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Abstract. Shadowed set approximation of fuzzy sets has been intro-
duced and enhanced to exploit some optimization-based principles which
define the quality of its approximation. It found its applications in granu-
lar computing, cluster computing and recommender systems. This paper
introduces a new approach accompanied with an algorithm; based on a
principle of uncertainty invariance, to simplify fuzzy sets by inducing its
best approximation which possesses the nearest quota of fuzziness as en-
countered in the original fuzzy set. Some numerical examples are provided
to demonstrate how to implement the proposed method. The new approach
is useful in preserving the uncertainty and information inherently associ-
ated with a given fuzzy set. A comparative study is made with related
methods. The results of some evaluation indices on the approximation
effectiveness illustrate the essence of the proposed method.

2010 AMS Classification: 03B52, 03E72, 28E10

Keywords: Fuzzy set, Shadowed set, Approximation of fuzzy set, Three-way
decision

Corresponding Author: T. O. William-West (westtamuno@gmail.com)

1. Introduction

Fuzzy sets, introduced by Zadeh [16], are used to model imprecision by estab-
lishing a membership function which describes the concept being modeled. The
membership function µF : X −→ [0, 12 ] which characterizes a fuzzy set, establishes
the degree of membership (i.e., µF (x) ∈ [0, 1]) of the elements, x ∈ F , of a fuzzy set
through precise numerical quantities.

Pedrycz [9] considered three ôregion approximation and interpretation of fuzzy
sets viz. inclusion, exclusion, and unknown (doubt) regions, which has found sev-
eral applications in granular computing [4, 12], recommender systems [6], clustering
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computing [8, 10, 11, 18], game theory [17], etc. Some related algebraic studies of
shadowed sets are as well reported in [1]. The key aspect of shadowed set approxi-
mation of fuzzy sets is to determine a pair of optimal thresholds that would partition
a given fuzzy set into the three regions and retain the overall amount of fuzziness in
the given fuzzy set [13, 15]. Many methods of inducing shadowed sets have appeared
in [2, 5, 9, 17].

Pedrycz [9] demonstrated a practical way to determine a suitable pair of thresholds
which partition a given fuzzy set into three regions. However, as observed by [13],
the formulation proposed in [9] may not fully retain the overall amount of fuzziness
associated with the original fuzzy set. [13] proposed a more accurate formulation
which reasonably captures the original fuzziness of the elements in doubtful zones.

Further, to provide more insight into shadowed set approximation of fuzzy sets
in terms of minimization of the error in classification of the elements of a fuzzy set
into three regions of the resulting shadowed set, an alternative decision-theoretic
shadowed set approximation of fuzzy sets was proposed in [3]. In line with Pedryczs
formulation, [5] suggested another approach for approximating a fuzzy set in the
framework of shadowed sets. The method searches for a point of compromise between
the optimality of a specific threshold and balance of the uncertainty introduced by
the shadowed set approximation actions.

Recently, game-theoretic shadowed set (GTSS) approximation of fuzzy sets has
been proposed in [17], where optimal thresholds are determined and interpreted us-
ing game theoretical concepts. The existing methods of approximation of fuzzy sets
via shadowed sets are motivated by the following principles: i. Balance the fuzzi-
ness introduced as a result of performing the shadowed set transformation actions.
Typical examples are methods in [9, 13]. ii. Minimize the error generated as a result
of classifying the elements of a fuzzy set into the regions. A typical example is the
method suggested in [3]. iii. Bridge the gap between optimality of a threshold for
transforming a fuzzy set into its resulting shadowed set and the threshold which bal-
ances the fuzziness introduced. A typical example is the method in [5]. iv. Search
for a point of compromise between the conflict and tradeoff in the elevation and
reduction errors arising from the transformation actions. A typical example is the
method in [17].

In this paper, we argue that a formulation of a suitable method which fully
complies with preservation of an equivalent amount of information and fuzziness
associated with the original fuzzy set, should minimize the discrepancies between the
total amount of fuzziness in the shadowed set to be induced and the total amount of
fuzziness in the original fuzzy set from which a shadowed set is induced. In particular,
in order to account for an equivalent amount of information and uncertainty, the total
amount of fuzziness in the original fuzzy set needs to be captured by the method.
This idea of preservation of information is anchored on a well-known optimization-
based principle suggested in [7], called a principle of uncertainty invariance. A
principle of uncertainty invariance requires that no information is unwittingly added
or eliminated as a result of transforming a fuzzy set into its resulting shadowed set.
Therefore, we proposed a new algorithm to construct a shadowed set from a given
fuzzy set, which exploits a principle of uncertainty invariance in order to account for
an equivalent amount of fuzziness characterizing the original fuzzy set.
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2. Three-way approximation of fuzzy sets

Given a fuzzy set F defined by µF : X −→ [0, 12 ] , three-way approximation of F ,
T(α,β)(µF (x)) maps the membership grades of all elements of F to a three-element
set {n,m, p} based on a pair of thresholds (α, β), 0 ≤ α ≤ β ≤ [13, 14]. That is,

(2.1) T(α,β)(µF (x)) =


p, µF (x) > α,

m,α ≤ µF (x) ≤ β,
n, µF (x) < α.

With the aid of Equation (2.1), a fuzzy set can be effectively partitioned into
three-regions:

a) Core(µF ) = {x ∈ X : µF (x) > β},
b) Support(µF ) = {x ∈ X : µF (x) > 0},
c) Complementsupport(µF ) = {x ∈ X : µF (x) = 0}.

These three regions facilitate decision-making and correspond to a concept known
as three-way decisions [14].

Shadowed sets are viewed as special case of three-way approximations of fuzzy
sets, in which p = 1,m = (0, 1), n = 0. A shadowed set maps the membership grade
of all elements in F to a three-element set {0,(0,1),1} based on a symmetric pair of
thresholds (α, 1− α). That is,

(2.2) S(α,β)(µF (x)) =


1, µF (x) > α,
1
2 , α ≤ µF (x) ≤ β,
0, µF (x) < α.

By applying Equation (2.2) to the membership grades of all elements in F , we
obtain the three regions:

d) Elv(S) = {x ∈ X : µF (x) > β ∧ S(x) = 1} - elevated region,
e) Shd(S) = {x ∈ X : α ≤ µF (x) ≤ 1− α ∧ S(x) = 1

2} - shadow region,
f) Red(S) = {x ∈ X : µF (x) < α ∧ S(x) = 0} - reduced region.

2.1. Formulation of the problem of determination of optimal threshold
values. The three regions of a shadowed set S introduce a new type of uncertainty
which must be balanced and localized into the shadows of S. As suggested in [9],
the uncertainty eliminated as a result of elevating elements membership grades to
1 and reducing elements membership grades to 0 should be compensated for in the
shadow region. Thus, we have the following equation:

(2.3) ϕ(Elv(S)) + ϕ(Red(S)) = ϕ(Shd(S)),

where ϕ(A) denotes the fuzziness associated with a region A.
In practical situations, Equation (2.3) is not always easily achievable.
The problem of determining the required pair of thresholds can be treated as

optimization problem [9], that is, we have the following argument:

(2.4) αopt = minαV (α),

where V (α) = |ϕ(Elv(S)) + ϕ(Red(S)) − Card(Shd(S))| , |.| denote absoute value
function, Card(A) denote cardinality of a set A, and
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ϕ(Elv(S)) =
∑q
i (1− µF (xi)), µF (xi) > β

ϕ(Red(S)) =
∑r
i µF (xi), µF (xi) < α.

The authors of [13] reformulated Equation (2.4) as the following argument

(2.5) αopt = minαJ(α),

where J(α) = |ϕ(Elv(S))+ϕ(Red(S))−ϕ(Shd(S))| , ϕ(A) is the measure of fuzziness
of a set A, and
ϕ(Elv(S)) =

∑q
i ϕ(µF (xi)), µF (xi) > β

ϕ(Red(S)) =
∑r
i ϕ(µF (xi)), µF (xi) < α

ϕ(Shd(S)) =
∑r
i (ϕ( 1

2 ) − ϕ(µF (xi))), α ≤ µF (xi) ≤ 1 − α. Here ϕ denotes a
suitable fuzziness measure over a fuzzy set F .

Further, [3] treated Equation (2.4) as a problem of minimizing the classification
error, E(.), as follows:

(2.6) αopt = minαE(α,β)(S),

where E(α,β)(S) = Ee(µF ) + Er(µF ) + Es(µF ),

Ee(µF ) =
∑q
i=1(1− µF (xi)), µF (xi) > β

Er(µF ) =
∑r
i=1 µF (xi), µF (xi) < α

Es(µF ) =
∑
α≤µF (xi)<

1
2
( 1
2 − µF (xi)) +

∑
1
2<µF (xi)≤β(µF (xi)− 1

2 ), and

(2.7) E(α,β)(µF (x)) =


1− µF (x), ifµF (x) > β

µF (x)− 1
2 , if

1
2 < µF (x) ≤ β

1
2 − µF (x), ifα ≤ µF (x) < 1

2

µF (x)− 0, ifµF (x) < α.

In line with Pedryczs formulation, [5] modified Equation (2.4) as the following ar-
gument:

(2.8) αopt = Near(avgV ∗(α)V
∗(α))

where V ∗(α) = |
∑
µF (x)∈Elv(S)(1−µF (x))+

∑
µF (x)∈Red(S) µF (x)−

∑
µF (x)∈Shd(S) µF (x)|

and Near(avgV ∗(α)V
∗(α)) is the argument of selecting a cut (i.e., α ∈ (0, 12 ]) such

that V ∗(α) is near the average of the balance of uncertainty V ∗(αi), for all feasi-
ble αi ∈ (0, 12 ]. The quantity avgV ∗(α)V

∗(α) represents the average of the numbers

V ∗(αi), αi ∈ (0, 12 ], for all i.
The optimal threshold,α, to be found is such that α+ β = 1.
Upon determination of α, the resulting shadowed set can be easily constructed by

calculating β = 1−α. The details of the above methods can be found in [3, 5, 9, 13].

Recently, an approach for determination of the required pair of thresholds for
approximating a fuzzy set via shadowed sets which exploits game-theoretical mech-
anism was suggested in [17].

The author in [17] reports that it is not possible to simultaneously decrease the
elevation and reduction errors. That is, the decrease of the elevation error results in
the increase of the reduction error, and vice versa.

This led to the search for a pair of thresholds (α, β) which defines a shadowed set
approximation of fuzzy sets based on a tradeoff between the elevation and reduction
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errors. In fact, the contradiction between the elevation and reduction errors were
formulated as a competitive game in [17] in which the increase of one players payoff
(i.e., elevation error) may result in the decrease of the other players payoff (i.e.,
reduction error). The game stops if: both players lose their payoffs or the gain of
a players payoff is less than the loss of the other players payoff, otherwise several
iterations are performed until the stopping criteria are reached.

The method suggested in [17] does not require any decision objective function,
and thus may not account for the total amount of fuzziness associated with the
original fuzzy set. Moreover, for a pair of symmetric thresholds (as is the case in
shadowed sets), (αi, βi), it is possible to simultaneously decrease the elevation and
reduction errors by searching for an α-cut which is both optimal and accounts for
an equivalent amount of fuzziness associated with the original fuzzy set. This raises
some concerns with the method suggested in [17].

3. Reformulation of the problem of determination of optimal
threshold Values

In order to construct a shadowed set which fully comply with preservation of an
equivalent amount of fuzziness and information associated with the original fuzzy
set, we consider determination of the optimal threshold from a perspective of a
principle of uncertainty invariance.

3.1. A principle of uncertainty invariance. To facilitate the connection between
a given fuzzy set and its resulting shadowed set, a principle requiring that the total
amount of fuzziness (and information) be preserved when a fuzzy set is transformed
into a suitable shadowed set, is conceived as a principle of uncertainty invariance.
To be concise, the principle of uncertainty invariance requires that no information
is unwittingly added or eliminated as a result of transforming a fuzzy set into its
resulting shadowed set (see [7]).

Guided by the aforesaid principle, one can determine the quality of various meth-
ods of induction of shadowed set from any given fuzzy set.

3.2. Fuzziness measure. Fuzziness measures are crucial for assessing the influence
of shadowed set approximation on fuzzy sets. They could be used to estimate loss
of information when a fuzzy set is simplified.

A well-justified fuzziness measure which have been used in [5, 13] to calculate the
fuzziness inherently associated with both fuzzy and shadowed sets is the fuzziness
measure adopted in [7]. This fuzziness measure comes in the following form:

For a given fuzzy set F drawn from X, its level of fuzziness is computed as

ϕ(F ) =

n∑
i=1

[1− |2µF (x)− 1|].

We formulated three theorems that are useful for comprehending the method
proposed in this paper.

Theorem 3.1. Suppose that Sα1 , Sα2 , ..., Sαn , (α1 < α2 <, ..., < αn) are assumed
shadowed sets induced from a fuzzy set F , αi ∈ [µFmin ,

1
2 ]. Then the following
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inequality holds:

Card(Shad(Sα1
)) ≥ Card(Shad(Sα2

)) ≥ ... ≥ Card(Shad(Sαn)).

Proof. It is straightforward since for αi ∈ [µFmin ,
1
2 ], such that α1 < α2 <, ..., < αn,

we have that 1− α1 > 1− α2 > ... > 1− αn and

(3.1) [α1, 1− α1] ⊃ [α2, 1− α2] ⊃ ... ⊃ [αn, 1− αn].

The intervals in Equation (3.1) define the shadow regions for the respective shadowed
sets: Sα1

, Sα2
, ..., Sαn . Consequently, we have

Card(Shad(Sα1
)) ≥ Card(Shad(Sα2

)) ≥ ... ≥ Card(Shad(Sαn)).

�

Theorem 3.2. Suppose Sα1 and Sα2 are assumed shadowed sets drawn from a fuzzy
set F , α1, α2 ∈ [µFmin ,

1
2 ], where µFmin is the minimum membership grade in F . A

necessary condition for ϕ(Sα1
) to be closer to ϕ(F ) than ϕ(Sα2

) is to ϕ(F ) is that
(1) Card(Shad(Sα1

)) ≥ Card(Shad(Sα2
)), ϕ(F ) > ϕ(Sα2

) and ϕ(Sα1
) ≤ ϕ(F ),

(2) Card(Shad(Sα1
)) ≤ Card(Shad(Sα2

)), ϕ(F ) < ϕ(Sα2
) and ϕ(Sα1

) ≥ ϕ(F ).

Proof. Suppose Card(Shad(Sα1
)) ≥ Card(Shad(Sα2

)). Since ϕ(F ) > ϕ(Sα2
) and

ϕ(Sα1
) ≤ ϕ(F ), ϕ(Sα1

) > ϕ(Sα2
) and α1 < α2, α1, α2 ∈ [µFmin ,

1
2 ]. This guarantees

that |ϕ(F )− ϕ(Sα1
)| ≤ |ϕ(F )− ϕ(Sα2

)|, for fixed α1 and any α2.
Suppose Card(Shad(Sα1

)) ≤ Card(Shad(Sα2
)). Since ϕ(F ) < ϕ(Sα2

) and
ϕ(Sα1) ≥ ϕ(F ), ϕ(Sα2) > ϕ(Sα1) and α2 < α1, α1, α2 ∈ [µFmin ,

1
2 ]. Then,

|ϕ(F )− ϕ(Sα1)| ≤ |ϕ(F )− ϕ(Sα2)|, for fixed α1 and any α2. �

Remark 3.3. We note that if Sα1 , Sα2 , ..., Sαn are assumed shadowed sets drawn
from a fuzzy set F and α1 < α2 <, ..., < αn, αi ∈ [µFmin ,

1
2 ], then since a fuzziness

measure,ϕ, is monotonically increasing in [0, 12 ], and reaches the maximum value at
1
2 . We have from Eqation (3.1) that ϕ(Sα1

) > ϕ(Sα2
) > ... > ϕ(Sαn) . However,

the following inequality need not hold:

|ϕ(F )− ϕ(Sα1
)| > |ϕ(F )− ϕ(Sα2

)| > ... > |ϕ(F )− ϕ(Sαn)|.

Theorem 3.4. Suppose F is a nonempty fuzzy set drawn from X and [µFmin , 0.5]
is the range of feasible α-cuts for the induction of shadowed set from F . If αi ∈
[µFmin , 0.5],

Sα1 , Sα2 , ..., Sαn , (α1 < α2 <, ..., < αn)

are assumed shadowed sets drawn from F , then there is a unique Sαp , p ∈ {1, 2, ..., n},
such that

|ϕ(F )− ϕ(Sαp)| = min|ϕ(F )− ϕ(Sαi)|,
αp ∈ [µFmin, 0.5], 1 ≤ i ≤ n.

Proof. Let Sα1
, Sα2

, ..., Sαn , (α1 < α2 <, ..., < αn) be shadowed sets drawn from F
such that αi ∈ [µFmin ,

1
2 ]. Then ϕ(Sα1

) > ϕ(Sα2
) > ... > ϕ(Sαn). For any fuzziness

measureϕ, we have ϕ(F ) ≥ 0 and the set D = {|ϕ(F )− ϕ(Sαi)| : i = 1, 2, ..., n}
is well-ordered. It follows that there exists an α-cut, αp ∈ [µFmin ,

1
2 ], such that

|ϕ(F )− ϕ(Sαp)| is the minimum element in D. Thus, we have the following:

|ϕ(F )− ϕ(Sαp)| = min{|ϕ(F )− ϕ(Sα1)|, |ϕ(F )− ϕ(Sα2)|, ..., |ϕ(F )− ϕ(Sαn)|}.
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So Sαp emerges as our desired shadowed set. �

Remark 3.5. Let ϕ be any fuzziness measure, for any shadowed set Sα, α ∈ (0, 12 ],
we have

ϕ(Sα) = ϕ[Shd(Sα)].

In the event whereby two feasible threshold values of α-cuts produce the same
value of minimum error resulting from shadowed set transformation actions, the two
feasible thresholds induce two distinct shadowed sets which have different amount
of fuzziness. The method proposed in [3], being dependent on minimum error in
transformation, may not guarantee the selection of the threshold that would produce
a shadowed set having an equivalent amount of fuzziness as encountered in the
original fuzzy set. A similar situation may also arise from the method proposed in
[13] when different measures of fuzziness are used to compute the required pair of
threshold (see the remark on page 942-943 in [13]).

The aforesaid observations has placed demands on reformulation of the problem
of determining the required pair of thresholds for induction of a shadowed set from
a given fuzzy set, and motivate the new approach presented below.

4. Algoirithm for shadowed set approximation of fuzzy sets based on
nearest quota of fuzziness

Let ϕ be any fuzziness measure on a fuzzy set

F = {(x, µF (x)) : x ∈ X}

over a nonempty universe X. For a given range of feasible threshold values αi ∈ (0, 12 ]
and its resulting shadows Shd(Sαi) of assumed shadowed sets Sαi , we determine an

optimal threshold value α
′ ∈ (0, 12 ] such that

|ϕ(F )− ϕ(Sα′ )| = min|ϕ(F )− ϕ(Sαi)|,

for all i, by using the following steps:

Given a fuzzy set F and each feasible α -cut in the range [µFmin ,
1
2 ] of threshold

values.

Step 1: Compute the membership value as

µShd(Sαi )(x) =
1

k

k∑
j=1

µF (xj), αi ≤ µF (xj) ≤ 1− αi,

for the shadows Shd(Sαi) = {(x, µShd(Sαi )(x)) : αi ≤ µF (xj) ≤ 1− αi}

Step 2: For a suitable fuzziness measure, ϕ(A) =
∑n
i=1[1 − |2µA(x) − 1|] say,

compute ϕ(F ) and ϕ[Shd(Sαi)], for all i

Step 3: Compute the absolute difference, D(αi) = |ϕ(F )−ϕ[Shd(Sαi)]|, between
ϕ(F ) and ϕ[Shd(Sαi)], for all i.
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Step 4: Select α
′

as the optimized threshold value if, D(α
′
) = minD(αi), α

′ ∈
{α1, α2, ..., αk} in Step 3.

Step 5: Return Sα′ = Elv(Sα′ ) ∪ Red(Sα′ ) ∪ Shd(Sα′ ) as the desired shadowed
set, where
Elv(Sα′ ) = {(x, 1) : µF (x) > 1− α′},
Red(Sα′ ) = {(x, 0) : µF (x) < α

′},
Shd(Sα′ ) = {(x, µShd(Sαi )(x)) : α

′ ≤ µF (x) ≤ 1− α′}.

An illustrative example to demonstrate the algorithm is offered in the next section.

5. Experimental evaluations

The experimental evaluation reports on the result produced by different shadowed
set approximation methods for transforming given fuzzy sets. First of all, let us con-
sider the following ten- element fuzzy sets whose membership grades are randomly
generated.
µF1

: [0.13559, 0.13927, 0.17353, 0.18357, 0.19754, 0.3604, 0.65331, 0.93263, 0.94007, 0.9981],
µF2 : [0.18976, 0.26628, 0.30658, 0.5203, 0.60942, 0.76293, 0.77835, 0.8216, 0.88019, 0.93408],
µF3 : [0.06285, 0.28423, 0.30045, 0.31441, 0.46033, 0.47927, 0.59373, 0.60853, 0.84309, 0.95889],
where the membership grade of object xj is in the jth position of µFi(xj).

For a demonstration of how to implement Algorithm 1, consider the values en-
listed in µF1

above. The proposed shadowed set approximation of µF1
is summarized

in the following steps:

Step 1: We compute the shadows, Shd(Sαi), of the assumed shadowed sets Sαi ,
for all i ≥ 1. A set of their membership values after applying µShd(Sαi )(x) =
1
k

∑k
j=1 µF (xj), αi ≤ µF (xj) ≤ 1− αi are outlined as:

µShd(Sα1 )
(x) = {0.26331, 0.26331, 0.26331, 0.26331, 0.26331, 0.26331, 0.26331},

µShd(Sα2
)(x) = {0.28460, 0.28460, 0.28460, 0.28460, 0.28460, 0.28460},

µShd(Sα3
)(x) = {0.31367, 0.31367, 0.31367, 0.31367, 0.31367},

µShd(Sα4 )
(x) = {0.34870, 0.34870, 0.34870, 0.34870},

µShd(Sα5 )
(x) = {0.40375, 0.40375, 0.40375},

µShd(Sα2
)(x) = {0.3604}.

We calculate the measure of fuzziness ofF1 by the formula:
ϕ(F1) =

∑n
i=1[1− |2µF 1

(x)− 1|], and obtain ϕ(F1) = 3.33144.

Step 2: For the same fuzzy set F1, the feasible thresholds are selected as:

α1 = 0.13559, α2 = 0.13927, α3 = 0.17353, α4 = 0.19754, α5 = 0.3604andα6 = 0.3604.

We compute the measure of fuzziness of the shadows
(i.e.,Shd(Sα1

, Shd(Sα2
, Shd(Sα3

, Shd(Sα4
, Shd(Sα5

) andShd(Sα6
) of the result-

ing candidate shadowed sets (i.e.,Sα1 , Sα2 , Sα3 , Sα4 , Sα5 and Sα6 , respectively),
by using ϕ(Sαi) =

∑n
i=1[1− |2µSαi (x)− 1|], as well and obtain:

ϕ[Shd(Sα1
)] = 3.68634,
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ϕ[Shd(Sα2)] = 3.41520,

ϕ[Shd(Sα3
)] = 3.13670,

ϕ[Shd(Sα4
)] = 2.78960,

ϕ[Shd(Sα5)] = 2.42250,

ϕ[Shd(Sα6
)] = 0.72080.

Step 3: Using D(αi) = |ϕ(F ) − ϕ[Shd(Sαi)]|, we compute the following discrep-
ancies, D(αi), for all 1 ≤ i ≤ 6 as:

D(α1) = |ϕ(F )− ϕ[Shd(Sα1)]|,
D(α1) = 0.35490,

D(α2) = |ϕ(F )− ϕ[Shd(Sα2
)]|,

D(α2) = 0.08376,

D(α3) = |ϕ(F )− ϕ[Shd(Sα3)]|,
D(α3) = 0.19474,

D(α4) = |ϕ(F )− ϕ[Shd(Sα4
)]|,

D(α4) = 0.54184,

D(α5) = |ϕ(F )− ϕ[Shd(Sα5)]|,
D(α5) = 0.90894,

D(α6) = |ϕ(F )− ϕ[Shd(Sα6
)]|,

D(α1) = 2.61064.

Selecting the shadowed set with the minimum discrepancy, as suggested in algorithm
1, as the one with the nearest quota of fuzziness.

Step 4: Select the shadowed set with the minimum discrepancies. That is, the
shadowed set Sα2

retains an equivalent amount of fuzziness as encountered in the
original fuzzy set F1. Then, we obtain ϕ[Shd(Sα2)] = 3.41520 as the nearest quota
of fuzziness. Thus Sα2 has the minimum discrepancy.

Step 5: Return the shadowed set Sα2
as the desired three-way approximation of

F :
Elv(Sα2

) = {(x, 1) : µF1
(x) > 0.86073},

Red(Sα2
) = {(x, 0) : µF1

(x) < 0.13927},
Shd(Sα2) = {(x, 0.28460) : 0.13927 ≤ µF1(x) ≤ 0.86073}.

To minimize the error in elicitation of the membership grades of the elements in
the shadow region, Sα2 , the mean of the original membership grades of the elements
in the shadow area is assigned as new membership grade of the elements in the
shadow area. This has been effectively applied in [2, 5].
For fuzzy sets F2 and F3 their corresponding thresholds (α, β) are determined by
deploying various methods (using Equation (2.4), (2.5), (2.6) and (2.7)). Please see
Table 1 below.
Table 1 presents the results for fuzzy sets F1≤i≤3. In fuzzy set F1 the methods
produce different threshold values, while in the remaining two fuzzy sets, some of the
methods produce the same threshold. Three methods (i.e., [2, 5] and the proposed
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method) concur in determination of the required thresholds (α, β) for approximating
F2, thereby confirming the feasibility of the proposed technique.

Table 1. Various thresholds computed from existing and proposed
methods

Fuzzy sets Thresholds Ibrahim and
William-West
method

Pedrycz
method

Deng and Yao
method

Tahayori et
al. method

Proposed
method

F1 (α, β) [0.1735, 0.8265] [0.3604, 0.6396] [0.1975, 0.8025] [0.1836, 0.8164] [0.1393, 0.8607]
F2 (α, β) [0.2663, 0.7337] [0.3066, 0.6934] [0.2663, 0.7337] [0.1898, 0.8102] [0.2663, 0.7337]
F3 (α, β) [0.3005, 0.6996] [0.4603, 0.5397] [0.2842, 0.7158] [0.2842, 0.7158] [0.3005, 0.6996]

The experimental studies evaluate the effectiveness of the proposed method on
randomly generated fuzzy sets of ten elements. The algorithm for implementing
each method was coded in Python programming language. The experiment was
conducted on a 64-bit operating system computer, with Pentium(R) cpu 2.20GHz.
The details of each pair of thresholds determined by various methods on a given
fuzzy set F1≤i≤3 are provided as shown in Table 1. Please observe in Table 1, the
threshold in row 3, column 3, 5 and 7, and row 3, column 3 and 7 show when two
or more method concur, whereas the threshold in row 2, column 3-7 indicate dis-
tinction between various methods. We evaluate various methods by analyzing the
threshold in row 2, column 3-7. We note that very frequently, a single threshold of
an α-cut does not fulfill all the four principles behind the formulation of the methods
of shadowed set approximation of fuzzy sets (please see the principles mentioned in
Section 1). In this case, different threshold value of α-cuts are determined by differ-
ent existing method (e.g., as in the case of F1). On the other hand, in the event that
a single threshold of an α-cut fulfills at least two or more of the earlier mentioned
principles in Section 1, the methods which have been formulated under such princi-
ples yield the same threshold value of an α-cut (e.g., as in the case of F2 - methods
in [2, 5] and the proposed method). Thus, it can be easily deduced that there is
a strong relationship between the aforesaid four principles described in Section 1.
However, the experimental result shows that the principles aim at different purpose.
According to how the thresholds coincide, the convergence of the proposed methods
towards a pair of thresholds obtained from other existing methods tells upon the
feasibility of the proposed method, and points out its relationship to these methods.

5.1. Evaluation indices. Before reporting the results, we indicate the performance
indices that we will adopt. We require the classification accuracy C to be measured
by two key aspects:
Counting the discrepancy (in the level of uncertainty and information, i.e., in case
(a) below) of the shadowed set classification from the original fuzzy set and dividing
by the total amount of fuzziness or information (or in case (b) the cardinality of F )
of the original fuzzy set. In effect, it is given by what follows.

(a) Information evaluation index, CIF , estimates the distance between the true
measure of fuzziness of elements in the original set and their corresponding measure
of fuzziness in the approximated set. We require that this distance should be as
small as possible. Relative to the original fuzziness associated with the given fuzzy
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set, it should be such that

(5.1) CIF =
1

ϕ(F )

N∑
i=1

δ(ϕF (xi), ϕS(xi))

is minimal.
(b) Error evaluation index,CE , identifies the overall error in changing the mem-

bership grades from the original value to the assigned value, relative to the total
membership grades in the original fuzzy set. Formally, it follows the principle that;
the distance between the true membership grade of an element in the original fuzzy
set and the assigned membership grade in the approximated set should be as small
as possible. In turn, the minimum value of

(5.2) CE =
1∑N

i=1 µF (xi)
δ(µF (xi)µS(xi))

demonstrates the goodness of the classification, where N is the number of objects,

ϕ(F ) is the measure of fuzziness in F ,
∑N
i=1 µF (xi) is the cardinality of F , ϕF (xi)and

ϕS(xi) denote the true label of fuzziness or information and the assigned label of
fuzziness or information of the ith object, respectively, and µF (xi) and µS(xi) de-
note the true membership grade and the assigned membership grade of ith object,
respectively. Here δ(x, y) = |x − y| is a distance function. The results obtained by
applying the evaluation indices suggested in (a) and (b) of Subsection 5.1, shows
that the error in changing the fuzziness and information (and changing membership
grade) associated with objects in F to a new degree of fuzziness (and new mem-
bership grades, respectively) in the resulting shadowed set, has minimum effect on
the proposed method (see Table 2). That is, the last column, corresponding to
the proposed method, provides the best result. However, the methods in [2, 5, 13]
show better classification when compared to the method in [9]. Not surprisingly, the
proposed method hinges on a classification mechanism which aims at localizing the
uncertainty encountered in the original fuzzy set; to a region of the shadowed set
having an equivalent amount of fuzziness as found the original fuzzy set.

Table 2. Classification evaluation index on F1

Index Ibrahim and
William-
West
method

Pedrycz
method

Deng and
Yao method

Tahayori et
al. method

Proposed
method

Information
evaluation
index

0.599 0.867 0.814 0.802 0.550

Error evalu-
ation index

0.24964 0.30653 0.28777 0.31595 0.24476

It becomes apparent that the proposed method performs better than other meth-
ods in terms of minimizing the discrepancies arising from transforming uncertainty
and information from fuzzy sets to shadowed sets.
From the experimental study, the following conclusion can be drawn:

(i) The improvement found in the proposed method can be attributed to the
fact that selection of the threshold parameters anchors on a principle of uncertainty
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invariance. Also, assigning the mean-value of the true membership grades of all
elements which are to be placed in the shadow region, as the new membership grade
of the elements in the shadow region helps to minimize the error associated with the
ensuing shadowed set.

(ii) The methods in [2, 5, 9, 13], may not select a threshold value which generates
a shadowed set having the nearest amount of fuzziness as obtained in the original
fuzzy set. Hence, these methods may not strongly fulfill a principle of uncertainty
invariance.

(iii) The computing time required to run the methods in [2, 9] is less than the
one required by other methods. The method suggested in [13] requires the highest
amount of computing time when determining the optimal threshold.

6. Conclusion

The key aspect of inducing shadowed sets from fuzzy sets is to find the criteria (i.e.,
thresholds) for constructing interpretable information granules (elevated, reduced
and shadow regions); which describes the overall fuzzy set. A shadowed set provides
a framework for explaining the elicitation of membership grades of a fuzzy set as a
three-way decision. It offers an appealing strategy for partitioning a fuzzy set into
three approximation regions.

Some of the characteristics of the proposed method, that make it unique as com-
pared to the existing methods, could be identified as:

(1) the method provides a much stronger bias for accounting for an equivalent
amount of information and fuzziness of the original fuzzy set. This philosophy helps
in minimizing information loss in the resulting shadowed set.

(2) a comparison with the existing method reveals the absence of detailed calcu-
lation of the effects of elevation, reduction and fixing of elements in various regions
when the optimality of each feasible threshold α ∈ [µFmin ,

1
2 ] is evaluated.

The present study, provides another approach to induce shadowed sets from fuzzy
sets. First, it quantifies the uncertainty and information associated with the given
fuzzy set. Second, it searches for the best criteria (a pair of symmetric thresholds)
that would induce an optimal approximation of a fuzzy set. The goal of the ap-
proximation is to ensure that no information is unwittingly added or eliminated as
a result of transforming a fuzzy set into its resulting shadowed.

We conclude that the proposed method, due to its simplicity and information
preservation potential, could be recommended as a better substitute in application
areas such as shadowed clustering techniques (i.e., shadowed-C means clustering (see
[8]), rough-fuzzy clustering in the framework of shadowed sets (see [18]), information
filtering process, etc. The substitution of the proposed approach to these application
areas may eliminate the formation of misguided clusters and enhance the quality of
information filtering model.
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