papers on fuzzy algebras have been published since
Rosenfeld [12] introduced the concept of fuzzy group in 1971. In particular, W. J.
Liu [11] initiated the study of fuzzy subrings, and fuzzy ideals of a ring; B. Yuan and
Wu [14] introduced the notion of fuzzy ideals and fuzzy congruences of distributive
lattices; Swamy and Raju [13] studied properties of fuzzy ideals and congruences
of lattices. In [8], Rajesh Kumar topologized the set of all fuzzy prime ideals of a
commutative ring with unity and studied some properties of the space. In 1994,
Kumbhojkar [9], studied about the space of prime fuzzy ideals of a ring in different
way. In [4], Hadji-Abadi and Zahedi extended the result of R. Kumar.



Alaba and Norahun /Ann. Fuzzy Math. Inform. 17 (2019), No. 2, 147–163

The aim of this paper is to introduce the concept of α-fuzzy ideals of a distributive
lattice. We prove that the set of all α-fuzzy ideals of a distributive lattice forms a
complete distributive lattice. Moreover, a set of equivalent conditions are derived
for a fuzzy ideal of a distributive lattice to become an α-fuzzy ideal. We also study
the space of all prime α-fuzzy ideals of a distributive lattice L. The set of prime
α-fuzzy ideals of a lattice L is denoted by Xα. For an α-fuzzy ideal θ of L, open
subset of Xα is of the form X(θ) = {µ ∈ Xα : θ * µ} and V (θ) = {µ ∈ Xα : θ ⊆
µ} is a closed set. Also we have shown that the set of all open sets of the form
X(xβ) = {µ ∈ Xα : xβ * µ, x ∈ L, β ∈ (0, 1]} forms a base for the open sets of Xα.
The set of all α-fuzzy ideals of L is isomorphic with the set of all open sets in Xα.
Finally, we give necessary and sufficient condition for the space Xα to be Hausdorff
and regular.

2. Preliminaries

We refer to G. Birkhoff [2] for the elementary properties of lattices.
In [3], W. H. Cornish observed that, for any a ∈ L, the ideal (a]∗ = {x ∈ L : x∧a =

0} is called an annulate. The set of all annulates denoted by A0(L). Each annulate
is an annihilator ideal and hence for two annulets (x]∗ and (y]∗ their supremum and
infimum in A0(L) are

(x]∗∨(y]∗ = (x ∧ y]∗ and (x]∗ ∩ (y]∗ = (x ∨ y]∗

respectively.
In a distributive lattice L with 0 the set of all annulates A0(L) of L is a lattice

(A0(L),∩,∨) and a sublattice of the Boolean algebra of annihilator ideals of L.
For an ideal I in L

α(I) = {(x]∗ : x ∈ I}
is a filter in A0(L) and the set

←−α (F ) = {x ∈ L : (x]∗ ∈ F}
is an ideal of L when F is any filter in A0(L). An ideal I of L is called an α-ideal if
←−αα(I) = I.

Remember that, for any set A a function µ : A → ([0, 1],∧,∨) is called a fuzzy
subset of A, where [0, 1] is a unit interval, α∧β = min{α, β} and α∨β = max{α, β}
for all α, β ∈ [0, 1].

Definition 2.1 ([10]). Let x ∈ L, 0 < β ≤ 1. A fuzzy point xβ of L is a fuzzy
subset of L defined as:

xβ(a) =

{
β , if a = x

0, otherwise .

Definition 2.2 ([12]). Let µ and θ be fuzzy subsets of a set A. Define the fuzzy
subsets µ ∪ θ and µ ∩ θ of A as follows: for each x ∈ A,

(µ ∪ θ)(x) = µ(x) ∨ θ(x) and (µ ∩ θ)(x) = µ(x) ∧ θ(x).

Then µ ∪ θ and µ ∩ θ are called the union and intersection of µ and θ, respectively.

For any collection, {µi : i ∈ I} of fuzzy subsets of X, where I is a nonempty index
set, the least upper bound

⋃
i∈I µi and the greatest lower bound

⋂
i∈I µi of the µi’s

are given by for each x ∈ X,
148
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(
⋃
i∈I µi)(x) =

∨
i∈I µi(x) and (

⋂
i∈I µi)(x) =

∧
i∈I µi(x),

respectively.
We define the binary operations ”+” and ”·” on the set of all fuzzy subsets of L

as:

(µ+ θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∨ z = x} and
(µ · θ)(x) = Sup{µ(y) ∧ θ(z) : y, z ∈ L, y ∧ z = x}.

If µ and θ are fuzzy ideals of L, then µ · θ = µ ∧ θ = µ ∩ θ and µ+ θ = µ ∨ θ is a
fuzzy ideal generated by µ ∪ θ.

If µ and θ are fuzzy filters of L, then µ + θ = µ ∧ θ (the pointwise infimum of µ
and θ) and µ · θ = µ ∨ θ (the supremum of µ and θ).

For each t ∈ [0, 1] the set

µt = {x ∈ A : µ(x) ≥ t}
is called the level subset of µ at t [15].

Regarding fuzzy ideals and fuzzy filters of lattices, we refer [13].

Definition 2.3 ([13]). A proper fuzzy ideal µ of L is called prime fuzzy ideal of L,
if for any two fuzzy ideals θ, η of L, θ ∩ η ⊆ µ⇒ θ ⊆ µ or η ⊆ µ.

Remark 2.4 ([13]). µ is a prime fuzzy ideal of L if and only if Im µ = {1, β}, β ∈
[0, 1) and µ∗ = {x ∈ L : µ(x) = 1} is a prime ideal of L.

Let µ be a fuzzy subset of a lattice L. The smallest fuzzy ideal of L containing µ
is called a fuzzy ideal of L induced by µ and denoted by 〈µ〉 and

〈µ〉 =
⋂
{θ ∈ FI(L) : µ ⊆ θ}

This definition can be stated as follows.

Theorem 2.5 ([6]). Let µ be a fuzzy subset of L. The fuzzy subset 〈µ〉 of L define
by 〈µ〉(x) = Sup{t ∈ [0, 1] : x ∈ 〈µt〉} for all x ∈ L is the fuzzy ideal induced by µ.

Note that a fuzzy subset µ of L is nonempty if there exists x ∈ L such that
µ(x) 6= 0.

Definition 2.6 ([1]). Let µ be a nonempty fuzzy subset of L and θ be a fuzzy ideal
of L. The fuzzy annihilator 〈µ, θ〉 of µ relative to θ is defined:

〈µ, θ〉 = Sup{η : η ∈ [0, 1]L, η · µ ⊆ θ}.

Remark 2.7. In [1], Alaba and Norahun observed that for any nonempty fuzzy
subset µ of L and fuzzy ideal θ of L,

〈µ, θ〉 = Sup{η : η ∈ FI(L), η · µ ⊆ θ}
is a fuzzy ideal of L.

If θ = χ{0}, then we denote 〈µ, χ{0}〉 by µ∗ and µ∗ is a fuzzy annihilator of µ.

Lemma 2.8 ([1]). Let µ and θ be nonempty fuzzy subsets of L. Then

(1) χ{0} ⊆ µ∗,
(2) µ · µ∗ ⊆ χ{0},
(3) µ · µ∗ = χ{0}, whenever µ(0) = 1,
(4) µ∗ ∩ µ∗∗ = χ{0},
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(5) µ ⊆ θ ⇒ θ∗ ⊆ µ∗,
(6) θ · µ ⊆ χ{0} ⇔ θ ⊆ µ∗,
(7) θ · µ = χ{0} ⇔ θ ⊆ µ∗, whenever µ(0) = 1 = θ(0),
(8) µ ⊆ µ∗∗,
(9) µ∗ = µ∗∗∗.

Definition 2.9 ([1]). A fuzzy ideal µ of L is called a fuzzy annihilator ideal, if
µ = θ∗, for some nonempty fuzzy subset θ of L, or equivalently, if µ = µ∗∗.

The set of all fuzzy ideals and fuzzy filters of L are denoted by FI(L) and FF (L)
respectively.

3. α-fuzzy ideals

In this section, we introduce the concept of α-fuzzy ideals of a lattice. We study
some basic properties of the class of α-fuzzy ideals. Throughout the rest of this
paper a lattice L is distributive with least element 0 unless otherwise specified.

Theorem 3.1. Let µ be a fuzzy ideal of L. Then the fuzzy subset α(µ) of A0(L)
defined by:

α(µ)((x]∗) = Sup{µ(y) : (y]∗ = (x]∗, y ∈ L}
is a fuzzy filter of a lattice A0(L).

Proof. Let µ be a fuzzy ideal of L. Then clearly, α(µ)((0]∗) = 1. Let (x]∗, (y]∗ ∈
A0(L). Then
α(µ)((x]∗) ∧ α(µ)((y]∗)

= Sup{µ(a) : (a]∗ = (x]∗, a ∈ L} ∧ Sup{µ(b) : (b]∗ = (y]∗, b ∈ L}
= Sup{µ(a) ∧ µ(b) : (a]∗ = (x]∗, (b]∗ = (y]∗}
≤ Sup{µ(a) ∧ µ(b) : (a]∗ ∧ (b]∗ = (x]∗ ∧ (y]∗}
= Sup{µ(a ∨ b) : (a ∨ b]∗ = (x ∨ y]∗}
≤ Sup{µ(c) : (c]∗ = (x ∨ y]∗}
= α(µ)((x]∗ ∧ (y]∗).

Thus α(µ)((x]∗ ∧ (y]∗) ≥ α(µ)((x]∗) ∧ α(µ)((y]∗). On the other hand,

α(µ)((x]∗) = Sup{µ(a) : (a]∗ = (x]∗}
≤ Sup{µ(a ∧ y) : (a]∗∨(y]∗ = (x]∗∨(y]∗}
≤ Sup{µ(c) : (c]∗ = (x ∧ y]∗}
= α(µ)((x]∗∨(y]∗).

Similarly, α(µ)((y]∗) ≤ α(µ)((x]∗∨(y]∗). So

α(µ)((x]∗∨(y]∗) ≥ α(µ)((x]∗) ∨ α(µ)((y]∗).

Hence α(µ) is a fuzzy filter of A0(L). �

Lemma 3.2. Let θ be a fuzzy filter of A0(L). Then the fuzzy subset ←−α (θ) of L
defined by ←−α (θ)(x) = θ((x]∗) is a fuzzy ideal of a lattice L.
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Proof. Let θ be a fuzzy filter of A0(L). Since (0]∗ is the largest element of A0(L),
we get ←−α (θ)(0) = 1. Again,

←−α (θ)(x ∨ y) = θ((x]∗ ∧ (y]∗)

= θ((x]∗) ∧ θ((y]∗)

= ←−α (θ)(x) ∧←−α (θ)(y)

Thus ←−α (θ) is a fuzzy ideal of L. �

It can be easily observed that the set FF (A0(L)) of all fuzzy filters of A0(L)
also forms a complete distributive lattice with the inclusion ordering of fuzzy sets,
in which the infimum of the set of fuzzy filters µi is

∧
i∈I µi =

⋂
i∈I µi, and the

supremum is
∨
i∈I µi.

The following lemma can be verified easily.

Lemma 3.3. If µ and θ are fuzzy ideals of L, then µ ⊆ θ implies α(µ) ⊆ α(θ).

Proposition 3.4. If µ, θ are fuzzy filters of A0(L), then µ ⊆ θ implies ←−α (µ) ⊆
←−α (θ).

Theorem 3.5. The mapping α is a homomorphism of FI(L) into FF (A0(L)).

Proof. Let µ, θ be two fuzzy ideals of L. It is enough to prove that α(µ∩θ) = α(µ)∩
α(θ) and α(µ∨θ) = α(µ)∨α(θ). By Lemma 3.3, we have that α(µ∩θ) ⊆ α(µ)∩α(θ).
For any (x]∗ ∈ A0(L),

α(µ)((x]∗) ∧ α(θ)((x]∗)
= Sup{µ(a) : (a]∗ = (x]∗} ∧ Sup{θ(b) : (b]∗ = (x]∗}
≤ Sup{µ(a ∧ b) : (a ∧ b]∗ = (x]∗} ∧ Sup{θ(a ∧ b) : (a ∧ b]∗ = (x]∗}
= Sup{µ(a ∧ b) ∧ θ(a ∧ b) : (a ∧ b]∗ = (x]∗}
= Sup{(µ ∩ θ)(a ∧ b) : (a ∧ b]∗ = (x]∗}
≤ Sup{(µ ∩ θ)(c) : (c]∗ = (x]∗}
= α(µ ∩ θ)((x]∗).

Thus α(µ) ∩ α(θ) ⊆ α(µ ∩ θ). So α(µ) ∩ α(θ) = α(µ ∩ θ).
Again clearly, α(µ)∨α(θ) ⊆ α(µ ∨ θ). On the other hand,

α(µ ∨ θ)((x]∗)
= Sup{(µ ∨ θ)(a) : (a]∗ = (x]∗}
= Sup{Sup{µ(y) ∧ θ(z) : a = y ∨ z} : (y ∨ z]∗ = (x]∗}
≤ Sup{Sup{µ(b1) ∧ θ(b2) : (b1]∗ = (y]∗, (b2]∗ = (z]∗} : (y ∨ z]∗ = (x]∗}
= Sup{Sup{µ(b1) : (b1]∗ = (y]∗} ∧ Sup{θ(b2) : (b2]∗ = (z]∗}, (y ∨ z]∗ = (x]∗}
= Sup{α(µ)(y]∗ ∧ α(θ)(z]∗ : (y ∨ z]∗ = (x]∗}
= Sup{α(µ)(y]∗ ∧ α(θ)(z]∗ : (y]∗ ∧ (z]∗ = (x]∗}
= (α(µ)∨α(θ))((x]∗).

Then α(µ∨ θ) ⊆ α(µ)∨α(θ). Thus α(µ∨ θ) = α(µ)∨α(θ). So α is a homomorphism.
�

Corollary 3.6. For any two fuzzy ideals µ and θ, we have
←−αα(µ ∩ θ) =←−αα(µ) ∩←−αα(θ).

Proof. For any x ∈ L,←−αα(µ∩θ)(x) = α(µ∩θ)((x]∗). Since α(µ∩θ) = α(µ)∩α(θ), we
have←−αα(µ∩θ)(x) =←−αα(µ)(x)∧←−αα(θ)(x). Thus←−αα(µ∩θ) =←−αα(µ)∩←−αα(θ). �
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The proof of the following lemma is quite routine and will be omitted.

Lemma 3.7. For any fuzzy ideals µ, θ of L, we have the following:

(1) µ ⊆ ←−αα(µ),
(2) ←−αα(←−αα(µ)) =←−αα(µ),
(3) µ ⊆ θ ⇒←−αα(µ) ⊆ ←−αα(θ),
(4) ←−αα(µ) ∨←−αα(θ) ⊆ ←−αα(µ ∨ θ).

Lemma 3.8. For any fuzzy filter θ of A0(L), α←−α (θ) = θ.

Proof. Since θ is a fuzzy filter of A0(L), by Lemma 3.2, ←−α (θ) is a fuzzy ideal of L
and α←−α (θ) is a fuzzy filter of A0(L). Now, α←−α (θ)((x]∗) = Sup{←−α (θ)(a) : (a]∗ =
(x]∗} = Sup{θ((a]∗) : (a]∗ = (x]∗} = θ((x]∗). �

Definition 3.9. A fuzzy ideal µ of L is called an α-fuzzy ideal, if ←−αα(µ) = µ.

Example 3.10. Consider the distributive lattice L = {0, a, b, c, 1} whose Hasse
diagram is given below.

Define a fuzzy subset µ of L as follows: µ(0) = 1, µ(a) = 0.5 and µ(b) = µ(c) =
µ(1) = 0.4 . Then it can be easily verified that µ is an α-fuzzy ideal of L.

Example 3.11. If we define a fuzzy subset θ of L in the above example as: θ(0) =
1, θ(a) = 0.5, θ(b) = θ(c) = 0.4 and θ(1) = 0.3 . Then it can be easily verified that
θ is a fuzzy ideal, but not an α-fuzzy ideal of L.

Now we define a multiplicatively closed fuzzy subset of L as follows.

Definition 3.12. A fuzzy subset µ of L is said to be multiplicatively closed, if

µ(x ∧ y) ≥ µ(x) ∧ µ(y), for all x, y ∈ L.
Example 3.13. Let θ be a multiplicatively closed fuzzy subset of L with Sup{θ(x) :
x ∈ L} = 1. Then a fuzzy subset µ of L defined as:

µ(x) = Sup{θ(a) : a ∧ x = 0, a ∈ L}
is an α-fuzzy ideal of L.

Proof. First we have to show that µ is a fuzzy ideal of L. Clearly, µ(0) = 1. For any
x, y ∈ L,

µ(x) ∧ µ(y) = Sup{θ(a) : a ∧ x = 0} ∧ Sup{θ(b) : b ∧ y = 0}
= Sup{θ(a) ∧ θ(b) : a ∧ x = 0, b ∧ y = 0}
≤ Sup{θ(a ∧ b) : (a ∧ b) ∧ (x ∨ y) = 0}
= µ(x ∨ y).
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Then µ(x ∨ y) ≥ µ(x) ∧ µ(y). And

µ(x) = Sup{θ(a) : a ∧ x = 0} ≤ Sup{θ(a) : a ∧ (x ∧ y) = 0} = µ(x ∧ y).

Similarly, µ(y) ≤ µ(x ∧ y). Thus µ(x ∧ y) ≥ µ(x) ∨ µ(y). So µ is a fuzzy ideal of L.
Now for each a, x ∈ L, if (a]∗ = (x]∗, then

µ(x) = Sup{θ(b) : b ∧ x = 0} = Sup{θ(b) : b ∧ a = 0} = µ(a).

We proceed to show µ is an α-fuzzy ideal.

←−αα(µ)(x) = Sup{µ(a) : (a]∗ = (x]∗} = µ(x).

Thus µ is an α-fuzzy ideal of L. �

Lemma 3.14. For any fuzzy ideal µ of L, ←−αα(µ∗) = µ∗, where µ∗ is a fuzzy
annihilator of µ.

Proof. Clearly, µ∗ ⊆ ←−αα(µ∗) and χ{0} is an α-fuzzy ideal. To prove our claim,

it is enough to show that ←−αα(µ∗) ∩ µ ⊆ χ{0}. Since µ∗ ∩ µ ⊆ χ{0}, we have
←−αα(µ∗) ∩←−αα(µ) ⊆ χ{0}. Then ←−αα(µ∗) ∩ µ ⊆ χ{0}. Thus ←−αα(µ∗) ⊆ µ∗. So µ∗ is
an α-fuzzy ideal. �

Corollary 3.15. Every fuzzy annihilator ideal is an α-fuzzy ideal.

Proof. For any fuzzy annihilator ideal µ of L, we have µ = µ∗∗. By the above lemma,
we get ←−αα(µ) = µ. Then a fuzzy annihilator ideal is an α-fuzzy ideal. �

Theorem 3.16. For a fuzzy ideal µ of L. µ is an α-fuzzy ideal if and only if for
each x, y ∈ L, (x]∗ = (y]∗ imply µ(x) = µ(y).

Proof. Suppose µ is an α-fuzzy ideal of L and let x, y ∈ L such that (x]∗ = (y]∗.
Then

µ(x) = Sup{µ(a) : (a]∗ = (x]∗, a ∈ L} = Sup{µ(a) : (a]∗ = (y]∗, a ∈ L} = µ(y).

Conversely, suppose that for each x, y ∈ L, (x]∗ = (y]∗ imply µ(x) = µ(y). For
any x ∈ L, we have ←−αα(µ)(x) = Sup{µ(a) : (a]∗ = (x]∗, a ∈ L} = µ(x). Thus µ is
an α-fuzzy ideal of L. �

Recall that a lattice L is disjunctive if for any a, b ∈ L, a < b implies there is an
element 0 6= c ∈ L such that a ∧ c = 0 and 0 < c < b. However it is easy to see that
a lattice L is disjunctive if and only if (a]∗ = (b]∗ implies a = b, for any a, b ∈ L [3].
We thus have the following Lemma.

Lemma 3.17. If L is disjunctive, then every fuzzy ideal of L is an α-fuzzy ideal.

Proof. Since L is disjunctive, (a]∗ = (b]∗ implies a = b for any a, b ∈ L. Then we
always have ←−αα(µ)(x) = µ(x). Thus every fuzzy ideal is an α-fuzzy ideal. �

Theorem 3.18. For a nonempty fuzzy subset µ of L, µ is an α-fuzzy ideal if and
only if each level subset of µ is an α-ideal of L.
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Proof. Suppose µ is an α-fuzzy ideal of L. Then µt = (←−αα(µ))t. To prove each
level subset of µ is an α-ideal of L, it is enough to show ←−αα(µt) = (←−αα(µ))t, for
all t ∈ [0, 1]. Clearly, (←−αα(µ))t ⊆ ←−αα(µt). Let x ∈ ←−αα(µt). Then (x]∗ ∈ α(µt) and
there is y ∈ µt such that (x]∗ = (y]∗. Thus Sup{µ(a) : (a]∗ = (x]∗} ≥ t. This shows
that x ∈ (←−αα(µ))t. So µt = ←−αα(µt). Hence each level subset of µ is an α-ideal of
L.

Conversely, suppose each level subset of µ is an α-ideal. Then µ is a fuzzy ideal
and µ ⊆ ←−αα(µ). Let t =←−αα(µ)(x) = Sup{µ(y) : (y]∗ = (x]∗}. Then for each ε > 0,
there is a ∈ L such that (a]∗ = (x]∗ and µ(a) > t − ε. Thus a ∈ µt−ε, (a]∗ = (x]∗

and x ∈ ←−αα(µt−ε) = µt−ε. So x ∈
⋂
ε>0 µt−ε = µt. Hence ←−αα(µ) ⊆ µ. Therefore µ

is an α-fuzzy ideal of L. �

Corollary 3.19. For a nonempty subset I of L, I is an α-ideal if and only if χI is
an α-fuzzy ideal of L.

Proof. Suppose I is an α-idea of L. Then ←−αα(I) = {x ∈ L : (x]∗ ∈ α(I)} = I.
Let x ∈ L. If x ∈ I, then ←−αα(χI)(x) = 1 = χI(x). Let x /∈ I and assume that
←−αα(χI)(x) = 1. Then there is y ∈ I such that (y]∗ = (x]∗ ∈ α(I). Since I is an
α-ideal, x ∈ I. This is a contradiction. Thus ←−αα(χI)(x) = 0. So χI is an α-fuzzy
ideal.

Conversely, suppose χI is an α-fuzzy ideal of L. Then clearly, I ⊆ ←−αα(I). Let
x ∈ ←−αα(I). Since χI is an α-fuzzy ideal, ←−αα(χI)(x) = 1 = χI(x). Thus x ∈ I. So
I is an α-ideal of L. �

Theorem 3.20. Let µ be a fuzzy ideal of L. The fuzzy subset

µ
′
(x) = Sup{µ(a) : x ∈ (a]∗∗, x ∈ L}

is a fuzzy ideal of L.

Proof. Let µ be a fuzzy ideal of L. Then clearly, µ
′
(0) = 1. For any x, y ∈ L,

µ
′
(x) ∧ µ

′
(y) = Sup{µ(a) : x ∈ (a]∗∗} ∧ Sup{µ(b) : y ∈ (b]∗∗}

= Sup{µ(a) ∧ µ(b) : x ∈ (a]∗∗, y ∈ (b]∗∗}
≤ Sup{µ(a ∨ b) : x ∨ y ∈ (a ∨ b]∗∗}
≤ Sup{µ(c) : x ∨ y ∈ (c]∗∗}
= µ

′
(x ∨ y)

and
µ

′
(x) = Sup{µ(a) : x ∈ (a]∗∗} ≤ Sup{µ(a) : x ∧ y ∈ (a]∗∗} = µ

′
(x ∧ y).

Similarly, µ
′
(y) ≤ µ′

(x∧ y). Thus µ
′
(x∧ y) ≥ µ′

(x)∨µ′
(y). So µ

′
is a fuzzy ideal

of L. �

Corollary 3.21. µ
′

is the smallest α-fuzzy ideal containing µ.
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Proof. Clearly, µ ⊆ µ
′
. We proceed to show µ

′
is an α-fuzzy ideal of L. For each

x, y ∈ L, (x]∗ = (y]∗, we need to show µ
′
(x) = µ

′
(y). Now

µ
′
(x) = Sup{µ(a) : x ∈ (a]∗∗, a ∈ L}

= Sup{µ(a) : (x]∗∗ ⊆ (a]∗∗, a ∈ L}
= Sup{µ(a) : y ∈ (a]∗∗, a ∈ L}
= µ

′
(y).

This shows that µ
′
(x) = µ

′
(y), for each x, y ∈ L whenever (x]∗ = (y]∗. Thus by

Theorem 3.16, µ
′

is an α-fuzzy ideal of L.
To show µ

′
is the smallest fuzzy ideal containing µ, let θ be any α-fuzzy ideal

containing µ and µ
′
(x) = t. Then for each ε > 0, there is b ∈ L such that x ∈ (b]∗∗

and µ(b) > t− ε. Thus b ∈ θt−ε. Since θt−ε is an α-ideal, (b]∗∗ ⊆ θt−ε and x ∈ θt−ε.
So for each ε > 0, x ∈ θt−ε. This shows that x ∈

⋂
ε>0 θt−ε = θt and θ(x) ≥ t. Thus

µ
′
(x) ≤ θ(x), for all x ∈ L. Hence µ

′
is the smallest α-fuzzy ideal containing µ. �

Let us denote the set of all α-fuzzy ideals of L by FIα(L).

Theorem 3.22. The set FIα(L) forms a compete distributive lattice with respect to
inclusion ordering of fuzzy sets.

Proof. Clearly, (FIα(L),⊆) is a partially ordered set. For µ, θ ∈ FIα(L), define

µ ∧ θ = µ ∩ θ and µ∨θ =←−αα(µ ∨ θ).

Then clearly, µ ∩ θ, µ∨θ ∈ FIα(L). We need to show µ∨θ is the least upper bound
of {µ, θ}. Since µ∨θ ⊆ µ∨θ, it yields µ∨θ is an upper bound of {µ, θ}. Let η be any
upper bound for µ, θ in FIα(L). Then µ∨θ ⊆ η. Thus←−αα(µ∨θ) ⊆ ←−αα(η) = η. So
µ∨θ is the supremum of both µ and θ in FIα(L). Hence (FIα(L),∩,∨) is a lattice.

We now prove the distributivity. Let µ, θ, η ∈ FIα(L). Then

µ∨(θ ∩ η) = ←−αα((µ ∨ θ) ∩ (µ ∨ η))

= ←−αα(µ ∨ θ) ∩←−αα(µ ∨ η)

= (µ∨θ) ∩ (µ∨η)

Thus FIα(L) is a distributive lattice.
Next we prove the completeness. Since {0} and L are α-ideals, χ{0} and χL are

least and greatest elements of FIα(L), respectively. Let {µi : i ∈ I} ⊆ FIα(L).
Then

⋂
i∈I µi is a fuzzy ideal of L and

⋂
i∈I µi ⊆

←−αα(
⋂
i∈I µi).⋂

i∈I
µi ⊆ µi, ∀i ∈ I ⇒ ←−αα(

⋂
i∈I

µi) ⊆ µi, ∀i ∈ I

⇒ ←−αα(
⋂
i∈I

µi) ⊆
⋂
i∈I

µi

Thus ←−αα(
⋂
i∈I µi) =

⋂
i∈I µi. So (FIα(L),∩,∨) is a complete distributive lattice.

�

Theorem 3.23. The set FIα(L) is isomorphic to the lattice of fuzzy filters of A0(L).
155



Alaba and Norahun /Ann. Fuzzy Math. Inform. 17 (2019), No. 2, 147–163

Proof. Define f : FIα(L) −→ FF (A0(L)), f(µ) = α(µ), ∀µ ∈ FIα(L). Let µ, θ ∈
FIα(L) and f(µ) = f(θ). Then α(µ) = α(θ). Thus ←−αα(µ) = ←−αα(θ). So µ = θ.
Hence f is one to one.

Let η ∈ FF (A0(L)). Then by Lemma 3.2 ←−α (η) is a fuzzy ideal of L. We show
that ←−α (η) is an α-fuzzy ideal of L. Let x ∈ L. Then ←−αα(←−α (η))(x) = α←−α (η)((x]∗).
Thus by Lemma 3.8, we get that α←−α (η)((x]∗) = η((x]∗) = ←−α (η)(x). So ←−α (η) =
←−αα(←−α (η)). Hence for each η ∈ FF (A0(L)), f(←−α (η)) = η. Therefore f is onto.

Now for any µ, θ ∈ FIα(L), f(µ∨θ) = f(←−αα(µ∨θ)) = α(←−αα(µ∨θ)) = α(µ∨θ) =
α(µ)∨α(θ) = f(µ)∨f(θ). Similarly, f(µ∩θ) = f(µ)∩f(θ). Then f is an isomorphism
of FIα(L) onto the lattice of fuzzy filters of A0(L). �

Theorem 3.24. In L the following are equivalent:

(1) Each fuzzy ideal is an α-fuzzy ideal,
(2) Each prime fuzzy ideal is an α-fuzzy ideal,
(3) L is disjunctive.

Proof. The proof of (1)⇒ (2) and (3)⇒ (1) is straightforward. To show (2)⇒ (3),
suppose that every prime fuzzy ideal of L is an α-fuzzy ideal. Let x, y ∈ L such
that (x]∗ = (y]∗. Assume that x 6= y. Without loss of generality, we can assume
that (x] ∩ [y) = φ. We know that χ(x] and χ[y) are fuzzy ideal and fuzzy filter of L
respectively such that χ(x]∩χ[y) = χφ(the constant fuzzy subset attaining, value 0),
by Corollary 1.5 in [13] there exists a prime fuzzy ideal θ of L such that

χ(x] ⊆ θ and θ ∩ χ[y) = χφ.

Since χ(x] ⊆ θ, we get θ(x) = 1. Again, θ(y) ∧ χ[y)(y) = 0. Since every element in
[0, 1] is a meet irreducible element, we get θ(y) = 0. Which is a contradiction. Thus
L is disjunctive. �

Theorem 3.25. Let µ be an α-fuzzy ideal of L and λ be a fuzzy filter of L such that
µ∩λ ≤ β, β ∈ [0, 1). Then there exists a prime α-fuzzy ideal θ of L such that µ ⊆ θ
and θ ∩ λ ≤ β.

Proof. Put P = {η ∈ FIα(L) : µ ⊆ η and η ∩ λ ≤ β}. Since µ ∈ P, P is
nonempty and it forms a poset together with the inclusion ordering of fuzzy sets.
Let A = {µi}i∈I be any chain in P. We need to prove

⋃
i∈I µi ∈ A. Clearly,

(
⋃
i∈I µi)(0) = 1. For any x, y ∈ L,

(
⋃
i∈I

µi)(x) ∧ (
⋃
i∈I

µi)(y) = Sup{µi(x) : i ∈ I} ∧ Sup{µj(y) : j ∈ I}

= Sup{µi(x) ∧ µj(y) : i, j ∈ I}
≤ Sup{(µi ∪ µj)(x) ∧ (µi ∪ µj)(y) : i, j ∈ I}.
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Since A is a chain, either µi ⊆ µj or µj ⊆ µi. Without loss of generality, we can
assume that µi ⊆ µj . Then µi ∪ µj = µj . Thus

(
⋃
i∈I

µi)(x) ∧ (
⋃
i∈I

µi)(y) ≤ Sup{µj(x) ∧ µj(y) : j ∈ I}

= Sup{µj(x ∨ y) : j ∈ I}

= (
⋃
i∈I

µi)(x ∨ y).

Again, (
⋃
i∈I µi)(x) = Sup{µi(x) : i ∈ I} ≤ Sup{µi(x∧y) : i ∈ I} = (

⋃
i∈I µi)(x∧y).

Similarly, (
⋃
i∈I µi)(y) ≤ (

⋃
i∈I µi)(x ∧ y). Then

⋃
i∈I µi is a fuzzy ideal of L. It

remains to show
⋃
i∈I µi is an α-fuzzy ideal.

←−αα(
⋃
i∈I

µi)(x) = Sup{(
⋃
i∈I

µi)(a) : (a]∗ = (x]∗}

= Sup{Sup{µi(a) : i ∈ I} : (a]∗ = (x]∗}
= Sup{Sup{µi(a) : (a]∗ = (x]∗} : i ∈ I}
= Sup{µi(x) : i ∈ I}
= (

⋃
i∈I

µi)(x).

Thus
⋃
i∈I µi is an α-fuzzy ideal. Since µi ∩ η ≤ β, for each i ∈ I,

((
⋃
i∈I

µi) ∩ η)(x) = (
⋃
i∈I

µi)(x) ∧ η(x)

= Sup{µi(x) ∧ η(x) : i ∈ I}
= Sup{(µi ∩ η)(x) : i ∈ I} ≤ β.

So (
⋃
i∈I µi) ∩ η ≤ β. Hence

⋃
i∈I µi ∈ A. By applying Zorn’s lemma, we get a

maximal element, let say θ ∈ P, that is, θ is an α-fuzzy ideal of L such that µ ⊆ θ
and θ ∩ η ≤ β.

Now we proceed to show θ is a prime fuzzy ideal. Assume that θ is not prime
fuzzy ideal. Let γ1 ∩ γ2 ⊆ θ such that γ1 * θ and γ2 * θ, γ1, γ2 ∈ FI(L). If we put
θ1 =←−αα(γ1 ∨ θ) and θ2 =←−αα(γ2 ∨ θ), then both θ1 and θ2 are α-fuzzy ideals of L
properly containing θ. Since θ is maximal in P, we get θ1 /∈ P and θ2 /∈ P. Thus
θ1∩η � β and θ2∩η � β. This implies there exist x, y ∈ L such that (θ1∩η)(x) > β
and (θ2∩η)(y) > β. So ((θ1∩θ2)∩η)(x∧y) > β ⇒ (←−αα(θ∨(γ1∧γ2))(x∧y)∧η(x∧y) >
β. This shows that (θ ∩ η)(x ∧ y) > β. This is a contradiction. Hence θ is prime
α-fuzzy ideal of L. �

Corollary 3.26. Let µ be an α-fuzzy ideal of L, a ∈ L and β ∈ [0, 1). If µ(a) ≤ β,
then there exists a prime α-fuzzy ideal θ of L such that µ ⊆ θ and θ(a) ≤ β.

Corollary 3.27. Every α-fuzzy ideal of L is the intersection of all prime α-fuzzy
ideals containing it.

Proof. Let µ be α-fuzzy ideal of L. Consider the following.

µ0 =
⋂
{η : η is a prime α-fuzzy ideal and µ ⊆ η}.
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Then clearly, µ ⊆ µ0. Now we proceed to show that µ0 ⊆ µ. Suppose not. Then
there is a ∈ L such that µ0(a) > µ(a). Let µ(a) = β. Consider the set P = {η ∈
FIα(L) : µ ⊆ η and η(a) ≤ β}. By the above Corollary, we can find a prime α-fuzzy
ideal θ of L such that µ ⊆ θ and θ(a) ≤ β. Then µ0 ⊆ θ. Thus µ0(a) ≤ β. This is a
contradiction. So µ0 ⊆ µ. Hence µ0 = µ. �

4. The space of prime α-fuzzy ideals

In this section, we study the space of prime α-fuzzy ideals of a distributive lattice.
Some properties of the space also studied. The set of equivalent conditions are given
for the space of all prime α-fuzzy ideals of L to become regular.

Now we recall some topological concepts in [7].
A topology on a set X is a family of T of sets which satisfies the following

conditions: the intersection of any finite members of T is a member of T , the union
of the members of each subfamily of T is a member of T and φ,X ∈ T . If X is a
topological space with topology T , we say that a subset U of X is an open set of X
if U ∈ T . A subfamily B of a topology T is a base for T if and only if each member
of T is the union of members of B.

A topological space is a T0-space if, for any distinct points x and y of X there
exists an open set containing one but not the other. A topological space is a T1-space
if and only if each set which consists of a single point is closed. A topological space
X is a regular space if, given any nonempty closed set F and any point x that does
not belong to F , there exists a neighborhood U of x and a neighborhood V of F
that are disjoint.

Let Xα be the set of all prime α-fuzzy ideals of a distributive lattice. Let V (θ) =
{µ ∈ Xα : θ ⊆ µ} where θ is a fuzzy ideal of L and X(θ) = {µ ∈ Xα : θ * µ} =
Xα − V (θ). We let µ∗ = µ1, i.e. µ∗ = {x ∈ L : µ(x) = 1}.

Lemma 4.1. For any fuzzy ideals µ and θ of L, we have

(1) µ ⊆ θ ⇒ X(µ) ⊆ X(θ),
(2) X(µ ∨ θ) = X(µ) ∪X(θ),
(3) X(µ ∩ θ) = X(µ) ∩X(θ).

Proof. (1) Let µ ⊆ θ and η ∈ X(µ). Then µ * η and θ * η. Thus η ∈ X(θ).
(2) By (1), we have X(µ)∪X(θ) ⊆ X(µ∨θ). Again if η ∈ X(µ∨θ), then µ∨θ * η.

Thus either µ * η or θ * η. So η ∈ X(µ) ∪X(θ). Hence X(µ ∨ θ) = X(µ) ∪X(θ).
(3) Clearly X(µ ∩ θ) ⊆ X(µ) ∩ X(θ). Again if η ∈ X(µ) ∩ X(θ), then µ *

η and θ * η. Since η is a prime fuzzy ideal, we have µ ∩ θ * η. Thus η ∈ X(µ ∩ θ).
So X(µ ∩ θ) = X(µ) ∩X(θ). �

Lemma 4.2. Let θ be a fuzzy subset of L. Then X(θ) = X(〈θ〉).

Proof. Clearly, X(θ) ⊆ X(〈θ〉). Let µ ∈ X(〈θ〉). Then 〈θ〉 * µ. We now to show
θ * µ. Suppose θ ⊆ µ. Then 〈θ〉 ⊆ 〈µ〉 = µ. Which is impossible. Thus θ * µ. So
X(θ) = X(〈θ〉). �

Theorem 4.3. Let x, y ∈ L and β ∈ (0, 1]. Then

(1) X((x ∧ y)β) = X(xβ) ∩X(yβ),
(2) X((x ∨ y)β) = X(xβ) ∪X(yβ),
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(3)
⋃
x∈L, β∈(0,1]X(xβ) = Xα.

Proof. (1) If µ ∈ X(xβ) ∩X(yβ), then xβ * µ and yβ * µ. This implies β > µ(x)
and β > µ(y). Thus x, y /∈ µ∗. Since µ is prime fuzzy ideal, card Im µ = 2 and
µ∗ = {x ∈ L : µ(x) = 1} is prime. So x ∧ y /∈ µ∗. Which implies β > µ(x ∧ y).
Hence (x ∧ y)β * µ. Therefore X(xβ) ∩X(yβ) ⊆ X((x ∧ y)β).

Again, let µ ∈ X((x ∧ y)β). Then (x ∧ y)β * µ. Which implies β > µ(x ∧
y) ≥ µ(x) ∨ µ(y). Thus β > µ(x) and β > µ(y). This shows that xβ * µ and
yβ * µ. So µ ∈ X(xβ) ∩ X(yβ). Hence X((x ∧ y)β) ⊆ X(xβ) ∩ X(yβ). Therefore
X((x ∧ y)β) = X(xβ) ∩X(yβ).

(2) If µ ∈ X(xβ) ∪ X(yβ), then either xβ * µ or yβ * µ. Which implies either
β > µ(x) or β > µ(y). This shows that β > µ(x)∧µ(y) = µ(x∨y). Thus (x∨y)β * µ.
So µ ∈ X((x ∨ y)β).

Again, let µ ∈ X((x∨y)β). Then β > µ(x∨y) = µ(x)∧µ(y). Thus either xβ * µ
or yβ * µ. So µ ∈ X(xβ) ∪X(yβ).

(3) Clearly,
⋃
x∈L, β∈(0,1]X(xβ) ⊆ Xα. Let µ ∈ Xα. Then Imµ = {1, γ}, γ ∈

[0, 1). This implies there is x ∈ L such that µ(x) = γ. Let us take some β ∈
(0, 1] such that β > γ. Then xβ * µ. Thus µ ∈

⋃
x∈L, β∈(0,1]X(xβ). So Xα ⊆⋃

x∈L, β∈(0,1]X(xβ). Hence Xα =
⋃
x∈L, β∈(0,1]X(xβ). �

Lemma 4.4. Let β1, β2 ∈ (0, 1]; β = min{β1, β2} and x, y ∈ L. Then

X(xβ1
) ∩X(yβ2

) = X((x ∧ y)β).

Proof. If µ ∈ X(xβ1) ∩ X(yβ2), then xβ1 * µ and xβ2 * µ. This implies that
β1 > µ(x) and β2 > µ(y). Since µ∗ is prime ideal and x, y /∈ µ∗, we have x ∧ y /∈ µ∗
and µ(x) = µ(y) = µ(x ∧ y). This shows that β > µ(x ∧ y). Thus (x ∧ y)β * µ. So
µ ∈ X((x ∧ y)β).

Again, let µ ∈ X((x ∧ y)β). Then β > µ(x ∧ y) ≥ µ(x) ∨ µ(y). This implies
β1 > µ(x) and β2 > µ(y). Thus xβ1 * µ and yβ2 * µ. So µ ∈ X(xβ1) ∩ X(yβ2).
Hence X(xβ1) ∩X(yβ2) = X((x ∧ y)β). �

Theorem 4.5. The collection T = {X(θ) : θ is a fuzzy ideal of L} is a topology on
Xα.

Proof. Consider the fuzzy subsets η1, η2 of L defined as: η1(x) = 0 and η2(x) = 1,
for all x ∈ L. Clearly, < η1 > and η2 are fuzzy ideals of L. Again, < η1 >⊆ µ, for
all µ ∈ Xα. Then V (< η1 >) = Xα and thus X(η1) = φ. Since each µ ∈ Xα is
non-constant, η2 * µ, for all µ ∈ Xα. So X(η2) = Xα. Hence φ, Xα ∈ T .

Next, let X(θ1), X(θ2) ∈ T . Since θ1 and θ2 are fuzzy ideals of L, by Lemma 4.1,
we get that X(θ1)∩X(θ2) = X(θ1 ∩ θ2). Then T is closed under finite intersection.

Finally, let {θi : i ∈ I} be any family of fuzzy ideals of L. It can be easily verified
that ⋂

i∈I
V (θi) = V (〈

⋃
i∈I

θi〉).

Then
⋃
i∈I X(θi) = X(〈

⋃
i∈I θi〉). Thus by Lemma 4.2, we have X(

⋃
i∈I θi) =

X(〈
⋃
i∈I θi〉). So T is closed under arbitrary unions. Consequently, T is a topology

on Xα. The space (Xα, T ) will be called the space of prime α-fuzzy ideals in L. �
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Theorem 4.6. The subfamily B = {X(xβ) : x ∈ L, β ∈ (0, 1]} of T is a base for
T .

Proof. Let X(θ) be any open set in Xα and µ ∈ X(θ). Then θ * µ and there is
x ∈ L such that θ(x) > µ(x). Put θ(x) = β. Then xβ ⊆ θ and µ ∈ X(xβ). To
show X(xβ) ⊆ X(θ), let η ∈ X(xβ). Then xβ * η and θ(x) > η(x). Which implies
η ∈ X(θ). Thus µ ∈ X(xβ) ⊆ X(θ). So for any open set X(θ) in Xα, we can find
X(xβ) in B such that X(xβ) ⊆ X(θ). Hence B is a base for T . �

Theorem 4.7. The space Xα is a T0-space.

Proof. Let µ, θ ∈ Xα such that µ 6= θ. Then either µ * θ or θ * µ. Without loss of
generality, we can assume that µ * θ. Then θ ∈ X(µ) and µ /∈ X(µ). Thus Xα is a
T0-space. �

Theorem 4.8. For any fuzzy ideal µ of L, X(µ) = X(←−αα(µ)).

Proof. Let µ be any fuzzy ideal of L. Then by Lemma 3.7, we have that µ ⊆ ←−αα(µ).
Thus X(µ) ⊆ X(←−αα(µ)).

Conversely, let θ ∈ X(←−αα(µ)). Then ←−αα(µ)) * θ. Suppose θ /∈ X(µ). Then
µ ⊆ θ. Thus ←−αα(µ) ⊆ θ. This is impossible. So θ ∈ X(µ). Hence X(µ) =
X(←−αα(µ)). �

Theorem 4.9. For any fuzzy ideal µ of L, X(µ) =
⋃
xβ⊆µX(xβ).

Proof. Let θ ∈ X(µ). Then µ * θ. Thus there is x ∈ L such that µ(x) > θ(x).
Put µ(x) = β. Then xβ ⊆ µ and xβ * θ. Thus θ ∈

⋃
xβ⊆µX(xβ) and X(µ) ⊆⋃

xβ⊆µX(xβ).

Again, let θ ∈
⋃
xβ⊆µX(xβ). Then θ ∈ X(xβ), for some xβ ⊆ µ. Thus β > θ(x)

and µ(x) > θ(x). So θ ∈ X(µ) and
⋃
xβ⊆µX(xβ) ⊆ X(µ). Hence

⋃
xβ⊆µX(xβ) =

X(µ). �

Theorem 4.10. The lattice FIα(L) is isomorphic with the lattice of all open sets
in Xα.

Proof. The lattice of all open sets in Xα is (T ,∩,∪). Define the mapping

f : FIα(L) −→ T by f(µ) = X(µ), for all µ ∈ Xα.

Since X(µ) = X(←−αα(µ)) and ←−αα(µ) is an α-fuzzy ideal, every open subset of Xα

is of the form X(θ), for some θ ∈ FIα(L). Then the mapping is onto.
Let f(µ) = f(θ). If µ 6= θ, then there is x ∈ L such that either µ(x) < θ(x)

or θ(x) < µ(x). Without loss of generality, we can assume that µ(x) < θ(x). Put
µ(x) = β. Then by Corollary 3.26, we can find a prime α-fuzzy ideal η such that
µ ⊆ η and η(x) ≤ β. Thus η /∈ X(µ) and θ * η. So η /∈ X(µ) and η ∈ X(θ). This is
a contradiction. Hence µ = θ.

Now we prove f is homomorphism. Let µ, θ ∈ FIα(L). Then f(µ∨θ) =
X(←−αα(µ ∨ θ)) = X(µ ∨ θ) = X(µ) ∪ X(θ) = f(µ) ∪ f(θ). Similarly, f(µ ∩ θ) =
f(µ) ∩ f(θ). Thus f is a homomorphism. So f is an isomorphism. �

Theorem 4.11. For any family F ⊆ Xα, closure of F is given by F = V (
⋂
µ∈F µ).
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Proof. We know that closure of F is the smallest closed set containing F . To prove
our claim, it is enough to show that V (

⋂
µ∈F µ) is the smallest closed set containing

F . Since the set of all α-fuzzy ideal is a complete distributive lattice,
⋂
µ∈F µ is an

α-fuzzy ideal and V (
⋂
µ∈F µ) is a closed set in Xα. If η ∈ F , then

⋂
µ∈F µ ⊆ η.

Thus η ∈ V (
⋂
µ∈F µ). This implies that F ⊆ V (

⋂
µ∈F µ). Let V (θ) be any closed

set in Xα containing F . Then θ ⊆ µ, for each µ ∈ F . Thus θ ⊆
⋂
µ∈F µ and

V (
⋂
µ∈F µ) ⊆ V (θ). So V (

⋂
µ∈F µ) is the smallest closed set containing F . Hence

F = V (
⋂
µ∈F µ). �

Theorem 4.12. Xα is a T1- space if and only if every prime α-fuzzy ideal of L is
maximal.

Proof. Suppose that the space Xα is a T1 space. Let µ ∈ Xα and µ is not maximal.
Then there exists a maximal fuzzy ideal θ of L such that µ ⊂ θ. Since Xα is T1
space, {µ} and {θ} are closed. Thus θ ∈ Xα − {µ} and µ ∈ Xα − {θ} are open sets.
So there exist two basic open sets θ ∈ X(aβ) and µ ∈ X(bγ) such that µ /∈ X(aβ)
and θ /∈ X(bγ). Since µ ⊂ θ and aβ ⊆ µ, we get that aβ ⊆ θ. Which is impossible.
Hence µ is maximal. Therefore every prime α-fuzzy ideal is maximal. Conversely,
suppose that every prime α-fuzzy ideal is maximal. To show each singleton subset
of Xα is closed, let θ ∈ Xα−{µ}. Then µ 6= θ and by assumption, µ is not properly
contained in θ and θ is not properly contained in µ. This implies that there is a ∈ L
such that µ(a) > θ(a). Put µ(a) = β. Then aβ ⊆ µ and aβ * θ. Thus X(aβ) is an
open set containing θ but not µ. So Xα − {µ} is open. Hence Xα is a T1 space. �

Theorem 4.13. If Xα is a Hausdorff space containing more than one element, then
there exist a, b ∈ L such that Xα = X(aβ) ∪X(bγ) ∪ V (µ) where µ is a fuzzy ideal
generated by aβ ∪ bγ .

Proof. Suppose that Xα is a Hausdorff space containing more than one element. Let
µ and θ be any two elements of Xα such that µ 6= θ. Then there exist two open
sets µ ∈ X(aβ) and θ ∈ X(bγ) such that X(aβ) ∩ X(bγ) = φ. Let η be the ideal
generated by aβ ∪ bγ . But we can not find any σ ∈ Xα such that aβ * σ and bγ * σ.
Let us consider the following cases. If either aβ * σ or bγ * σ but not both, then
σ ∈ X(aβ) ∪X(bγ) ∪ V (η).

And again, if aβ ⊆ σ and bγ ⊆ σ, then aβ ∪bγ ⊆ σ and σ ∈ X(aβ)∪X(bγ)∪V (η).
Thus Xα ⊆ X(aβ) ∪X(bγ) ∪ V (η). So Xα = X(aβ) ∪X(bγ) ∪ V (η). �

Theorem 4.14. The following are equivalent in L.

(1) Xα is a Hausdorff space
(2) For any two elements µ and θ of Xα there exist aβ * µ, bα * θ and there

does not exist any element η of Xα such that aβ * η and bγ * η.

Proof. (1) ⇒ (2): Suppose that the space Xα is Hausedorff. Then for any two
distinct elements µ and θ of Xα, there exist two open sets µ ∈ X(aβ) and θ ∈ X(bγ)
such that X(aβ) ∩ X(bγ) = φ. Thus aβ * µ and bγ * θ. To show our claim,
assume that there is an element η in Xα such that aβ * η and bγ * η. Then
X(aβ)∩X(bγ) 6= φ. This is a contradiction. Thus there is no η ∈ Xα which satisfies
aβ * η and bγ * η.
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(2)⇒ (1): Suppose (2) holds. Let µ and θ be two distinct elements of Xα. Then
by assumption, there exist aβ and bγ such that aβ * µ and bγ * θ. Thus µ ∈ X(aβ)
and θ ∈ X(bγ).

Again by assumption, we can’t find any η in Xα such that aβ * η and bα * η.
So X(aβ) ∩X(bγ) = φ. Hence Xα is a Hausdorff space. �

As a characterization of a regular space Xα, we have.

Theorem 4.15. Xα is a regular space if and only if for any µ ∈ Xα and aβ * µ,
there exist a fuzzy ideal θ of L and bγ such that µ ∈ X(bγ) ⊆ V (θ) ⊆ X(aβ).

Proof. Let Xα be a regular space. Let µ ∈ Xα and aβ * µ, for some a ∈ L. Then
µ ∈ X(aβ). Since Xα is a regular space, there exists a nbd X(η) of µ such that

µ ∈ X(η) ⊆ X(η) ⊆ X(aβ). Since X(η) is closed in Xα, there exists some fuzzy

ideal θ of L such that X(η) = V (θ). Thus µ ∈ X(η) ⊆ V (θ) ⊆ X(aβ). Since
µ ∈ X(η) and X(η) is open in Xα, there exists a basic element X(bγ) such that
µ ∈ X(bγ) ⊆ X(η). So µ ∈ X(bγ) ⊆ V (θ) ⊆ X(aβ).

Conversely, suppose that for any µ ∈ Xα and aβ * µ, there exist a fuzzy ideal θ
of L and bγ such that µ ∈ X(bγ) ⊆ V (θ) ⊆ X(aβ). To show that the space Xα is
regular. Let µ ∈ Xα and V (η) be any closed set of Xα such that µ /∈ V (η). This
gives η * µ and there is a ∈ L such that η(a) > µ(a). Put η(a) = β. Then aβ ⊆ η
and aβ * µ. Thus µ ∈ X(aβ). Since aβ * µ, by assumption, there exists a fuzzy
ideal θ of L and bγ such that µ ∈ X(bγ) ⊆ V (θ) ⊂ X(aβ). So X(bγ) ∩X(θ) = φ.

Now we prove V (η) ⊆ X(θ). Since aβ ⊆ η, we have V (η) ⊆ V (aβ). Then
V (η) ⊆ Xα − X(aβ) ⊆ Xα − V (θ). Thus there exist two disjoint open sets X(aβ)
and X(θ) such that µ ∈ X(aβ) and V (η) ⊆ X(θ) (or in other words, for any µ ∈ Xα

and a closed set V (η) not containing µ, we can find a nbd X(bγ) of µ and open
X(θ) ⊇ V (η) such that X(bγ) ∩X(θ) = φ ). Thus Xα is a regular space. �
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