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Abstract. In this paper, we consider the problem of how to establish
algebraic structures on nearness approximation spaces. Essentially, our
approach is to define the nearness ring, nearness ideal and nearness ring of
all weak cosets by considering new operations on the set of all weak cosets.
Afterwards, our aim is to study homomorphism on nearness approximation
spaces, and to investigate some properties of nearness rings and ideals.
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1. Introduction

Nearness approximation spaces and near sets were introduced in 2007 as a gen-
eralization of rough set theory [13, 15, 20]. More recent work consider generalized
approach theory in the study of the nearness of non-empty sets that resemble each
other [16] and a topological framework for the study of nearness and apartness of
sets [10]. An algebraic approach of rough sets has been given by Iwinski [5]. After-
wards, rough subgroups were introduced by Biswas and Nanda [2]. In 2004 Davvaz
investigated the concept of roughness of rings [4] (and other algebraic approaches of
rough sets in [1, 9, 12, 19, 21]).

Near set theory begins with the selection of probe functions that provide a basis for
describing and discerning affinities between objects in distinct perceptual granules.
A probe function is a real-valued function representing a feature of physical objects
such as images or collections of artificial organisms, e.g. robot societies.

In the concept of ordinary algebraic structures, such a structure that consists
of a nonempty set of abstract points with one or more binary operations, which
are required to satisfy certain axioms. For example, a groupoid is an algebraic
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structure (A, ◦) consisting of a nonempty set A and a binary operation “◦” defined
on A [3]. In a groupoid, the binary operation “◦” must be only closed in A, i.e.,
for all a, b in A, the result of the operation a ◦ b is also in A. As for the nearness
approximation space, the sets are composed of perceptual objects (non-abstract
points) instead of abstract points. Perceptual objects are points that have features.
And these points describable with feature vectors in nearness approximation spaces
[13]. Upper approximation of a nonempty set is obtained by using the set of objects
composed by the nearness approximation space together with matching objects. In
the algebraic structures constructed on nearness approximation spaces, the basic
tool is consideration of upper approximations of the subsets of perceptual objects.
In a groupoid A on nearness approximation space, the binary operation “◦” may
be closed in upper approximation of A, i.e., for all a, b in A, a ◦ b is in upper
approximation of A.

There are two important differences between ordinary algebraic structures and
nearness algebraic structures. The first one is working with non-abstract points while
the second one is considering of upper approximations of the subsets of perceptual
objects for the closeness of binary operations.

In 2012, E. İnan and M. A. Öztürk [6, 7] investigated the concept of groups

on nearness approximation spaces. Moreover, in 2013, M. A. Öztürk at all [11]
introduced group of weak cosets on nearness approximation spaces. Also in 2015,
E. İnan and M. A. Öztürk [8] investigated the nearness semigroups. In this paper,
we consider the problem of how to establish and improve algebraic structures of
nearness approximation spaces. Essentially, our aim is to obtain algebraic structures
such as nearness rings using sets and operations that ordinary are not being algebraic
structures. Moreover, we define the nearness ring of all weak cosets by considering
operations on the set of all weak cosets. To define this quotient structure we don’t
need to consider ideals.

2. Preliminaries

2.1. Nearness approximation spaces [13]. Perceptual objects are points that
describable with feature vectors. Let O be a set of perceptual objects. An object
description is defined by means of a tuple of function values Φ (x) associated with
an object x ∈ X ⊆ O. The important thing to notice is the choice of functions
ϕi ∈ B used to describe any object of interest. Assume that B ⊆ F is a given set
of functions representing features of sample objects X ⊆ O. Let ϕi ∈ B, where
ϕi : O −→ R. In combination, the functions representing object features provide
a basis for an object description Φ : O −→ RL, a vector containing measurements
(returned values) associated with each functional value ϕi (x), where the description
length is |Φ| = L.

Object Description: Φ (x) = (ϕ1 (x) , ϕ2 (x) , ϕ3 (x) , ..., ϕi (x) , ..., ϕL (x)).

Sample objects X ⊆ O are near to each other if and only if the objects have
similar descriptions. Recall that each ϕ defines a description of an object. Then let
∆ϕi denote ∆ϕi = |ϕi (x′)− ϕi (x)|, where x, x′ ∈ O. The difference ∆ϕ leads to a
definition of the indiscernibility relation “∼B”.

Let x, x′ ∈ O, B ⊆ F .
116
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∼B= {(x, x′) ∈ O ×O | ∀ϕi ∈ B , ∆ϕi = 0}

is called the indiscernibility relation on O, where description length i ≤ |Φ|.

Symbol Interpretation
B B ⊆ F ,

r
(|B|
r

)
, i.e. , |B| probe functions ϕi ∈ B taken r at a time,

Br r ≤ |B| probe functions in B,
∼Br Indiscernibility relation defined using Br,
[x]Br [x]Br = {x′ ∈ O | x ∼Br x′} , equivalence (nearness) class,

O� ∼Br O� ∼Br=
{

[x]Br | x ∈ O
}

, quotient set,
ξO,Br Partition ξO,Br = O� ∼Br ,
Nr (B) Nr (B) = {ξO,Br | Br ⊆ B} , set of partitions,
νNr νNr : ℘ (O)× ℘ (O) −→ [0, 1] , overlap function,

Nr (B)∗X Nr (B)∗X =
⋃

[x]Br⊆X
[x]Br , lower approximation,

Nr (B)
∗
X Nr (B)

∗
X =

⋃
[x]Br∩X 6=∅ [x]Br , upper approximation,

BndNr(B) (X) Nr (B)
∗
X�Nr (B)∗X =

{
x ∈ Nr (B)

∗
X | x /∈ Nr (B)∗X

}
.

Table 1 : Nearness Approximation Space Symbols

A nearness approximation space is a tuple (O,F ,∼Br , Nr(B), νNr ) where the
approximation space is defined with a set of perceived objects O, set of probe func-
tions F representing object features, indiscernibility relation ∼Br defined relative
to Br ⊆ B ⊆ F , collection of partitions (families of neighbourhoods) Nr (B), and
overlap function νNr . The subscript r denotes the cardinality of the restricted sub-

set Br, where we consider
(|B|
r

)
, i.e., |B| functions φi ∈ F taken r at a time to

define the relation ∼Br . This relation defines a partition of O into non-empty, pair-
wise disjoint subsets that are equivalence classes denoted by [x]Br , where [x]Br =

{x′ ∈ O | x ∼Br x′}. These classes form a new set called the quotient set O� ∼Br ,
where O� ∼Br=

{
[x]Br | x ∈ O

}
. In effect, each choice of probe functions Br de-

fines a partition ξO,Br on a set of objects O, namely, ξO,Br = O� ∼Br . Every choice
of the set Br leads to a new partition of O. Let F denote a set of features for objects
in a set X, where each φi ∈ F that maps X to some value set Vφi (range of φi). The
value of φi (x) is a measurement associated with a feature of an object x ∈ X. The
overlap function νNr is defined by νNr : ℘ (O)× ℘ (O) −→ [0, 1], where ℘ (O) is the
powerset of O. The overlap function νNr maps a pair of sets to a number in [0, 1]
representing the degree of overlap between sets of objects with their features defined
by probe functions Br ⊆ B [18]. For each subset Br ⊆ B of probe functions, define
the binary relation ∼Br= {(x, x′) ∈ O ×O | ∀φi ∈ Br, φi (x) = φi (x′)}. Since each
∼Br is, in fact, the usual indiscernibility relation, for Br ⊆ B and x ∈ O, let [x]Br
denote the equivalence class containing x. If (x, x′) ∈∼Br , then x and x′ are said
to be B-indiscernible with respect to all feature probe functions in Br. Then define
a collection of partitions Nr (B), where Nr (B) = {ξO,Br | Br ⊆ B}.
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2.2. Descriptively near sets. We need the notion of nearness between sets, and
so we consider the concept of the descriptively near sets. In 2007, descriptively near
sets were introduced as a means of solving classification and pattern recognition
problems arising from disjoint sets that resemble each other [13, 15].

A set of objects A ⊆ O is characterized by the unique description of each object
in the set.

Set Description: [10] Let O be a set of perceptual objects, Φ an object description
and A ⊆ O. Then the set description of A is defined as

Q(A) = {Φ(a) | a ∈ A}.
Descriptive Set Intersection: [10, 17] Let O be a set of perceptual objects, A and

B any two subsets of O. Then the descriptive (set) intersection of A and B is defined
as

A ∩
Φ
B = {x ∈ A ∪B | Φ (x) ∈ Q (A) and Φ (x) ∈ Q (B)} .

If Q(A)∩Q(B) 6= ∅, then A is called descriptively near B and denoted by AδΦB
[14].

Descriptive Nearness Collections: [14] ξΦ (A) = {B ∈ P (O) | AδΦB}.
Let Φ be an object description, A any subset of O and ξΦ (A) a descriptive

nearness collections. Then A ∈ ξΦ (A) [14].

2.3. Some algebraic structures on nearness approximation spaces. A binary
operation on a set G is a mapping of G × G into G, where G × G is the set of all
ordered pairs of elements of G. A groupoid is a system G (·) consisting of a nonempty
set G together with a binary operation “·” on G [3].

Let (O,F ,∼Br , Nr (B) , νNr ) be a nearness approximation space and let “·” a
binary operation defined on O. A subset G of the set of perceptual objects O is
called a group on nearness approximation spaces or shortly nearness group, if the
following properties are satisfied:

(NG1) For all x, y ∈ G, x · y ∈ Nr (B)
∗
G,

(NG2) For all x, y, z ∈ G, (x · y) · z = x · (y · z) property holds in Nr (B)
∗
G,

(NG3) There exists e ∈ Nr (B)
∗
G such that x · e = e · x = x for all x ∈ G (e is

called the near identity element of G),
(NG4) There exists y ∈ G such that x · y = y · x = e for all x ∈ G (y is called the

near inverse of x in G and denoted as x−1) [6].

If in addition, for all x, y ∈ G, x · y = y · x property holds in Nr (B)
∗
G, then G

is said to be an abelian nearrness group.
Also, a nonempty subset S ⊆ O is called a nearrness semigroup, if x·y ∈ Nr (B)

∗
S

for all x, y ∈ S and (x · y) · z = x · (y · z) , for all x, y, z ∈ S property holds in
Nr (B)

∗
(S).

Theorem 2.1 ([6]). Let G be a nearrness group.
(1) There exists a unique near identity element e ∈ Nr (B)

∗
G such that x · e =

x = e · x, for all x ∈ G.
(2) For all x ∈ G, there exists a unique y ∈ G such that x · y = e = y · x.
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Theorem 2.2 ([6]). Let G be a nearrness group.

(1)
(
x−1

)−1
= x, for all x ∈ G.

(2) If x · y ∈ G, then (x · y)
−1

= y−1 · x−1, for all x, y ∈ G.
(3) If either x · z = y · z or z · x = z · y, then x = y, for all x, y, z ∈ G.

H is called a subnearness group of nearness group G if H is a nearness group
relative to the operation in G. There is only one guaranteed trivial subnearness
group of nearness group G, i.e., G itself. Moreover, {e} is a trivial subnearness
group of nearness group G if and only if e ∈ G.

Theorem 2.3 ([7]). Let G be a nearness group, H be a nonempty subset of G and
Nr (B)

∗
H be a groupoid. H ⊆ G is a subnearness group of G if and only if x−1 ∈ H,

for all x ∈ H.

LetH1 andH2 be two nearness subgroups of the nearness groupG andNr (B)
∗
H1,

Nr (B)
∗
H2 groupoids. If

(
Nr (B)

∗
H1

)
∩
(
Nr (B)

∗
H2

)
= Nr (B)

∗
(H1 ∩H2), then

H1 ∩H2 is a nearness subgroup of nearness group G [7].
Let G ⊂ O be a nearness group and H be a subnearness group of G. The left

weak equivalence relation (compatible relation) “∼L” defined as

a ∼L b :⇔ a−1 · b ∈ H ∪ {e} .

A weak class defined by relation “∼L” is called left weak coset. The left weak
coset that contains the element a is denoted by ãL, i.e.

ãL = {a · h | h ∈ H, a ∈ G, a · h ∈ G} ∪ {a} = aH.

Let
(
O1,F1,∼Br1 , Nr1 (B) , νNr1

)
and

(
O2,F2,∼Br2 , Nr2 (B) , νNr2

)
be two near-

ness approximation spaces and “·”, “◦” binary operations over O1 and O2, respec-
tively.

Let G1 ⊂ O1, G2 ⊂ O2 be two nearness groups and σ a mapping from Nr1 (B)
∗
G1

onto Nr2 (B)
∗
G2. If σ (x · y) = σ (x) ◦ σ (y) for all x, y ∈ G1, then σ is called a

nearness homomorphism and also, G1 is called nearness homomorphic to G2.
Let G1 ⊂ O1, G2 ⊂ O2 be nearness homomorphic groups, H1 a nearness subgroup

and Nr1 (B)
∗
H1 a groupoid. If σ

(
Nr1 (B)

∗
H1

)
= Nr2 (B)

∗
σ (H1), then σ (H1) is a

nearness subgroup of G2 [7].
The kernel of σ is defined to be the set Kerσ = {x ∈ G1 | σ (x) = e′}, where e′ is

the nearness identity element of G2.

Theorem 2.4 ([7]). Let G1 ⊂ O1,G2 ⊂ O2 be nearness groups that are nearness
homomorphic, Kerσ = N be nearness homomorphism kernel and Nr (B)

∗
N be a

groupoid. Then N is a nearness normal subgroup of G1.

Definition 2.5 ([11]). Let O be a set of perceptual objects, G ⊂ O a nearness
group and H a subnearness group of G. Let G/∼L be a set of all left weak cosets of
G by H, ξΦ (A) a descriptive nearness collections and A ∈ P (O). Then

Nr (B)
∗

(G/∼L) =
⋃

ξΦ(A) ∩
Φ
G/∼L 6=∅

ξΦ (A)

is called upper approximation of G/∼L .
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Theorem 2.6 ([11]). Let G be a nearness group, H a subnearness group of G and
G/∼L a set of all left weak cosets of G by H. If

(
Nr (B)

∗
G
)
/∼L ⊆ Nr (B)

∗
(G/∼L),

then G/∼L is a nearness group under the operation given by aH � bH = (a · b)H
for all a, b ∈ G.

Let G be a nearness group and H a subnearness group of G. The nearness group
G/∼L is called a nearness group of all left weak cosets of G by H and denoted by
G/wH [11].

3. Nearness rings

Definition 3.1. Let (O,F ,∼Br , Nr (B) , νNr ) be a nearness approximation space
and “+” and “·” binary operations defined on O. A subset R of the set of perceptual
objects O is called a ring on nearness approximation spaces or shortly nearness ring
if the following properties are satisfied:

(NR1) R is an abelian nearness group with binary operation “+”,
(NR2) R is a nearness semigroup with binary operation “·”,
(NR3) For all x, y, z ∈ R,

x · (y + z) = (x · y) + (x · z) and
(x+ y) · z = (x · z) + (y · z) properties hold in Nr (B)

∗
R.

If in addition:

(NR4) x · y = y · x, for all x, y ∈ R,

then R is said to be a commutative nearness ring.

(NR5) If Nr (B)
∗
R contains an element 1R such that 1R · x = x · 1R = x, for all

x ∈ R,

then R is said to be a nearness ring with identity.

These properties have to hold in Nr (B)
∗
R. Sometimes they may be hold in

O�Nr (B)
∗
R, then R is not a nearness ring. Multiplying or sum of finite number

of elements in R may not always belongs to Nr (B)
∗
R. Therefore always we can

not say that xn ∈ Nr (B)
∗
R or nx ∈ Nr (B)

∗
R, for all x ∈ R and some positive

integer n. If
(
Nr (B)

∗
R,+

)
and

(
Nr (B)

∗
R, ·
)

are groupoids, then we can say that

xn ∈ Nr (B)
∗
R for all positive integer n or nx ∈ Nr (B)

∗
R all integer n, for all

x ∈ R.
An element x in nearness ring R with identity is said to be left (resp. right)

invertible, if there exists y ∈ Nr (B)
∗
R (resp. z ∈ Nr (B)

∗
R) such that y · x = 1R

(resp. x · z = 1R). The element y (resp. z) is called a left (resp. right) inverse of x.
If x ∈ R is both left and right invertible, then x is said to be nearness invertible or
nearness unit. The set of nearness units in a nearness ring R with identity forms is
a nearness group on with multiplication.

A nearness ring R is a nearness division ring iff (R\ {0} , ·) is a nearness group,
i.e., every nonzero elements in R is a nearness unit. Similarly, a nearness ring R is
a nearness field iff (R\ {0} , ·) is a commutative nearness group.

Some elementary properties of elements in nearness rings are not always provided
as in ordinary rings. If we consider Nr (B)

∗
R as a ordinary ring, then elementary

properties of elements in nearness ring are provided.
120
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Lemma 3.2. All ordinary rings on nearness approximation space are nearness rings.

Example 3.3. Let O = {o, p, r, s, t, v, w, x} be a set of perceptual objects and
B = {ϕ1, ϕ2, ϕ3} ⊆ F a set of probe functions. Values of the probe functions

ϕ1 : O −→ V1 = {α1, α2, α3, α4} ,

ϕ2 : O −→ V2 = {β1, β2, β3} ,

are given in Table 2.

o p r s t v w x
ϕ1 α4 α2 α1 α2 α1 α3 α4 α3

ϕ2 β1 β3 β2 β3 β2 β3 β1 β3

Table 2.

Let “+” and “·” be binary operations of perceptual objects on O as in Tables 3
and 4.

+ o p r s t v w x
o o p r s t v w x
p p r s t v w x o
r r s t v w x o p
s s t v w x o p r
t t v w x o p r s
v v w x p p r s t
w w x o p r s t v
x x o p r s t v w

· o p r s t v w x
o o o o o o o o o
p o p r s t v w x
r o r t w o r t w
s o s w p t o r v
t o t o t o t o t
v o v r x t p w s
w o w t r o w t r
x o x w v t s r p

Table 3. Table 4.

Since r+ (s+ s) 6= (r + s) + s, (O,+) is not a group, i.e., (O,+, ·) is not a ring. Let
R = {r, t, w} be a subset of perceptual objects. Let “+” and “·” be operations of
perceptual objects on R ⊆ O as in Tables 5 and 6.

+ r t w
r t w o
t w o r
w o r t

· r t w
r t o t
t o o o
w t o t

Table 5. Table 6.

[o]ϕ1
= {x′ ∈ O | ϕ1 (x′) = ϕ1 (o) = α4} = {o, w} ,

[p]ϕ1
= {x′ ∈ O | ϕ1 (x′) = ϕ1 (p) = α2}
= {p, s}
= [s]ϕ1

,
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[r]ϕ1
= {x′ ∈ O | ϕ1 (x′) = ϕ1 (r) = α1}
= {r, t}
= [t]ϕ1

,

[v]ϕ1
= {x′ ∈ O | ϕ1 (x′) = ϕ1 (v) = α3}
= {v, x}
= [x]ϕ1

.

Then we have that ξϕ1 =
{

[o]ϕ1
, [r]ϕ1

, [v]ϕ1
, [w]ϕ1

}
.

[o]ϕ2
= {x′ ∈ O | ϕ2 (x′) = ϕ2 (o) = β1}
= {o, w}
= [w]ϕ2

,

[p]ϕ2
= {x′ ∈ O | ϕ2 (x′) = ϕ2 (p) = β3}
= {p, s, v, x}
= [s]ϕ2

= [v]ϕ2
= [x]ϕ2

,

[r]ϕ2
= {x′ ∈ O | ϕ2 (x′) = ϕ2 (r) = β2}
= {r, t}
= [t]ϕ2

.

Thus we obtain that ξϕ2
=
{

[o]ϕ2
, [p]ϕ2

, [r]ϕ2

}
. So, for r = 1, a set of partitions of

O is N1 (B) = {ξϕ1
, ξϕ2
}.

In this case, we can write

N1 (B)
∗
R =

⋃
[x]ϕi

[x]ϕi
∩ R 6=∅

= {r, t} ∪ {o, w} ∪ {o, w} ∪ {r, t}
= {o, r, t, w} 6= O.

From Definition 3.1, since

(NR1) R is an abelian nearness group with binary operation “+”,
(NR2) R is a nearness semigroup with binary operation “·” and
(NR3) For all x, y, z ∈ R,

x · (y + z) = (x · y) + (x · z) and
(x+ y) · z = (x · z) + (y · z) properties hold in Nr (B)

∗
R.

conditions hold, R is a nearness ring.

Proposition 3.4. Let R be a nearness ring and 0 ∈ R. If 0 · x, x · 0 ∈ R, then for
all x, y ∈ R

(1) x · 0 = 0 · x = 0,
(2) x · (−y) = (−x) · y = − (x · y),
(3) (−x) · (−y) = x · y.
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Definition 3.5. Let R be a nearness ring and S a nonempty subset of R. S is called
subnearness ring of R, if S is a nearness ring with binary operations “+” and “·” on
nearness ring R.

Definition 3.6. Let we consider nearness field R and a nonempty subset S of R.
S is called subnearness field of R if S is a nearness field.

Theorem 3.7. Let R be a nearness ring and (Nr (B)
∗
S,+), (Nr (B)

∗
S, ·) groupoids.

S is a subnearness ring of R iff −x ∈ S, for all x ∈ S.

Proof. Suppose that S is a subnearness ring of R. Then S is a nearness ring and
−x ∈ S, for all x ∈ S.

Conversely, suppose −x ∈ S, for all x ∈ S. Since (Nr (B)
∗
S,+) is a groupoid,

from Theorem 2.3 (S,+) is a commutative nearness group. By the hypothesis, since
(Nr (B)

∗
S, ·) is a groupoid and S ⊆ R, associative property holds in Nr (B)

∗
S.

Then (S, ·) is a nearness semigroup. For all x, y, z ∈ S ⊆ R, y + z ∈ Nr (B)
∗
S and

x · (y + z) ∈ Nr (B)
∗
S. Also x · y + x · z ∈ Nr (B)

∗
S. Since R is a nearness ring,

x ·(y + z) = (x · y)+(x · z) property holds in Nr (B)
∗
S. Similarly, we can show that

(x+ y) · z = (x · z) + (y · z) property holds in Nr (B)
∗
S. Thus S is a subnearness

ring of nearness ring R. �

Example 3.8. From Example 3.3, let we consider the nearness ring R = {r, t, w}.
Let S = {r, w} be a subset of nearness ring R. Then, “+” and “·” are binary
operations of perceptual objects on S ⊆ R as in Tables 7 and 8.

+ r w
r t o
w o t

· r w
r t t
w t t

Table 7. Table 8.

We know from Example 3.3, for r = 1, a classification of O is N1 (B) =
{
ξ(ϕ1), ξ(ϕ2)

}
.

Then, we can obtainN1 (B)
∗
S = {o, r, t, w}. Thus we can observe that (Nr (B)

∗
S,+),

(Nr (B)
∗
S, ·) are groupoids and −r = w,−w = r ∈ Nr (B)

∗
S. So from Theorem

3.7, S is a subnearness ring of nearness ring R.

Theorem 3.9. Let R be a nearness ring, S1 and S2 two subnearness rings of R and
Nr (B)

∗
S1, Nr (B)

∗
S2 groupoids with the binary operations “+” and “·”. If(

Nr (B)
∗
S1

)
∩
(
Nr (B)

∗
S2

)
= Nr (B)

∗
(S1 ∩ S2) ,

then S1 ∩ S2 is a subnearness ring of R.

Corollary 3.10. Let R be a nearness ring, {Si : i ∈ ∆} a nonempty family of sub-
nearness rings of R and Nr (B)

∗
Si groupoids for all i ∈ ∆. If⋂

i∈∆

(
Nr (B)

∗
Si
)

= Nr (B)
∗
( ⋂
i∈∆

Si

)
,

then
⋂
i∈∆

Si is a subnearness ring of R.
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4. Nearness ideals

Definition 4.1. Let R be a nearness ring and I be a nonempty subset of R. I
is a left (right) nearness ideal of R provided for all x, y ∈ I and for all r ∈ R,
x− y ∈ Nr (B)

∗
I, r · x ∈ Nr (B)

∗
I (x− y ∈ Nr (B)

∗
I, x · r ∈ Nr (B)

∗
I).

A nonempty set I of a nearness ring R is called a nearness ideal of R, if I is both
a left and a right nearness ideal of R.

There is only one guaranteed trivial nearness ideal of nearness ring R, i.e., R
itself. Furthermore, {0} is a trivial nearness ideal of nearness ring R iff 0 ∈ R.

Lemma 4.2. Every nearness ideal is a subnearness ring of nearness ring R.

Example 4.3. From Example 3.3 and 3.8, let we consider the nearness ring R =
{r, t, w} and subnearness ring S = {r, w} of R. We can observe that x − y ∈
Nr (B)

∗
S, r · x ∈ Nr (B)

∗
S and x · r ∈ Nr (B)

∗
S, for all x, y ∈ S and for all r ∈ R.

Then, from Definition 4.1, S is a nearness ideal of R.

Theorem 4.4. Let R be a nearness ring, I1 and I2 two nearness ideals of R and
Nr (B)

∗
I1, Nr (B)

∗
I2 groupoids with the binary operations “+” and “·”. If(

Nr (B)
∗
I1
)
∩
(
Nr (B)

∗
I2
)

= Nr (B)
∗

(I1 ∩ I2) ,

then I1 ∩ I2 is a nearness ideal of R.

Proof. Suppose I1 and I2 are two nearness ideals of the nearness ring R. It is obvious
that I1∩I2 ⊂ R. Consider x, y ∈ I1∩I2. Since I1 and I2 are nearness ideals, we have
x− y, r ·x ∈ Nr (B)

∗
I1 and x− y, r ·x ∈ Nr (B)

∗
I2, i.e., x− y, r ·x ∈

(
Nr (B)

∗
I1
)
∩(

Nr (B)
∗
I2
)
, for all x, y ∈ I1, I2 and r ∈ R. Assuming

(
Nr (B)

∗
I1
)
∩
(
Nr (B)

∗
I2
)

=

Nr (B)
∗

(I1 ∩ I2), we have x−y, r ·x ∈ Nr (B)
∗

(I1 ∩ I2). From Definition 4.1, I1∩I2
is a nearness ideal of R. �

Corollary 4.5. Let R be a nearness ring, {Ii : i ∈ ∆} a nonempty family of nearness
ideals of R and Nr (B)

∗
Ii groupoids with the binary operations “+” and “·”. If⋂
i∈∆

(
Nr (B)

∗
Ii
)

= Nr (B)
∗
( ⋂
i∈∆

Ii

)
,

then
⋂
i∈∆

Ii is a nearness ideal of R.

5. Nearness rings of weak cosets

Let R be a nearness ring and S a subnearness ring of R. The left weak equivalence
relation (compatible relation) “∼L” defined as

x ∼L y :⇔ −x+ y ∈ S ∪ {e} .

A weak class defined by relation “∼L” is called left weak coset. The left weak
coset that contains the element x ∈ R is denoted by x̃L, i.e.,

x̃L = {x+ s | s ∈ S, x ∈ R, x+ s ∈ R} ∪ {x} .
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Similarly, we can define the right weak coset that contains the element x ∈ R is
denoted by x̃R, i.e.,

x̃R = {s+ x | s ∈ S, x ∈ R, s+ x ∈ R} ∪ {x} .

We can easily show that x̃L = x + S and x̃R = S + x. Since (R,+) is a abelian
nearness group, x̃L = x̃R and so we use only notation x̃. Then

R/∼ = {x+ S | x ∈ R}
is a set of all weak cosets of R by S. In this case, if we consider Nr (B)

∗
R instead

of nearness ring R (
Nr (B)

∗
R
)
/∼ =

{
x+ S | x ∈ Nr (B)

∗
R
}

.

Definition 5.1 ([11]). Let R be a nearness ring and S be a subnearness ring of
R. For x, y ∈ R, let x + S and y + S be two weak cosets that determined the
elements x and y, respectively. Then sum of two weak cosets that determined by
x+ y ∈ Nr (B)

∗
R can be defined as

(x+ y) + S = {(x+ y) + s | s ∈ S, x+ y ∈ Nr (B)∗R, (x+ y) + s ∈ R} ∪ {x+ y}

and denoted by
(x+ S)⊕ (y + S) = (x+ y) + S.

Definition 5.2. Let R be a nearness ring and S be a subnearness ring of R. For
x, y ∈ R, let x+S and y+S be two weak cosets that determined the elements x and y,
respectively. Then product of two weak cosets that determined by x · y ∈ Nr (B)

∗
R

can be defined as

(x · y) + S = {(x · y) + s | s ∈ S, x · y ∈ Nr (B)∗R, (x · y) + s ∈ R} ∪ {x · y}
and denoted by

(x+ S)� (y + S) = (x · y) + S.

Definition 5.3. Let R/∼ be a set of all weak cosets of R by S, ξΦ (A) a descriptive
nearness collections and A ∈ P (O). Then

Nr (B)
∗

(R/∼) =
⋃

ξΦ(A) ∩
Φ
R/∼ 6=∅

ξΦ (A)

is called upper approximation of R/∼.

Theorem 5.4. Let R be a nearness ring, S a subnearness ring of R and R/∼ be a
set of all weak cosets of R by S. If

(
Nr (B)

∗
R
)
/∼ ⊆ Nr (B)

∗
(R/∼), then R/∼ is

a nearness ring under the operations given by (x+ S)⊕ (y + S) = (x+ y) + S and
(x+ S)� (y + S) = (x · y) + S for all x, y ∈ R.

Proof. (NR1) Let
(
Nr (B)

∗
R
)
/∼ ⊆ Nr (B)

∗
(R/∼). Since R is a nearness ring from

Theorem 2.6, (R/∼,⊕) is a abelian nearness group of all weak cosets of R by S.
(NR2) Since (R, ·) is a nearness semigroup;

(NS1) We have that x · y ∈ Nr (B)
∗
R and (x+ S) � (y + S) = (x · y) + S

∈
(
Nr (B)

∗
R
)
/∼, for all (x+ S) , (y + S) ∈ R/∼. From the hypothesis,

(x+ S)� (y + S) = (x · y) + S ∈ Nr (B)
∗

(R/∼) ,

for all (x+ S) , (y + S) ∈ R/∼.
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(NS2) For all x, y, z ∈ R/∼, associative property hols in Nr (B)
∗
R. Then

for all (x+ S) , (y + S) , (z + S) ∈ R/∼,
((x+ S)� (y + S))� (z + S) = ((x · y) + S)� (z + S)

= ((x · y) · z) + S
= (x · (y · z)) + S
= (x+ S)� ((y · z) + S)
= (x+ S)� ((y + S)� (z + S))

holds in
(
Nr (B)

∗
R
)
/∼. From the hypothesis, for all (x+ S), (y + S), (z + S) ∈

R/∼, associative property holds in Nr (B)
∗

(R/∼). Thus (R/∼,�) is a nearness
semigroup of all left weak cosets of R by S.

(NR3) Since R is a nearness ring, left distributive law holds in Nr (B)
∗
R. For

all (x+ S) , (y + S) , (z + S) ∈ R/∼,
(x+ S)� ((y + S)⊕ (z + S)) = (x+ S)� ((y + z) + S)

= (x · (y + z)) + S
= ((x · y) + (x · z)) + S
= ((x · y) + S)⊕ ((x · z) + S)
= ((x+ S)� (y + S))⊕ ((x+ S)� (z + S)).

So left distributive law holds in
(
Nr (B)

∗
R
)
/∼.

Similarly, we can show that right distributive law holds in
(
Nr (B)

∗
R
)
/∼,

((x+ S)⊕ (y + S))� (z + S) = ((x+ S)� (z + S))⊕ ((x+ S)� (z + S)) ,

for all (x+ S) , (y + S) , (z + S) ∈ R/∼.
From the hypothesis, distributive laws hold in Nr (B)

∗
(R/∼). Consequently, R/∼

is a nearness ring. �

Definition 5.5. Let R be a nearness ring and S be a subnearness ring of R. The
nearness ring R/∼ is called a nearness ring of all weak cosets of R by S and denoted
by R/wS.

Example 5.6. Let S = {r, w} be a subset of R = {r, t, w}. From Example 3.8, S
is a subnearness ring of nearness ring R.

Now, we can compute the all weak cosets of R by S. Then by using the definition
of weak coset,

r + S = {r} ∪ {r} = {r} , t+ S = {w, r} ∪ {t} = {w, r, t} ,

w + S = {t} ∪ {w} = {t, w} .

Thus we have that R/wS = {r + S, t+ S,w + S}. Since N1 (B)
∗
R = {o, r, t, w}, we

can write the all weak cosets of N1 (B)
∗
R by S. In this case,

o+ S = {r, w} ∪ {o} = {r, w, o} .
So
(
N1 (B)

∗
R
)
/∼ = {o+ S, r + S, t+ S,w + S} ⊂ P (O).

Let “⊕” and “� ” be operations on R/wS, by using the Definition 5.1 and 5.2,
as in Tables 9 and 10.

⊕ r + S t+ S w + S
r + S t+ S w + S o+ S
t+ S w + S o+ S r + S
w + S o+ S r + S t+ S

� r + S t+ S w + S
r + S t+ S o+ S t+ S
t+ S o+ S o+ S o+ S
w + S t+ S o+ S t+ S
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Table 9. Table 10.

It is enough to show that every element of
(
N1 (B)

∗
R
)
/∼ is also an element of

N1 (B)
∗

(R/wS) in order to ensure
(
Nr (B)

∗
R
)
/∼ ⊆ Nr (B)

∗
(R/wS).

Q(R/wS) = {Φ(A) | A ∈ R/wS}
= {Φ (r + S) ,Φ (t+ S) ,Φ (w + S)}
= {{Φ (r)} , {Φ (w) ,Φ (r) ,Φ (t)} , {Φ (t) ,Φ (w)}}
= {{(α1, β2)} , {(α4, β1) , (α2, β1) , (α1, β2)} , {(α1, β2) , (α4, β1)}}.

For r + S ∈ R/wS, we get that

Q (r + S) = {Φ (r)} = {(α1, β2)} ,

Q (o+ S) = {Φ (r) ,Φ (w) ,Φ (o)} = {(α1, β2) , (α4, β1) , (α4, β1)} .

Since Q (r + S) ∩ Q (o+ S) = {(α1, β2)} 6= ∅, it follows that o + S ∈ ξΦ (r + S).
Then ξΦ (r + S) ∩

Φ
R/wS 6= ∅ and r + S, o+ S ∈ N1 (B)

∗
(R/wS) by Definition 5.3.

For t+ S ∈ R/wS, w + S we get that

Q (t+ S) = {{Φ (w) ,Φ (r) ,Φ (t)}} = {(α4, β1) , (α2, β1) , (α1, β2)} ,

Q (w + S) = {{Φ (t) ,Φ (w)}} = {(α1, β2) , (α4, β1)} .

Since Q (t+ S) ∩ Q (t+ S) = {(α4, β1) , (α2, β1) , (α1, β2)} 6= ∅ and Q (w + S) ∩
Q (w + S) = {(α1, β2) , (α4, β1)} 6= ∅, it follows that t + S ∈ ξΦ (t+ S) , w + S ∈
ξΦ (w + S). Thus ξΦ (t+ S)∩

Φ
R/wS 6= ∅, ξΦ (w + S)∩

Φ
R/wS 6= ∅ and t+S,w+S ∈

N1 (B)
∗

(R/wS) by Definition 5.3.
Consequently,

(
Nr (B)

∗
R
)
/∼L ⊆ Nr (B)

∗
(R/wS). So, from the Theorem 5.4,

R/wS is a nearness ring of all weak cosets of R by S with the operations given by
Tables 9 and 10.

6. Nearness ring homomorphisms

Definition 6.1. Let R1, R2 ⊂ O be two nearness rings and η a mapping from
Nr (B)

∗
R1 onto Nr (B)

∗
R2. If η (x+ y) = η (x) + η (y) and η (x · y) = η (x) · η (y)

for all x, y ∈ R1, then η is called a nearness ring homomorphism and also, R1 is
called nearness homomorphic to R2, denoted by R1 'n R2.

A nearness ring homomorphism η of Nr (B)
∗
R1 into Nr (B)

∗
R2 is called

(i) a nearness momomorphism, if η is one-one,
(ii) a nearness epimorphism, if η is onto Nr (B)

∗
R2 and

(iii) a nearness isomorphism, if η is one-one and mapsNr (B)
∗
R1 ontoNr (B)

∗
R2.

Theorem 6.2. Let R1, R2 be two nearness rings and η a nearness homomorphism
of Nr (B)

∗
R1 into Nr (B)

∗
R2. Then the following properties hold.

(1) η (0R1) = 0R2 , where 0R2 ∈ Nr (B)
∗
R2 is the nearness zero of R2.

(2) η (−x) = −η (x) for all x ∈ R1.
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Proof. (1) Since η is a nearness homomorphism,

η (0R1
) + η (0R1

) = η (0R1
+ 0R1

) = η (0R1
) = η (0R1

) + 0R2
.

Then we have that η (0R1
) = 0R2

by the Theorem 2.2 (3).
(2) Let x ∈ R1. Then η (x) + η (−x) = η (x− x) = η (0R1

) = 0R2
. Similarly, we

can obtain that η (−x) + η (x) = 0R2 , for all x ∈ R1. From Theorem 2.1 (2), since
η (x) has a unique inverse, η (−x) = −η (x) , for all x ∈ R1. �

Theorem 6.3. Let R1, R2 be two nearness rings and η a nearness homomorphism of
Nr (B)

∗
R1 into Nr (B)

∗
R2 and Nr (B)

∗
S a groupoid. Then the following properties

hold.
(1) If S is a subnearness ring of nearness ring R1 and η

(
Nr (B)

∗
S
)

= Nr (B)
∗
η (S),

then η (S) = {η (x) : x ∈ S} is a subnearness ring of R2.
(2) If S is a commutative subnearness ring R1 and η

(
Nr (B)

∗
S
)

= Nr (B)
∗
η (S),

then η (S) is a commutative nearness ring of R2.

Proof. (1) Let S be a subnearness ring of nearness ring R1. Then 0S ∈ Nr (B)
∗
S

and by Theorem 6.2 (1), η (0S) = 0R2
, where 0R2

∈ Nr (B)
∗
R2. Thus

0R2
= η (0S) ∈ η

(
Nr (B)

∗
S
)

= Nr (B)
∗
η (S) .

This means that η (S) 6= ∅. Let η (x) ∈ η (S), where x ∈ S. Since S is a subnearness
ring of R1, −x ∈ Nr (B)

∗
S, for all x ∈ S. So for all η (x) ∈ η (S) ,

−η (x) = η (−x) ∈ η
(
Nr (B)

∗
S
)

= Nr (B)
∗
η (S) .

Hence by Theorem 3.7, η (S) is subnearness ring of R2.
(2) Let S be a commutative subnearness ring and η (x) , η (y) ∈ η (S). We have

that η (S) is a subnearness ring of R2 by (1), i.e., η (S) is a nearness ring. Then
η (x) · η (y) = η (x · y) = η (y · x) = η (y) · η (x) , for all η (x) , η (y) ∈ η (R1). Thus
η (S) is commutative subnearness ring of R2. �

Definition 6.4. Let R1, R2 be two nearness rings and η be a nearness homomor-
phism of Nr (B)

∗
R1 into Nr (B)

∗
R2. The kernel of η, denoted by Kerη, is defined

to be the set

Kerη = {x ∈ R1 : η (x) = 0R2} .

Theorem 6.5. Let R1, R2 be two nearness rings, η a nearness homomorphism of
Nr (B)

∗
R1 into Nr (B)

∗
R2 and Nr (B)

∗
Kerη a groupoid with binary operations

“+” and “·”. Then ∅ 6= Kerη is a nearness ideal of R1.

Proof. Let x, y ∈ Kerη. Then f (x− y) = f (x) − f (y) = 0R2
− 0R2

= 0R2
∈

Nr (B)
∗
R2 and Thus x − y ∈ Nr (B)

∗
(Kerη). Let r ∈ R1. Then f (r · x) =

f (r) · f (x) = f (r) · 0R2 = 0R2 ∈ Nr (B)
∗
R2 and thus r · x ∈ Nr (B)

∗
(Kerη).

Similarly, x · r ∈ Nr (B)
∗

(Kerη). So, from Definition 4.1, Kerη is a nearness ideal
of R1. �

Theorem 6.6. Let R be a nearness ring and S a subnearness ring of R. Then the
mapping Π : Nr (B)

∗
R → Nr (B)

∗
(R/wS) defined by Π (x) = x + S, for all x ∈ R

is a nearness homomorphism.
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Proof. From the definition of Π, Π is a mapping fromNr (B)
∗
R intoNr (B)

∗
(R/wS).

By using the Definition 5.2,

Π (x+ y) = (x+ y) + S = (x+ S)⊕ (y + S) = Π (x)⊕Π (y) ,

Π (x · y) = (x · y) + S = (x+ S)� (y + S) = Π (x)�Π (y) ,

for all x, y ∈ R. Thus Π is a nearness homomorphism from Definition 6.1. �

Definition 6.7. The near homomorphism Π is called a nearness natural homomor-
phism from Nr (B)

∗
R into Nr (B)

∗
(R/wS).

Example 6.8. From Example 5.6, we consider the nearness ring of all weak cosets
R/wS. Define

Π : Nr (B)
∗
R −→ Nr (B)

∗
(R/wS)

x 7−→ Π (x) = x+ S,

for all x ∈ R. By using the Definitions 5.1 and 5.2, we have that

Π (x+ y) = (x+ y) + S = (x+ S)⊕ (y + S) = Π (x)⊕Π (y) ,

Π (x · y) = (x · y) + S = (x+ S)� (y + S) = Π (x)�Π (y) ,

for all x, y ∈ R. Hence, Π is a nearness natural homomorphism from Nr (B)
∗
R into

Nr (B)
∗

(R/wS).

Definition 6.9. Let R1, R2 be two nearness rings and S be a non-empty subset of
R1. Let

χ : Nr (B)
∗
R1 −→ Nr (B)

∗
R2

be a mapping and

χ
S

= χ
∣∣
S : S −→ Nr (B)

∗
R2

a restricted mapping. If χ (x+ y) = χ
S

(x+ y) = χ
S

(x) + χ
S

(y) = χ (x) + χ (y)
and χ (x · y) = χ

S
(x · y) = χ

S
(x) · χ

S
(y) = χ (x) · χ (y) for all x, y ∈ S, then χ is

called a restricted nearness homomorphism and also, R1 is called restricted nearness
homomorphic to R2, denoted by R1 'rn R2.

Theorem 6.10. Let R1, R2 be two nearness rings and χ be a nearness homomor-
phism from Nr (B)

∗
R1 into Nr (B)

∗
R2 . Let

(
Nr (B)

∗
Kerχ,+

)
and

(
Nr (B)

∗
Kerχ, ·

)
be groupoids and

(
Nr (B)

∗
R1

)
/∼ be a set of all weak cosets of Nr (B)

∗
R1 by Kerχ.

If
(
Nr (B)

∗
R1

)
/∼ ⊆ Nr (B)

∗
(R1/wKerχ) and Nr (B)

∗
χ (R1) = χ

(
Nr (B)

∗
R1

)
,

then

R1/wKerχ 'rn χ (R1) .

Proof. Since
(
Nr (B)

∗
Kerχ,+

)
and

(
Nr (B)

∗
Kerχ, ·

)
are groupoids, from Theo-

rem 6.5 Kerχ is a subnearness ring of R1. Since Kerχ is a subnearness ring of
R1 and

(
Nr (B)

∗
R1

)
/∼ ⊆ Nr (B)

∗
(R1/wKerχ), then R1/wKerχ is a nearness

ring of all weak cosets of R1 by Kerχ from Theorem 5.4. Since Nr (B)
∗
χ (R1) =

χ
(
Nr (B)

∗
R1

)
, χ (R1) is a subnearness ring of R2. Define

η : Nr (B)∗ (R1/wKerχ) −→ Nr (B)∗ χ (R1)

A 7−→ η(A) =

{
η
R1/wKerχ

(A) , A ∈ (Nr (B)∗R1) /∼
eχ(R1) , A /∈ (Nr (B)∗R1) /∼
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where

η
R1/wKerχ

: η
∣∣
R1/wKerχ

−→ Nr (B)
∗
χ (R1)

x+Kerχ 7−→ η
R1/wKerχ

(x+Kerχ) = χ (x) ,

for all x+Kerχ ∈ R1/wKerχ.
Since

x+Kerχ = {x+ k | k ∈ Kerχ, x+ k ∈ R1} ∪ {x} ,

y +Kerχ = {y + k′ | k′ ∈ Kerχ, y + k′ ∈ R1} ∪ {y} ,

and the mapping χ is a nearness homomorphism,

x+Kerχ = y +Kerχ
⇒ x ∈ y +Kerχ
⇒ x ∈ {y + k′ | k′ ∈ Kerχ, y + k′ ∈ R1} or x ∈ {y}
⇒ x = y + k′, k′ ∈ Kerχ, y + k′ ∈ R1 or x = y
⇒ −y + x = (−y + y) + k′, k′ ∈ Kerχ or χ (x) = χ (y)
⇒ −y + x = k′, k′ ∈ Kerχ
⇒ −y + x ∈ Kerχ
⇒ χ (−y + x) = eχ(R1)

⇒ χ (−y) + χ (x) = eχ(R1)

⇒ −χ (y) + χ (x) = eχ(R1)

⇒ χ (x) = χ (y)
⇒ η

R1/wKerχ
(x+Kerχ) = η

R1/wKerχ
(y +Kerχ)

Then η
R1/wKerχ

is well defined.

For A,B ∈ Nr (B)
∗

(R1/wKerχ), we suppose that A = B. Since the mapping
η
R1/wKerχ

is well defined,

η (A) =

{
η
R1/wKerχ

(A) ,A ∈
(
Nr (B)

∗
R1

)
/∼

eχ(R1) , A /∈
(
Nr (B)

∗
R1

)
/∼

=

{
η
R1/wKerχ

(B) ,B ∈
(
Nr (B)

∗
R1

)
/∼

eχ(R1) , B /∈
(
Nr (B)

∗
R1

)
/∼

= η (B).

Consequently, η is well defined.
For all x+Kerχ, y +Kerχ ∈ R1/wKerχ ⊂ Nr (B)

∗
(R1/wKerχ),

η ((x+Kerχ)⊕ (y +Kerχ))
= η

R1/wKerχ
((x+Kerχ)⊕ (y +Kerχ))

= η
R1/wKerχ

((x+ y) +Kerχ)

= χ (x+ y)
= χ (x) + χ (y)
= η

R1/wKerχ
(x+Kerχ) + η

R1/wKerχ
(y +Kerχ)

= η (x+Kerχ) + η (y +Kerχ).
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and
η ((x+Kerχ)� (y +Kerχ))

= η
R1/wKerχ

((x+Kerχ)� (y +Kerχ))

= χ
R1/wKerχ

((x · y) +Kerχ)

= χ (x · y)
= χ (x) · χ (y)
= η

R1/wKerχ
(x+Kerχ) · η

R1/wKerχ
(y +Kerχ)

= η (x+Kerχ) · η (y +Kerχ).

Thus η is a restricted nearness homomorphism by Definition 6.9. So R1/wKerχ 'rn
χ (R1). �
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