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Abstract. First, we define an ordinary smooth filter and obtain its
some properties. In particular, we obtain the necessary and sufficient con-
dition of an ordinary smooth filter (See Theorem 3.9). Second, we define
an ordinary smooth filter base (See Theorem 4.1). Third, we introduce the
concept of an ordinary smooth ultrafilter and study its some properties.
Moreover, we obtain the necessary and sufficient condition of an induced
ordinary smooth filter (See Theorem 5.8). Fourth, we define the image and
the inverse image of an ordinary smooth filter. Finally, we introduce level
set and strong level set of an ordinary smooth filter and obtain their some
properties.
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1. Introduction

In 1968, Chang [3] introduced the concept of fuzzy topology on a set X by using
fuzzy sets introduced by Zadeh [19]. After then, Lowen [14], and Pu and Liu [16]
updated it.

In 1985, Sostak [18] defined a fuzzy topology τ on a set X as a mapping τ :
IX → I satisfying some axioms, where IX denotes the set of all fuzzy sets in X. He
considered the degree of openness of fuzzy sets, gave some basic rules and proved
how such an extension can be done. In 1992, K. C. Chattopadhyay et al. [4]
studied fuzzy topological spaces in Sostak’s sense. In the same year, Ramadan [17]
introduced similar concepts under the name of smooth topological spaces working
in terms of lattices L and L

′
instead of I = [0, 1]. After that time, many researchers

[5, 7, 8, 15, 20] investigated various properties of smooth topological spaces. In
particular, Ying [20] studied fuzzifying topological spaces (called ordinary smooth
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topological spaces by Hur et al. [9]) considering of degree of openness of ordinary
subsets. Furthermore, Hur et al. [10, 11, 12, 13] investigated various properties in
ordinary smooth topological spaces, and Chae et al. [6] constructed the set OST (X)
of all ordinary smooth topologies on a set X and studied it in the sense of a lattice.

In this paper, first we define an ordinary smooth filter and obtain its some prop-
erties. In particular, we obtain the necessary and sufficient condition of an ordinary
smooth filter (See Theorem 3.9). Second, we define an ordinary smooth filter base
(See Theorem 4.1). Third, we introduce the concept of an ordinary smooth ultrafil-
ter and study its some properties. Moreover, we obtain the necessary and sufficient
condition of an induced ordinary smooth filter (See Theorem 5.8). Fourth, we define
the image and the inverse image of an ordinary smooth filter. Finally, we introduce
level set and strong level set of an ordinary smooth filter and obtain their some
properties.

Throughout this paper, let I = [0, 1] be the unit closed interval, and we will write
I0 = (0.1] and I1 = [0.1).

2. Preliminaries

Let 2 = {0, 1} and let 2X [resp. IX ] denote the set of all ordinary subsets [resp.
fuzzy sets] of a set X.

Definition 2.1 ([9]). Let X be a non-empty set. Then a mapping τ : 2X → I is
called an ordinary smooth topology (in short, ost) on X, if it satisfies the following
axioms:

(OST1) τ(φ) = τ(X) = 1,
(OST2) τ(A ∩B) ≥ τ(A) ∧ τ(B), for any A, B ∈ 2X ,
(OST3) τ(

⋃
j∈J Aj) ≥

∧
j∈J τ(Aj), for each (Aj)j∈J ⊂ 2X .

The pair (X, τ) is called an ordinary smooth topological space (in short, osts).
We will denote the set of all ost′s on X as OST (X).

Remark 2.2. Ying [20] called the mapping τ : 2X → I [resp. τ : IX → 2 and
τ : IX → I] satisfying the axioms in Definition 2.1 as a fuzzifying topology [resp.
fuzzy topology and bifuzzy topology] on X. In fact, the mapping τ : 2X → 2
satisfying the axioms in Definition 2.1 is a classical topology on X.

Definition 2.3 ([20]). Let (X, τ) be an osts and let x ∈ X. Then a mapping
Nx : 2X → I is called an ordinary smooth neighborhood system of p w.r.t. τ , if for
each A ∈ 2X , Nx =

∨
x∈B⊂A τ(B).

3. Basic properties of ordinary smooth filters

Definition 3.1 ([1]). Let X be a set and let = ⊂ 2X . Then = is called a filter on
X, if it satisfies the following axioms: for any A, B ∈ 2X ,

(FI) if A ∈ = and A ⊂ B, then B ∈ =,
(FII) if A, B ∈ =, then A ∩B ∈ =,
(FIII) X ∈ =,
(FIV ) φ /∈ =.
We will denote the set of all filters on X as F (X).
It is obvious that {X} ∈ F (X).

18
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Definition 3.2. Let X be a set. Then a mapping = : 2X → I is called an ordinary
smooth filter (in short, osf) on X, if it satisfies the following axioms: for any
A, B ∈ 2X ,

(OSF1) if φ 6= A ⊂ B, then =(A) ≤ =(B),
(OSF2) if A ∩B 6= φ, then =(A) ∧ =(B) ≤ =(A ∩B),
(OSF3) =(X) = 1,
(OSF4) =(φ) = 0.

The pair (X,=) is called an ordinary smooth set filtered by =. We will denote the
set of all ordinary smooth filters as OSF (X).

From the conditions (OSF1) and (OSF2), it is obvious that for any A, B ∈ 2X ,
if A ∩B 6= φ and φ 6= A ⊂ B, then =(A ∩B) = =(A) ∧ =(B).

Remark 3.3. (1) From Definition 3.2, it is clear that that = is a fuzzy set in 2X .
(2) Let = ∈ OF (X). Then we can consider = as the special mapping = : 2X →

I = {0, 1} satisfying all the axioms of Definition 3.1. Thus every filter on X is an
ordinary smooth filter on X, i.e., F (X) ⊂ OSF (X).

Example 3.4. (1) LetX = {a, b, c}. Then 2X = {φ, {a}, {b}, {c, }, {a, b}{b, c}, {b, c}, X}.
We define the mapping = : 2X → I defined as follows:

=({a}) = 0.7, =({b}) = 0.7, =({c}) = 0.8, =({a, b}) = 0.7,
=({a, c}) = 0.9, =({b, c}) = 0.8, =(X) = 1, =(φ) = 0.

Then we can easily see that = ∈ OSF (X).
(2) Let X be a non-empty setand let φ 6= A ∈ 2X . We define two mappings

=X , =A : 2X → I as follows: for each B ∈ 2X ,

=X(B) =

{
1 if B = X,
0 otherwise

and

=A(B) =

{
1 if A ⊂ B,
0 otherwise.

Then we can easily see that =X , =A ∈ OSF (X).
(3) Let X be an infinite set. We define the mapping =f : 2X → I as follows: for

each A ∈ 2X ,

=f (Ac) =

{
1 if A is a non-empty finite subset of X,
0 otherwise.

Then we can easily prove that =f ∈ OSF (X). In this case, =f is called the ordinary
smooth filter of the complements of the finite subsets of X. In particular, the
ordinary smooth filter of the complements of the finite subsets of N is called the
r-ordinary smooth Frechet filter and will be denoted by =f,N, where N denotes the
set of all non-negative integers.

Definition 3.5. Let X be a non-empty set and let =1, =2 ∈ OSF (X).
(i) =1 is said to be finer than =2 or =2 is said to be coarser than =1, denoted by

=2 ≤ =1, if =2(A) ≤ =1(A), ∀A ∈ 2X .
(ii) =1 is said to be strictly finer than =2 or =2 is said to be strictly coarser than

=1, denoted by =2 < =1, if =2(A) ≤ =1(A) and =2(A) 6= =1(A), ∀A ∈ 2X .
(iii) =1 and =2 are said to be comparable, if either =1(A) ≤ =2(A) or =2(A) ≤

=1(A).
19
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It is obvious that (OSF (X),∧) is a poset with the least element =X .

Proposition 3.6. Let X be a non-empty set and let (=j)j∈J be a non-empty family
of ordinary smooth filters on X. Then

⋂
j∈J =j ∈ OSF (X), where (

⋂
j∈J =j)(A) =∧

j∈J =j(A).

Proof. (OSF1): For any A, B ∈ 2X − {X,φ}, suppose A ⊂ B. Then by the
hypothesis, =j(A) ≤ =j(B), for each j ∈ J . Thus

(
⋂
j∈J
=j)(A) =

∧
j∈J
=j(A) ≤

∧
j∈J
=j(B) = (

⋂
j∈J
=j)(B).

So the axiom holds.
(OSF2): Let A, B ∈ 2X − {X,φ}. Then by the hypothesis,

=j(A) ∧ =j(B) ≤ =j(A ∩B), for each j ∈ J.
Thus (

⋂
j∈J =j)(A) ∧ (

⋂
j∈J =j)(B) ≤

⋂
j∈J(A ∩B). So the axiom holds.

(OSF3), (OSF4): The proofs are clear. �

Lemma 3.7. Let = ∈ OSF (X) and let S : 2X → I be a mapping such that S ≤ =.
We define the mapping Su : 2X → I as follows: for each A ∈ 2X ,

Su(A) =
∨

(Sj)j∈J<2X , A=
⋂

j∈J Sj

∧
j∈J

S(Sj),

where < stands for “a finite subset of”. Then Su(φ) = 0.

Proof. Let A ∈ 2X . Then
Su(A) =

∨
(Sj)j∈J<2X , A=

⋂
j∈J Sj

∧
j∈J S(Sj)

≤
∨

(Sj)j∈J<2X , A=
⋂

j∈J Sj

∧
j∈J =(Sj) [Since S ≤ =]

≤
∨

(Sj)j∈J<2X , A=
⋂

j∈J Sj
=(
⋂
j∈J(Sj)

[By the axiom (OSF2) and induction]
≤ =(A).

Since = ∈ OSF (X), by the axiom (OSF4), =(φ) = 0. Thus Su(φ) ≤ =(φ) = 0. So
Su(φ) = 0. �

Lemma 3.8. Let S : 2X → I be a mapping such that S(X) = 1 and let Su : 2X → I
be the mapping given in Lemma 3.7. We define the mapping = : 2X → I as follows:
for each A ∈ 2X ,

=(A) =
∨
B⊂A

Su(A).

If Su(φ) = 0, then = ∈ OSF (X). Furthermore, = is the coarsest ordinary smooth
filter on X such that S ≤ =.

Proof. (OSF1): For any A, B ∈ 2X , suppose φ 6= A ⊂ B. Then
=(A) =

∨
C⊂ASu(C) [By the definition of =]

≤
∨
C⊂B Su(C) [Since A ⊂ B]

= =(B). [By the definition of =]
(OSF2): Let A, B ∈ 2X such that A ∩B 6= φ. Consider the sets

C1 = {C ∈ 2X : C ⊂ A ∩B} and C2 = {C ∈ 2X : C ⊂ A and C ⊂ B}.
20
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Then we can easily see that C2 ⊂ C1. Thus by the definition of =,
=(A ∩B) =

∨
C⊂A∩B Su(C)

=
∨
C∈C1

Su(C)

≥
∨
C∈C2

Su(C) [Since C2 ⊂ C1]

= (
∨
C⊂ASu(C)) ∧ (

∨
C⊂B Su(C))

= =(A) ∧ =(B).
(OSF3): =(X) = Su(X)

≥ Su(X)
=
∨

(Sj)j∈J<2X , X=
⋂

j∈J Sj

∧
j∈J S(Sj) [By the definition of Su]

≥ S(X) [If J = φ, then
⋂
j∈J Sj = X]

= 1. [By the hypothesis]
(OSF4): It is clear that =(φ) = 0. So = ∈ OSF (X).

Now suppose =′ ∈ OSF (X) such that S ≤ =′ and let A ∈ 2X . Then
=(A) = Su(A)

=
∨

(Sj)j∈J<2X , A=
⋂

j∈J Sj

∧
j∈J S(Sj)

≤
∨

(Sj)j∈J<2X , A=
⋂

j∈J Sj

∧
j∈J =

′
(Sj)

≤ =′(
⋂
j∈J Sj) [Since =′ ∈ OSF (X)]

= =′(A). [Since ∃(Sj)j∈J < 2X such that A =
⋂
j∈J Sj ]

≤ =′(A). [Since =′ ∈ OSF (X)]
Thus = is the coarsest ordinary smooth filter on X such that S ≤ =. This completes
the proof. �

The following is the immediate result of Lemmas 3.7 and 3.8.

Theorem 3.9. Let S : 2X → I be a mapping such that S(X) = 1. Then there is
an = ∈ OSF (X) if and only if Su(φ) = 0.

In this case, = is said to be generated by S and S is called an ordinary smooth
subbase (in short, ossb) for =.

Example 3.10. Let (X, τ) be an osts and let Nx be an ordinary smooth neighbor-
hood system of of x ∈ X w.r.t. τ . Then clearly Nx(X) = 1. Assume that Nx(φ) 6= 0,
i.e., Nx(φ) > 0. Then by Result 2.6,

Nx(φ) =
∨

x∈A⊂φ

τ(A) > 0.

Thus there is A0 ∈ 2X such that x ∈ A0 ⊂ φ. This is a contradiction. So Nx(φ) = 0.
On the other hand,

Nux (φ) =
∨

(Sj)j∈J<2X , φ=
⋂

j∈J Sj

∧
j∈J Nx(Sj)

≤ Nx(φ)
= 0.

Hence by Theorem 3.9, there is an =x ∈ OSF (X) such that Nx is an ordinary
smooth subbase for =x.

In this case, =x is called the ordinary smooth neighborhood filter of x for τ .

The following is the immediate result of Definition 3.2 and Theorem 3.9.
21
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Corollary 3.11. Let = ∈ OSF (X) and let A ∈ 2X . Then there is an =′ ∈ OSF (X)

such that = ≤ =′ and =′(A) 6= 0 if and only if A ∩ B 6= φ, for each B ∈ 2X with
=(B) 6= 0.

Corollary 3.12. Let X be a non-empty set and let Φ ⊂ OSF (X). Then there
exists

∨
Φ if and only if for each (=i)i≤i≤n ⊂ Φ and each Ai ∈ 2X with =i(Ai) 6= 0

(1 ≤ i ≤ n),
⋂n
i=1Ai 6= φ, where

∨
Φ denotes the least upper bound for Φ in

OSF (X).

Proof. Let S =
⋃
=∈Φ =, where S : 2X → I is the mapping defined by: for each

A ∈ 2X ,

S(A) =
∨
=∈Φ

=(A).

Then clearly, S(X) = 1. On the other hand,
Su(φ) =

∨
(Sj)j∈J<2X , φ=

⋂
j∈J Sj

∧
j∈J S(Sj)

=
∨

(Sj)j∈J<2X , φ=
⋂

j∈J Sj

∧
j∈J

∨
=∈Φ =(Sj)

=
∨
=∈Φ

∨
(Sj)j∈J<2X , φ=

⋂
j∈J Sj

∧
j∈J =(Sj)

≤
∨
=∈Φ =(φ)

= 0. [By the axiom (OSF4)]

Thus by Theorem 3.9, there is an =′ ∈ OSF (X) such that S is an ordinary smooth

subbase for =′ .
It is obvious that = ≤ =′ , for each = ∈ Φ. So =′ is the least upper bound for

Φ. �

The following is the immediate result of Corollary 3.12.

Corollary 3.13. The ordered set of all ordinary smooth filters on a non-empty set
X is inductive.

4. Bases of an ordinary smooth filter

Theorem 4.1. Let X be a set and let B : 2X → I be any mapping. We define the
mapping = : 2X → I as follows: for each A ∈ 2X ,

=(A) =
∨
B⊂A

B(B).

Then = ∈ OSF (X) if and only if B satisfies the following conditions:
(OSB1) B(B1) ∧B(B2) ≤

∨
B⊂B1∩B2

B(B), for any B1, B2 ∈ 2X ,

(OSB2) B is a normal fuzzy set in 2X , i.e., there is A0 ∈ 2X such that B(A0) = 1
and B(φ) = 0.

In this case, B is called an ordinary smooth filter base (in short, osfb) for = and
= is said to be generated by B.

Proof. Suppose = ∈ OSF (X).
(OSB1): Let B1, B2 ∈ 2X . Then∨

B⊂B1∩B2
B(B) = =(B1 ∩B2) [By the definition of =]

≥ =(B1) ∧ =(B2) [By the hypothesis]
= (
∨
C1⊂B1

B(C1)) ∧ (
∨
C2⊂B2

B(C2))
22
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≥ B(B1) ∧B(B2).
(OSB2): Since = ∈ OSF (X), it is clear that 1 = =(X) =

∨
A⊂X B(A). Then

there is A0 ∈ 2X such that B(A0) = 1. Thus B is a normal fuzzy set in 2X .
On the other hand, 0 = =(φ) =

∨
A⊂φB(A) ≥ B(φ). So B(φ) = 0.

Conversely, suppose the necessary conditions hold.
(OSF1): For any A, B ∈ 2X , let A ⊂ B. Then

=(A) =
∨
C⊂A

B(C) ≤
∨
C⊂B

B(C) = =(B).

(OSF2): Let A, B ∈ 2X . Then
=(A) ∧ =(B) = (

∨
C⊂AB(C)) ∧

∨
D⊂BB(D))

=
∨
C⊂A

∨
D⊂B [B(C) ∧B(D)]

≤
∨
C⊂A

∨
D⊂B

∨
E⊂C∩DB(E) [By the condition (OSB1)]

≤
∨
E⊂A∩BB(E)

= =(A ∩B).
(OSF3): By (OSB2), B is a normal fuzzy set in 2X . Then there is A0 ∈ 2X such

that B(A0) = 1. Thus =(X) =
∨
B⊂X B(B) ≥ B(A0) = 1. So =(X) = 1.

(OSF4): Since B(φ) = 0, it is obvious that =(φ) = 0.
This completes the proof. �

Definition 4.2. Let B1 and B2 be two ordinary smooth filter bases on a set X.
Then B1 and B2 are said to be equivalent, if they generate the same osf .

From Theorem 4.1, it is obvious that if S is an ossb for an osf =, then Su is an
osfb for =.

Theorem 4.3. Let = ∈ OSF (X) and let B : 2X → I be a mapping such that
B ≤ =. Then B is an osfb for = if and only if =(A) =

∨
B⊂AB(B), for each

A ∈ 2X .

Proof. Suppose B is an osfb for =. Then by Theorem 3.1, it is clear.
Conversely, suppose the necessary condition holds and let B1, B2 ∈ 2X . Then

B(B1) ∧B(B2) ≤ =(B1) ∧ =(B2) [Since B ≤ =]
≤ =(B1 ∩B2) [By the axiom (OSF2]
=
∨
A⊂B1capB2

B(A). [By the hypothesis]

Thus B satisfies the condition (OSB1).
Since = ∈ OSF (X), it is clear that =(X) = 1. Then by the hypothesis, 1 =∨
A⊂X B(A). Thus there is A0 ∈ 2X such that B(A0) = 1. So B is a normal fuzzy

set in 2X . On the other hand, it is obvious that B(φ) = 0. Hence B satisfies the
condition (OSB2). This completes the proof. �

The following is the immediate result of Definition 3.5 and Theorem 4.1.

Corollary 4.4. Let =, =′ ∈ OSF (X) and let B [resp. B
′
] be an osfb for = [resp.

=′ ]. Then =′ is finer than = if and only if B(B) =
∨
B′⊂BB

′
(B
′
), for each B ∈ 2X .

The following is the immediate result of Definition 4.2, Theorem 4.1 and Corollary
4.4.

23
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Corollary 4.5. Let B and B
′

be two ordinary smooth filter bases on a set X. Then
B and B

′
are equivalent if and only if the following conditions are satisfied:

(1) B(B) =
∨
B′⊂BB

′
(B
′
), for each B ∈ 2X ,

(2) B
′
(B
′
) =

∨
B⊂B′ B(B), for each B

′ ∈ 2X .

5. Ordinary smooth ultrafilters

Definition 5.1. Let X be a set. Then a mapping U : 2X → I is called an ordinary
smooth ultrafilter (in shot, osuf), if U is a maximal element of (OSF (X),≤).

We will denote the set of all osuf ′s on X as OSUF (X).

It is well-known (See Zorn’s Lemma in [2]) that every inductive ordered set has
at least one maximal element.

The following is the immediate result of Corollary 3.13.

Proposition 5.2. Let X be a set. If = ∈ OSF (X), then there is an osuf U such
that = ≤ U.

Proposition 5.3. Let X be a set, let U ∈ OSUF (X) and let A, B ∈ 2X . If
U(A ∪B) 6= 0, then either U(A) 6= 0 or U(B) 6= 0.

Proof. Assume that there are A, B ∈ 2X such that U(A ∪ B) 6= 0, U(A) = 0 and
U(B) = 0. We define the mapping = : 2X → I as follows: for each M ∈ 2X ,

=(M) =
∨

U(A∪M)6=0

U(M).

Then we can easily see tat = ∈ OSF (X). Moreover, it is clear that U � =. This is
a contradiction from the fact that U ∈ OSUF (X). Thus the result holds. �

The following is the immediate result of Proposition 5.3 and the induction.

Corollary 5.4. Let U ∈ OSUF (X) and let (Ai)1≤i≤n ⊂ 2X . If U(
⋃n
i=1Ai) 6= 0,

then there is i ∈ {1, · · · , n} such that U(Ai) 6= 0.

Proposition 5.5. Let S be an ossb for an osf on a set X If either S(Y ) 6= 0 or
S(Y c) 6= 0, for each Y ∈ 2X , then S ∈ OSUF (X).

Proof. Let = ∈ OSF (X) such that S ≤ = and let Y ∈ 2X . Suppose =(Y ) 6= 0. Then
by the axiom (OSB2), 0 = =(φ) = =(Y ∩ Y c) ≥ =(Y ) ∧ =(Y c). Thus =(Y c) = 0.
Since S ≤ =, S(Y c) = 0. By the hypothesis, S(Y ) 6= 0. So =(Y ) ≤ S(Y ), i.e.,
= ≤ S. Hence = = S. Therefore S ∈ OSUF (X). �

Example 5.6. Let X be a non-empty set and let a ∈ X be fixed. We define the
mapping = : 2X → I as follows: for each A ∈ 2X ,

=(A) =

{
1, if a ∈ A,
0, otherwise.

Then we can easily show that = ∈ OSF (X). Furthermore, it is clear that either
=(Y ) 6= 0 or =(Y c) 6= 0, for each Y ∈ 2X . Thus by Proposition 5.5, = ∈ OSUF (X).

Proposition 5.7. Let X be a set, let = ∈ OSF (X) and let (Uj)j∈J ⊂ OSUF (X)
such that = ≤ Uj, for each j ∈ J . Then = =

⋂
j∈J Uj, where (

⋂
j∈J Uj)(A) =∧

j∈J Uj(A), for each A ∈ 2X .
24
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Proof. It is obvious that = ≤
⋂
j∈J Uj . Let A ∈ 2X such that =(A) = 0. Assume

that B ⊂ A, for each B ∈ 2X such that =(B) 6= 0. By the axiom (OSF1), =(B) ≤
=(A) = 0. Then =(B) = 0. This is a contradiction. Thus B 6⊂ A, for each B ∈ 2X

such that =(B) 6= 0, i.e., B ∩ Ac 6= φ, for each B ∈ 2X such that =(B) 6= 0. By

Corollary 3.11, there is an =′ ∈ OSF (X) such that = ≤ =′ and =′(Ac) 6= 0. By

Proposition 5.2, there is U ∈ OSUF (X) such that =′ ≤ U. So U(A) = 0, i.e.,
(
⋂
j∈J Uj)(A) = 0. Hence

⋂
j∈J Uj ≤ =. Therefore = =

⋂
j∈J Uj . �

Theorem 5.8. Let X be a set, let = ∈ OSF (X) and let A ∈ 2X . We define the
mapping =A : 2X → I as follows: for each B ∈ 2X ,

=A(B) =

{
=(A ∩B), if A 6⊂ B,
1, if A ⊂ B.

Then =A is an osf on A if and only if A ∩M 6= φ, for each M ∈ 2X such that
=(M) 6= 0.

In this case, =A is said to be induced by = on A.

Proof. Suppose =A is an osf on A. Then the proof is clear.
Conversely, suppose the necessary condition holds. From the definition of =A, it

is obvious that =A(A) = 1 and =A(φ) = 0. Then =A satisfies the axioms (OSF3)
and (OSF4).

For any B, C ∈ 2X , suppose B ⊂ C.
Case (i): If A ⊂ B, then clearly, =A(B) = 1 = =A(C).
Case (ii): If A 6⊂ B, then by the axiom (OSF1),

=A(B) = =(A ∩B) ≤ =(A ∩ C) = =A(C).

Thus =A satisfies the axiom (OSF1).
Now let B, C ∈ 2X . Then

=A(B ∩ C) = =(A ∩ (B ∩ C)) [By the definition of =A]
= =((A ∩B) ∩ (A ∩ C))
≥ =(A ∩B) ∧ =(A ∩ C) [By the axiom (OSF2)]
= =A(B) ∧ =A(C).

Thus =A satisfies the axiom (OSF2).
This completes the proof. �

Remark 5.9. Let = ∈ OSF (X), let B be an osfb for = and let A ∈ 2X . If = induces
an osf on A, then by Theorem 4.3, BA is an osfb for =A, where BA : 2X → I is
the mapping defined by BA(B) = B(A ∩B), for each B ∈ 2X .

The following is the immediate result of Propositions 5.3 and 5.5.

Theorem 5.10. Let X be a set, let U ∈ OSUF (X) and let A ∈ 2X . Then U
induce an osf on A if and only if U(A) 6= 0. If this condition is satisfied, then
UA ∈ OSUF (A), where UA : 2X → I is the mapping defined by UA(B) = U(A ∩B),
for each B ∈ 2X .
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6. The image and the inverse image of an ordinary smooth filter

Proposition 6.1. Let X and Y be sets and let f : X → Y be a mapping. If B is
an osfb on X, then f(B) is an osfb on Y , where f(B) : 2Y → I is the mapping
defined as follows: for each B ∈ 2Y ,

[f(B)](B) =
∨

A⊂f−1(B)

B(A).

In this case, f(B) is called a the image of B under f .

Proof. Suppose B is an osfb on X and let B1, B2 ∈ 2Y .
Case (i): If either f−1(B1) = φ or f−1(B2) = φ, then clearly,

[f(B)](B1) ∧ [f(B)](B2) = 0 ≤
∨

B⊂B1∩B2

[f(B)](B).

Case (ii): If either f−1(B1) 6= φ and f−1(B2) 6= φ, then
[f(B)](B1) ∧ [f(B)](B2)

= (
∨
A1⊂f−1(B1) B(A1)) ∧ (

∨
A2⊂f−1(B2) B(A2)

=
∨
A1⊂f−1(B1), A2⊂f−1(B2)[B(A1) ∧B(A2)]

≤
∨
A1⊂f−1(B1), A2⊂f−1(B2)

∨
A⊂A1∩A2

B(A) [By the condition (OSB1)]

≤
∨
A1∩A2⊂f−1(B1∩B2)

∨
A⊂A1∩A2

B(A)

[Since f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2)]
≤
∨
f(A)⊂B1∩B2

∨
A⊂f−1(f(A)) B(A)

=
∨
f(A)⊂B1∩B2

[f(B)](f(A)).

Thus in either case, f(B) satisfies the condition (OSB1).
From the definition of f(B), it is clear that [f(B)](φ) = 0. Since B is a normal

fuzzy set in 2X , there is A0 ∈ 2X such that B(A0) = 1. Then A0 6= φ. Thus there
is B ∈ 2Y such that A0 ⊂ f−1(B). So by the definition of f(B),

[f(B)](B) =
∨

A⊂f−1(B)

B(A) ≥ B(A0) = 1.

Hence f(B) is a normal fuzzy set in 2Y . Therefore f(B) satisfies the condition
(OSB2).

This is completes the proof. �

The following is the immediate result of Corollary 4.4 and Proposition 6.1.

Corollary 6.2. Let X and Y be sets, let f : X → Y be a mapping and let B be
an osfb on X. If B

′
is an osfb for an osf which is finer than the osf for B, then

f(B
′
) is an osfb for an osf finer than the osf for f(B).

Theorem 6.3. Let X and Y be sets, let f : X → Y be a mapping and let B
′

be
an osfb on Y . Then f−1(B

′
) is an osfb on X if and only if f−1(M

′
) 6= φ, i.e.,

M
′ ∩ f(X) 6= φ, for each M

′ ∈ 2Y such that B
′
(M

′
) 6= 0, where f−1(B

′
) : 2X → I

is the mapping defined by:

[f−1(B
′
)](A) = B

′
(f(A)), for each A ∈ 2X .

In this case, f−1(B
′
) is called a inverse image of B

′
under f .
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Proof. This is an immediate consequence of the relation f−1(M
′ ∩N ′) = f−1(M

′
)∩

f−1(N
′
), for any M

′
, N

′ ∈ 2Y and Theorem 4.1. �

Remark 6.4. (1) Let X and Y be sets, let f : X → Y be a mapping and let B
′

be

an osfb on Y . If f−1(M
′
) 6= φ, for each M

′ ∈ 2Y such that B
′
(M

′
) 6= 0, then from

Theorem 6.4, f(f−1(M
′
)) is an osfb for an osf finer than the osf for B

′
.

(2) Let X and Y be sets and let f : X → Y be a mapping. If B is an osfb on
X, then Proposition from 6.1 and Theorem 6.4, f−1(f(B)) is an osfb for an osf
coarser than the osf for B.

7. r-level and strong r-level of an ordinary smooth filter

Definition 7.1. Let = ∈ OSF (X) and let r ∈ I. Then r-level set and strong r-level
set of =, denoted by [=]r and [=]∗r , are sets of ordinary subsets of X defined as
follows:

[=]r = {A ∈ 2X : =(A) ≥ r}
and

[=]∗r = {A ∈ 2X : =(A) > r}.

The following is the similar result to Result 2.4.

Proposition 7.2. Let = ∈ OSF (X) and let =(X) denote the set of all classical
filters on X. Then

(1) [=]r ∈ =(X), ∀r ∈ I0,

(1)
′

[=]∗r ∈ =(X), ∀r ∈ I1,
(2) for any r, s ∈ I, if r ≤ s, then [=]r ⊂ [=]s and [=]∗r ⊂ [=]∗s.
(3) [=]r =

⋂
s<r[=]s, ∀r ∈ I0,

(3)
′

[=]∗r =
⋃
s>r[=]∗s, ∀r ∈ I1

Proof. The proofs of (1), (1)
′

and (2) are obvious from Definitions 3.1 and 7.1.
(3) From (2), it is clear that {[=]r : r ∈ I} is a descending family of classical

filters on X. Let r ∈ I0. Then clearly, [=]r ⊂
⋂
s<r[=]s. Assume that A /∈ [=]r.

Then =(A) < r. Thus ∃ s ∈ I0 such that =(A) < s < r. So A /∈ [=]s, for some
s < r, i.e., A /∈

⋂
s<r[=]s. Hence

⋂
s<r[=]s ⊂ [=]r. Therefore [=]r =

⋂
s<r[=]s.

(3)
′

The proof is similar to (3). �

Proposition 7.3. Let {=r : r ∈ I} be a non-empty descending family of classical
filters on a set X.

(1) We define the mapping = : 2X → I as follows: for each A ∈ 2X ,

=(A) =

{ ∨
r, if A ∈ =r,

0, otherwise.

Then = ∈ OSF (X).
(2) For each r ∈ I0, if =r =

⋂
s<r =s, then [=]r = =r.

(2)
′

For each r ∈ I1, if =r =
⋃
s>r =s, then [=]∗r = =r.

In this case, = is called the ordinary smooth filter generated by {=r : r ∈ I}.
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Proof. (1) By Definition of =, it is clear that =(X) = 1 and =(φ) = 0. Then =
satisfies the axioms (OSF3) and (OSF4). Also, by Definition of =, it is obvious that
for any A, B ∈ 2X , if φ 6= A ⊂ B, then =(A) ≤ =(B). Thus = satisfies the axiom
(OSF1).

For any Ai ∈ 2X , let =(Ai) = ki, i = 1, 2. Suppose ki = 0, for some i. Then
clearly, =(A1 ∩ A2) ≥ =(A1) ∧ =(A2). Thus, without loss of generality, suppose
ki > 0, for i = 1, 2. Let ε > 0. Then ∃ri ∈ I0 such that ki − ε < ri < ki and
Ai ∈ =ri , i = 1, 2. Let r = r1 ∧ r2 and let k = k1 ∧ k2. Since {=r : r ∈ I} is
a descending family, Ai ∈ =ri and A1, A1 ∈ =r. Thus A1 ∩ A2 ∈ =r. So by the
definition of =, =(A1 ∩A2) ≥ r > k − ε. Since ε > 0 is arbitrary, it follows that

=(A1 ∩A2) ≥ k = k1 ∧ k2 = =(A1) ∧ =(A2).

Hence = satisfies the axiom (OSF2).
(2) Suppose =r =

⋂
s<r =s, for each r ∈ I0 and let A ∈ =r. Then clearly,

=(A) ≥ r. Thus A ∈ [=]r. So =r ⊂ [=]r, for each r ∈ I0.
Now let A ∈ [=]r. Then =(A) ≥ r. Thus by the definition of =,

=(A) =
∨
A∈=s

s ≥ r.

Let ε > 0. Then ∃k ∈ I0 such that s− ε < k and A ∈ =k. Thus

r − ε ≤ s− ε < k and A ∈ =k.
So A ∈ =r−ε. Since ε > 0 is arbitrary, A ∈ =r. Hence [=]r ⊂ =r. Therefore
[=]r = =r, for each r ∈ I0.

(2)
′

the proof is similar to (2). �

The following is the immediate result of Propositions 7.2 and 7.3.

Corollary 7.4. Let X be a non-empty set, let = ∈ OSF (X) and let {[=]r : r ∈ I}
be the family of all r-level classical filters w.r.p. =. Define the mapping =1 : 2X → I
as follows: for each A ∈ 2X ,

=1(A) =

{ ∨
r, if A ∈ [=]r,

0, otherwise.

Then =1 = =.

The fact that an ordinary smooth filter is fully determined by its decomposition
in classical filters is restated in the following result.

Corollary 7.5. Let X be a non-empty set and let =1, =2 ∈ OSF (X). Then
=1 = =2 if and only if [=1]r = [=2]r or alternatively, [=1]∗r = [=2]∗r, for each

r ∈ I.

Definition 7.6. Let X be a non-empty set, let F ∈ F (X) and let = ∈ OSF (X).
Then = is said to be compatible with F , if F = S(=) = {A ∈ 2X : =(A) > 0}.

Example 7.7. (1) Let =X be the ordinary smooth filter on X given in Example
3.4 (2). Then clearly, S(=X) = {X}. Thus =X is compatible with the classical filter
{X}.

(2) Let =f,N be the ordinary smooth Frechet filter given in Example 3.4 (3). Then
we can easily see that =f,N is compatible with the classical Frechet filter.
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8. Conclusions

We introduced the concepts of an ordinary smooth filter, an ordinary smooth
filter base, an ordinary smooth ultrafilter and an induced ordinary smooth filter and
a (strong) r-level set, and studied some of its properties, respectively.

In the future, we will investigate the product of two ordinary smooth filter bases,
a limit of an ordinary smooth filter and a limit of a mapping with respect to an
ordinary smooth filter.
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