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ABSTRACT. In this paper, the concept of connected geodesic num-
ber, gn.(G), of a fuzzy graph G is introduced and its limiting bounds are
identified. It is proved that all extreme nodes of G and all cut-nodes of
the underlying crisp graph G* belong to every connected geodesic cover
of G. The connected geodesic number of complete fuzzy graphs, fuzzy cy-
cles, fuzzy trees and of complete bipartite fuzzy graphs are obtained. It
is proved that for any pair k,n of integers with 3 < k < n, there exists
a connected fuzzy graph G : (V, o, 1) on n nodes such that gn.(G) = k.
Also, for any positive integers 2 < a < b < ¢, it is proved that there ex-
ists a connected fuzzy graph G : (V, o, ) such that the geodesic number
gn(G@) = a and the connected geodesic number gn.(G) = b.
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1. INTRODUCTION

Zadeh in 1965 [35] developed a mathematical phenomenon for describing the
uncertainties prevailing in day-to-day life situations by introducing the concept of
fuzzy sets. The theory of fuzzy graphs was later on developed by Rosenfeld in the
year 1975 [27] along with Yeh and Bang [34]. Rosenfeld also obtained the fuzzy
analogue of several graph theoretic concepts like paths, cycles, trees and connect-
edness along with some of their properties [27] and the concept of fuzzy trees [23],
automorphism of fuzzy graphs [10], fuzzy interval graphs [20], cycles and co-cycles
of fuzzy graphs [21] etc has been established by several authors during the course of
time. Akram et.al. in [1, 5, 6, 7, 8] introduced the concepts of bipolar fuzzy graphs
and interval-valued fuzzy line graphs and established some of the properties satisfied
by them. Fuzzy groups and the notion of a metric in fuzzy graphs were introduced
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by Bhattacharya [9]. Several other recent works on fuzzy graphs can be found in
[ ) ) ) Y 9, ) K ) ) ]'

The concept of strong arcs [13] was introduced by Bhutani and Rosenfeld in

the year 2003. The definition of fuzzy end nodes and some of their properties
were established by the same authors in [I1]. The concept of geodesic distance
was introduced by Bhutani and Rosenfeld in [12] and using this geodesic distance,
Suvarna and Sunitha in [32] brought the concept of geodesic iteration number and
geodesic number of a fuzzy graph into existence and studied some of the properties
satisfied by them. The same concepts using p-distance was introduced by Linda and
Sunitha in [17].
Covering problems are among the fundamental problems in graph theory and some
of them have also been introduced in fuzzy graphs such as fuzzy vertex covering
problem, fuzzy edge covering problem, fuzzy minimum weight edge covering problem
and so on. An important subclass of fuzzy covering problems is formed by path
coverings, in particular, coverings with shortest paths or geodesics.The concept of
geodesic numbers has many applications in location theory and convexity theory. In
fact edge geodesic sets are more useful than geodesic sets in the case of transportation
and routing problems. In this paper, the concept of connected geodesic number of
a fuzzy graph is introduced and its limiting bounds are identified. It is proved that
every connected geodesic cover of a connected fuzzy graph G contains all extreme
nodes of G and all cut-nodes of G*. The connected geodesic number of complete
fuzzy graphs, fuzzy cycles, fuzzy trees and of complete bipartite fuzzy graphs are
obtained.

2. PRELIMINARIES

A graph is a pair (V, E), where V is a set and E is a relation on V. The elements
of V' are thought of as vertices of the graph and the elements of E are thought of
as the edges. Sometimes, there can be vagueness in the description of vertices or in
its relationships or in both. In such cases, designing a fuzzy graph model becomes
useful as it is more realistic in natural situations. In this section, a brief summary
of some basic definitions in fuzzy graph theory is given.

Definition 2.1 ([22]). A fuzzy graph G : (V,o, 1) is a non-empty set V' together
with a pair of functions o : V. — [0,1] and p : V x V. — [0, 1] such that for all
xz,y € V,u(z,y) < o(z) Ao(y). We call o the fuzzy vertex set of G and u the fuzzy
edge set of G, respectively.

We assume that V is finite and non-empty, p is reflexive (i.e., u(z, z) = o(x),Vz)
and symmetric (i.e., u(z,y) = p(y, x),V(z,y)). Also we denote the underlying crisp
graph by G* : (o*,p*) where o* = {& € V/o(x) > 0} and p* = {(x,y) € V x
V/u(z,y) > 0}. Here we assume o* = V.

A fuzzy graph G : (V,o,p) is called trivial, if |o*| = 1. Otherwise it is called
non-trivial.

Definition 2.2 ([22]). The fuzzy graph H : (V,1,v) is called a partial fuzzy sub-
graph of G : (V,o,u), if 1 Co and v C p.
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Similarly, the fuzzy graph H : (P, 1,v) is called a fuzzy subgraph of G : (V, 0, u)
induced by P, if P CV, 7(z) = o(x), for all x € P and v(z,y) = p(z,y), for all
z,y € P.

A fuzzy subgraph H : (P, 7,v) of a fuzzy graph G : (V,o, ) is in fact a special
case of a partial fuzzy subgraph obtained as follows:

(z) = { o(x) ifreP

0 ifreV —P,

w(zx,y if (x,y) e Px P
v(w,y) = (0 ) if(x,y)(eV)xV—PxP.

A fuzzy subgraph H : (V,7,v) of G : (V,0,u) is said to span G, if o = 7. In this
case, we call H : (V,7,v) a spanning fuzzy subgraph of G : (V, o, 1).

Definition 2.3 ([22]). A fuzzy graph G : (V,o,p) is a complete fuzzy graph, if
w(u,v) = o(u) Ao(v), Vu,v € o*.

Definition 2.4 ([22]). A sequence of distinct nodes ug, u1, ......, u, such that p(u;—1,u;) >
0,=1,2,3,....,n is called a path P, of length n.

Definition 2.5 ([23]). An arc (u,v) of G : (V, 0, u) with least non-zero membership
value is the weakest arc of G.

The degree of membership of a weakest arc in the path is defined as the strength
of the path.

The path becomes a cycle, if ug = u,,n > 3 and a cycle is called a fuzzy cycle, if
it contains more than one weakest arc.

Definition 2.6 ([22]). The strength of connectedness between two nodes v and v
is the maximum of the strengths of all paths between w and v and is denoted by
CON Ng(u,v).

The fuzzy graph G : (V, 0, u) is said to be connected, if CON Ng(u,v) > 0, for
every u,v in o*.

Definition 2.7 ([13]). An arc (u,v) of a fuzzy graph is called strong, if its weight
is at least as great as the strength of connectedness of its end nodes u, v, when the
arc (u,v) is deleted.

A u — v path P is called a strong path, if P contains only strong arcs.

Definition 2.8 ([18]). Depending on the CON N¢g(u,v) of an arc (u,v) in a fuzzy
graph G, three different types of arcs denoted by «, 8 and § are defined. Note that
CONNg_(u,0)(u,v) denote the strength of connectedness between u and v in the
fuzzy graph G obtained by deleting the arc (u,v). Then
(i) an arc (u,v) in G is a-strong, if CONNg_ () (u,v) < p(u,v),
(ii) an arc (u,v) in G is B-strong, if CON Ng_ (yv)(u,v) = p(u,v),
(iii) an arc (u,v) in G is 0-arc, if CONNg_ () (u,v) > p(u,v),
(iv) a d-arc (u,v) is called a 6*-arc, if p(u,v) > p(z,y), where (z,y) is a weakest
arc of G,
(v) an arc (u,v) in G is said to be strong, if it is either a-strong or S-strong,
(vi) a path P is called a strong path, if all arcs of P are either a-strong or S-strong.

Definition 2.9 ([27]). A connected fuzzy graph G : (V, o, u) is called a fuzzy tree,
if it has a spanning fuzzy subgraph F : (V, o, v), which is a tree such that for all arcs
(u,v) not in F;, CONNp(u,v) > pu(u,v).

303



Rehmani and Sunitha /Ann. Fuzzy Math. Inform. 16 (2018), No. 3, 301-316

Definition 2.10 ([27]). A node is a fuzzy cut node of G : (V, 0, u), if removal of it
reduces the strength of connectedness between some other pair of nodes.

Definition 2.11 ([11]). Two nodes w and v in a fuzzy graph G : (V,o,u) are
neighbors (adjacent), if p(u,v) > 0 and v is called a strong neighbor of w, if the
arc (u,v) is strong. Also N(u) denotes the set of neighbors of u other than wu,
where as N[u] denotes the set of neighbors of u including u. The degree of u is
deg(u) = [N (u)].

A node v is called a fuzzy end node of G, if it has at most one strong neighbor in

G.

Definition 2.12 ([31]). A fuzzy graph G is said to be bipartite, if the vertex set
V' can be partitioned into two non-empty sets V; and V4 such that p(vq,ve) = 0, if
v1,v2 € V7 or vy,vy € Vo

Further if p(u,v) = o(u) Ao(v) Yu € V; and Vv € Vs, then G is called a complete
bipartite fuzzy graph and is denoted by K, »,, where o1 and oy are respectively
the restrictions of o to V7 and V5.

Definition 2.13 ([12]). A strong path P from x to y is called geodesic, if there is
no shorter strong path from x to y and the length of a u — v geodesic is the geodesic
distance from u to v, denoted by dg4(u,v).

Definition 2.14 ([12]). The geodesic eccentricity (g-eccentricity), e,(u), of a node
u in a connected fuzzy graph G : (V, o, ) is given by eg(u) = max,cv dg(u,v). A
node v with maximum eg(u) is called a g-peripheral node or diametral node.

The g-diameter of G, dy(G) = max{ey(v) : v € V} and the g-radius of G,
r4(G) = min{ey4(v) : v € V}.

Definition 2.15 ([15]). A crisp graph G is said to be connected, if any two distinct
nodes of GG are joined by a path.

A maximal connected subgraph of G is called a component of G and a cut-node
of GG is a node whose removal increases the number of components.

The following definitions and results have been taken from [12, 32].

Definition 2.16 ([12]). Let S be a set of nodes of a connected fuzzy graph G.

(i) The geodesic closure (S) of S is the set of all nodes in S together with the
nodes that lie on geodesics between nodes of S.

(ii) S is said to be convex, if S contains all nodes of every u — v geodesic for all
u,v in S. ie, if (S)=S.

(iii) S is said to be geodesic cover (geodesic set) of G, if (S) = V(G).

(iv) Any cover of G with minimum number of nodes is called a geodesic basis for
G. Order of a geodesic basis is the number of nodes in it.

Definition 2.17 ([32]). The geodesic number of a fuzzy graph G : (V,o,u) is the
order of a geodesic basis of G and is denoted by gn(G).

Proposition 2.18 ([26]). For any non-trivial fuzzy graph G on n nodes, 2 <
gn(G) < n.
Proposition 2.19 ([32]). For a fuzzy cycle G on n nodes, gn(G) = 2, if n is even
and gn(G) = 3, if n is odd.
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Proposition 2.20 ([32]). For a complete fuzzy graph G on n nodes, gn(G) = n.

Proposition 2.21 ([12]). A fuzzy tree has a unique geodesic basis consisting of its
fuzzy end nodes.

3. CONNECTED GEODESIC NUMBER OF A FUZZY GRAPH

The concept of connected geodetic number in graph theory was introduced and
studied by Mojdeh and Rad in [19], by Santhakumaran et.al. in [28, 29] and by
Hossein Abdollahzadeh Ahangar et.al. in [1]. This concept is extended to fuzzy
graphs using geodesic distance and is named as connected geodesic number.

Definition 3.1. A connected geodesic cover (connected geodesic set) of a fuzzy
graph G : (V, o, ) is a geodesic cover S of G such that the fuzzy subgraph induced
by S, < S >, is connected.

Definition 3.2. The minimum cardinality of a connected geodesic cover of G is the
connected geodesic number of G and is denoted by gn.(G).

A connected geodesic cover of G of cardinality gn.(G) is called a connected geo-
desic basis of G.

Example 3.3. Consider the fuzzy graph G : (V, o, u) given in Fig.1.

Fig.1.

Here, S = {w, y} is a geodesic cover of G, since ({w,y}) = V(G). However < S > is
not connected and then S is not a connected geodesic cover of G. But S1 = {u, w,y},
Sy = {v,w,y} and S3 = {x,w,y} are all connected geodesic covers of G of minimum
cardinality. Thus S7,.S2 and S3 are connected geodesic bases of G. So gn.(G) = 3.
Hence it can be concluded that there can be more than one connected geodesic basis
for a fuzzy graph. Also note that the geodesic number and the connected geodesic
number of a fuzzy graph need not be the same. Here, gn(G) = 2 # gn.(G) = 3.

Proposition 3.4. For any connected fuzzy graph G : (V,o,u1) on n nodes, 2 <
gn(G) < gn.(G) < n.

Proof. By Proposition 2.18, it is clear that gn(G) > 2. Now by Definition 3.1, every

connected geodesic cover is also a geodesic cover of G and so gn(G) < gn.(G). Also

note that V(G) induces a connected geodesic cover of G and then it is obvious that

gn.(G) <n. Thus, 2 < gn(G) < gn.(G) < n. O
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Corollary 3.5. Let G : (V,o,u) be any connected fuzzy graph. If gn.(G) = 2, then
gn(G) = 2.

Remark 3.6. The converse of Corollary 3.5 is not true. For example, the geodesic
number of a path P on 3 nodes is 2, where the geodesic basis S is the set of end-
nodes of P. However S is not a connected geodesic cover, since the fuzzy subgraph
induced by S, < S >, is not connected. Then gn.(G) = 3 # 2 = gn(G).

Corollary 3.7. Let G : (V,o,u) be any connected fuzzy graph on n nodes. If
gn(G) = n, then gn.(G) = n.

Definition 3.8. A node v in a fuzzy graph G is called an extreme node, if the fuzzy
subgraph induced by its neighbors is a complete fuzzy graph.

Proposition 3.9. Each extreme node of a fuzzy graph G : (V, o, 1) belongs to every
geodesic cover of G.

Proof. Let S be a geodesic cover of G and v be an extreme node of G. Let
{v1,v9,...,0,} be the neighbors of v and (v,v;) (1 <i < n) be the edges incident on
v. Since v is an extreme node, v; and v; are adjacent for i # j (1 <4,j <n). Then
any geodesic which contains v, is either (v;,v) (1 < i < m) or uy,ug, ..., U, Vi, v
where each u; (1 <4 <m) is different from v;. Thus it follows that v € S. O

Proposition 3.10. Every extreme node of a connected fuzzy graph G : (V,o,u)
belongs to every connected geodesic cover of G.

Proof. Since every connected geodesic cover is also a geodesic cover, the result follows
from Proposition 3.9. O

Corollary 3.11. For any connected fuzzy graph G : (V, o, u) with k extreme nodes,
gne(G) > max{2, k}.

Proof. The result follows from Propositions 3.4 and 3.10. O

Corollary 3.12. The connected geodesic number of a complete fuzzy graph G :
(V,o,1) on n nodes is n.

Proof. Since each node in a complete fuzzy graph is an extreme node, the result
follows from Proposition 3.10. Then the proof can also be obtained from Proposition
2.20 and Corollary 3.7. O

Proposition 3.13. The connected geodesic number of a fuzzy cycle G : (V,o,u) on
n nodes, (n > 3), is given by:
241 when n is even
G) = 2

gme(G) { LQU +2 when nis odd.
Proof. Case(1): Suppose n is even. Let n = 2k and let vy, va,v3, ..., 2k, v1 be the
fuzzy cycle G on n nodes. Since all arcs in G are strong [11], vgy; is the g-peripheral
node of v; in G. Take S = {v1,vg+1}. Then clearly, S is a geodesic cover of G.
However it is clear that < S > is not connected. But S; = {v1,vo,...,vp41} is a
connected geodesic cover of G. Thus gn.(G) < k + 1.
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Claim: S; is a connected geodesic cover of minimum cardinality.

If possible suppose S’ is any connected geodesic cover of G with |S’| < |S1|. Then
S’ contains at most k nodes. Thus no two nodes of S’ are g-peripheral to each
other. So S’ is not a geodesic cover of GG, which is a contradiction. Hence, S is a
connected geodesic cover of G of minimum cardinality. Therefore gn.(G) = k + 1,
ie, gn.(G) =% + 1.

Case(2): suppose n is odd. Let n = 2k + 1 and let vy, v9,vs, ..., V2g4+1, 1 be the
fuzzy cycle G on n nodes. Again, since all arcs in G are strong [11], vi41 and vgyo
are the g-peripheral nodes of v; in G. Take S = {v1,vk+1,Vk42}. Then clearly, S
is a geodesic cover of G but < S > is not connected. Thus S is not a connected
geodesic cover of G. However, So = {v1,va, ..., Up41, Ukt2} 18 a connected geodesic
cover of G. So gn.(G) < k+ 2.

Claim: S5 is a connected geodesic cover of minimum cardinality.

If possible suppose S” is any connected geodesic cover of G with |S”| < |S2|. Then
S” contains at most k+ 1 nodes of G. Also S” contains at most 2 nodes say v and v
that are g-peripheral to each other. Let w # v be a g-peripheral node of u in G. Then
the node w does not lie on any geodesic joining a pair of nodes of S”. Thus S” is not
a geodesic cover of G, which is a contradiction. So, gn.(G) =k+2 = w +2. O

Proposition 3.14. Let G : (V,0,u) be a connected fuzzy graph such that the under-
lying crisp graph G* contains at least one cut-node and let S be a connected geodesic
cover of G. If v is a cut-node of G*, then every component of G* — {v} contains an
element of S.

Proof. Let v be a cut-node of G* and let S be a connected geodesic cover of G.
Suppose that there exists a component, say G5, of G* — {v} such that G} contains
no node of S. Let uw € V(GY). Since S is a connected geodesic cover of G, there
exists a pair of nodes = and y in S such that u lies on some = — y geodesic P : x =
UQ, ULy ey U, ..., U, = Y in G. Since v is a cut-node of G*, the x — u geodesic sub path
of P and the u — y geodesic sub path of P both contain v. Then it follows that P
is not a path, contrary to assumption. U

Proposition 3.15. Let G : (V, 0, 1) be a connected fuzzy graph such that G* contains
at least one cut-node. Then every cut-node of G* belongs to every connected geodesic
cover of G.

Proof. Let v be a cut-node of G* and let G}, G5, ..., G (r > 2) be the components
of G* —{v}. Let S be any connected geodesic cover of G. Then by Proposition 3.14,
S contains at least one element from each G (I < i < r). Since < S > is connected,
it follows that v € S. O

Corollary 3.16. Let G : (V,0,u) be a connected fuzzy graph with k extreme nodes
such that the underlying crisp graph G* contains | cut-nodes. Then gn.(G) >
max{2,k +1}.

Proof. This follows from Propositions 3.4, 3.10 and 3.15. O
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Example 3.17. Consider the fuzzy graph G : (V, o, 1) given in Fig.2.

5(0.2) w(0.3)

Fig.2.

Here, the extreme nodes of G are s,t,w and z. Then the number of extreme nodes
of G, k = 4. Thus the cut nodes of the underlying crisp graph G* are u and v. So
the number of cut nodes in G*, [ = 2.

Now, {s,t,w,z} is a geodesic basis of G. However, it is not connected. Then
u and v should be included in the geodesic basis to make it connected. Thus,
{s,t,u,v,w,z} is the unique connected geodesic basis of G. So gn.(G) = k+1 =
4+2=6.

Proposition 3.18. The connected geodesic number of a fuzzy tree G : (V,o, 1) on
n nodes containing no d-arcs is n.

Proof. By Proposition 2.21, it follows that the set S of all fuzzy end nodes of G :
(V,o, 1) form the unique geodesic basis of G. Since G is a fuzzy tree containing
no d-arcs, the fuzzy end nodes of G are indeed the end nodes of Gx. However S
is not a connected geodesic cover since the fuzzy subgraph induced by S5, < S >,
is not connected. Also, by Proposition 3.15, every cut node of G* belong to every
connected geodesic cover of G. Hence, the entire node set V(G) is the unique
connected geodesic basis of G. Therefore gn.(G) = n. 0

Proposition 3.19. Let G : (V,o0,u) be a connected fuzzy graph on n nodes such
that every node of G is either a cut-node of G* or an extreme node of G. Then the
connected geodesic number of G, gn.(G) = n.

Proof. The proof follows from Propositions 3.10 and 3.15. O

Remark 3.20. The converse of Proposition 3.19 need not be true. For example,
the fuzzy graph G given in Fig.3 on 8 nodes is a fuzzy tree and so by Proposition
3.18, the connected geodesic number gn.(G) = 8. Note that the nodes u, v, w and z
are cut-nodes of G*. However, the nodes s,t,y and z are not extreme nodes as the
subgraph induced by their neighbors are not complete fuzzy graphs.
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s(0.3) y(0.3)
0.2
u(0.3) w(0.3)
0-1 019 (2 @
0.2 v(0.2)
£(0.3) Fig.3.

Proposition 3.21. Let K,, ,, = (ViU Vs, 0,1) be a complete bipartite fuzzy graph.
Then

(1) gne(Koy,0,) =2, if [Vi| = [V2| = 1,
(2) gne(Ko, 00) = [Vo| +1, if [Vi| = 1 and [V2| = 2,
(3) gnc(Koy 0,) = man{r,s} + 1, if V1| =1 and |Va| = s, where r,s > 2.

Proof. (1) The proof follows from Corollary 3.12.

(2) The proof follows from Proposition 3.18.

(3) Let r,s > 2. First assume that » < s. Let Vi = {uy,us,...,u,} and
Vo = {w1,ws, ..., ws} be a bipartition of K,, ,,. Take S =V; U{ws}.

Claim: S is a connected geodesic basis of K, o,.

It is clear that any node w;(1 < j < s) lies on the geodesic u;w;uy for any k # i
so that S is a geodesic cover of K, 4,. Since < .S > is connected, S is a connected
geodesic cover of K, ,,. To show that S is a connected geodesic cover of K, ,,
having minimum cardinality, let T be any set of nodes such that [T < |S|.

If T C Vp, then < T > is not connected and so T is not a connected geodesic
cover of Ky, o,.

If T' C Vs, then again by a similar argument, 7" is not a connected geodesic cover
of Ko, 0,-

If T' O Vi, then since |T'| < |S], we have T' = V;, which is not a connected geodesic
cover of Ky, o,.

If T D Va, then |T| > |Va| = s > r, i.e., |T| > |S| which is a contradiction. Thus
T C V1 U Vs such that T contains at least one node from each of V; and V5. Since
|T| < |S], there exist nodes u; € V7 and w; € V5 such that u; ¢ T and w; ¢ T. So
clearly, at least one of the end nodes of the edge (u;,w;) does not lie on a geodesic
connecting two nodes of T so that T is not a connected geodesic cover. Hence in
any case, 1" is not a connected geodesic cover of K, ,,. Therefore S is a connected
geodesic basis so that gn.(K,, »,) =|S| =7+ 1.

Now, if » = s, we can prove similarly that S = {z} U V5, where z € V] or
S = V1 U{y}, where y € V5 is a connected geodesic basis of G. O

Proposition 3.22. If G : (V,o,u) is a connected fuzzy graph on m > 3 nodes
containing no §-arcs such that v is a cut-node of G* of degree n—1, then gn.(G) = n.
309
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Proof. Let S be any connected geodesic cover of G and v be a cut node of G* of
degree n — 1. Then, by Proposition 3.15, v € S.

Claim: S = V(G) is a connected geodesic basis of G .

Otherwise, there exists a set T C V(@) such that T is a connected geodesic cover
of G. By Proposition 3.15, v € T'. Since T' C V(G), there exists a node u € V such
that u ¢ T. Since T is a connected geodesic cover of G, the node u lies on a geodesic
joining a pair of nodes x and y of T

Let the geodesic be P : z,...,v,u, ...,y. Then we have u # z,y.

If £ = v, then, since v is adjacent to every node of G, the arc (v,y) is the only
geodesic joining v and y.

If z # v, then x — v —y is the only geodesic joining = and y. Thus in any case P is
not an = — y geodesic, which is a contradiction. So S = V(G) is the only connected
geodesic basis of G. Hence gn.(G) = n. O

Remark 3.23. The converse of Proposition 3.22 is false. For the fuzzy graph G
given in Fig4, S = {u,v,w,z,y} is a connected geodesic basis of G and then,
gne(G) = 5. But no node of G has degree 5 — 1.

u 0.1 v
0.2
@ [ ]
x 0.3 Vo0 Y
Fig.4.

Proposition 3.24. For any pair k,n of integers with 3 < k < n, there exists a
connected fuzzy graph G : (V,o,u) on n nodes such that gn.(G) = k.

Proof. Construct a connected fuzzy graph G : (V, o, ) on n nodes having connected
geodesic number k as follows:

Let Py : (Vi,01,11) be a path on k nodes say uq,us,us, ..., ur with o1(u;) = 0.4,
(1 S 1 S k‘) and M1(’U,z‘,ui+1) = al(ui) N 0'1(’(1@+1), (1 S ) S k — 1).

Now, add n — k new nodes v1,v2, ..., v,—j and join each v;, (1 < j < n — k) with
uy and ug, thereby obtaining a fuzzy graph G : (V,o,u) with each node having
membership value o(v;) = A{o1(u;)}, (1 <i<k). Put 0 =0y and g = pq on Pj.
Set the membership values of remaining edges as p(u;, vj) = o1(u;) Ao(vj), i =1,3
and 1 < j <n—k. The fuzzy graph G : (V, o, ) thus obtained is as shown in Fig.5.
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U1(0.1) 0.1 U2(0.2) 0.2 U3<03) U4(04) uk,l(O.(k-l)) uk(Ok)
® e O

Un—k(0.1) Fig.5.

Then G : (V, 0, ) is a connected fuzzy graph on n nodes. Here, S1 = {us, ug, ..., up—1}
is the set of all cut nodes of the underlying crisp graph G* and Sy = {uy} is the
only extreme node of G. Take S = S U Sy = {us,uy, ..., ux }. Now, it follows from
Proposition 3.15 that every cut node of G* belongs to every connected geodesic cover
of G and from Proposition 3.10, it follows that every extreme node of G belongs to
every connected geodesic cover of G. Since S consists of cut nodes of G* and ex-
treme nodes of GG, any connected geodesic cover of G should contain S and thus
gne(G) > |S| =k —2.

But S is not a geodesic cover of G, since (S) = S # V(G) and hence S is not a
connected geodesic cover of G. Hence gn.(G) > k — 2.

Note that neither SU {v;}, (1 < j <n—k) nor SU {us} is a geodesic cover of G.
Now, T'= S U {u;} is a geodesic cover of G but < T' > is disconnected. However,
T U{usa} is a connected geodesic cover of G of minimum cardinality. Therefore, the
connected geodesic number, gn.(G) = k. O

Proposition 3.25. For any positive integers a,b and ¢, 2 < a < b < ¢, there exists
a connected fuzzy graph G : (V,o, ) such that gn(G) = a and gn.(G) = b.

Proof. If 2 < a < b = ¢, then consider G : (V, 0, 1) to be any fuzzy tree on’ b’ nodes
with ’ @’ fuzzy end nodes such that G contains no d-arcs. Then by Proposition 2.21,
gn(G) = a and by Proposition 3.18, gn.(G) = b.

If 2 < a < b < ¢, then consider the following cases.

Case(1): Leta>2and b—a > 2. Thenb—a+2 > 4.

Construct a connected fuzzy graph G : (V, o, u) such that its geodesic number
gn(G) = a and its connected geodesic number gn.(G) = b as follows:
Let Pyp_qy2 @ (Vi,01,p1) be a path on b — a + 2 nodes say vq,va, ..., Up—qt+2 With
o1(v;) = 0.2, (1 < i < b—a+2) and p1(vi, vig1) = 01(vi)Ao1(Vi41), (1 < i < b—a+1).
Now, construct the fuzzy graph G : (V, o, 1) with
V =Vi U{w, wa, ..., We—pt1, U1, Us, ..., Ug—2} Where o(w;) = o(ur) = N{o1(v)},
(1 <1 < b—a+2,1 < _7 < C—b+1,1 < k < CL—2), g = 01 On Pb,aJrQ
and p(wj,v1) = o(w;) A or(v1), p(w;,vs) = o(w;) Aoi(vs), (1 < j <e—b+1),
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wlug,ve) = o(uk) ANor(v2),(1 <k <a-—2), u = pu; on Py_gio. The fuzzy graph
G : (V,o,p) is as shown in Fig.6.

0.(b-a+1)
e & O

Vb—as1(0.(b-a+1))

We—pt1(0.1) Fig.6.

Note that S = {u1,ug,...,uq—2,Vp—_qt+2} is the set of all extreme nodes of G. By
Proposition 3.10, every connected geodesic cover of G contains S.

It is clear that S is not a geodesic cover of G since

(S) = {ug,ug,...,uq—2,v2,03, ..., Vp—at2} # V(G), and hence not a connected ge-
odesic cover of G. But note that S U {v;} is a geodesic cover of G of minimum
cardinality and hence the geodesic number, gn(G) = a.

Here, S1 = {v2,v3, ..., 0p—q+1} is the set of all cut nodes of the underlying crisp
graph G*. Now let So = S U S;. Thus S5 contains all cut nodes of G* and also
all extreme nodes of G. Then it follows from Proposition 3.10 and Proposition 3.15
that every connected geodesic cover of G contains Sy. It is clear that Sy is not a
geodesic cover of G, since (S3) = S3 # V(G). But Sy U{v1} is a geodesic cover of G
of minimum cardinality and also note that S2 U {v;} is connected. So, SoU{v;} is a
connected geodesic basis of G so that gn.(G) = |SeU{v1}| =a—2+1+b—a+1=b.

Case(2): Let a > 2 and b—a = 1. Since ¢ > b, we have c —b+ 1 > 2.

Consider the fuzzy graph H = G — {v4, U5, ..., Vp—q+2} which is as shown in Fig.7.
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We—b+1 (0 1)
Fig.7.

Note that here, S3 = {u1,uz, ..., uq—2,v1,v3} is a geodesic basis of G and Sy =
S3 U {wa} is a connected geodesic basis of G. Hence gn(G) = |S3] = a and
gne(G) =S4 =a+1=0.

Case(3): Let a=2and b—a =1. Then b= 3.

Consider the fuzzy graph H = H — {u1,uz, ..., uq—2} which is as shown in Fig.8.

’LUC_(,_H(O.l)

Fig.8.
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Note that here S5 = {v1,v3} is a geodesic basis of G and Sg = {v1,v9,v3} is a
connected geodesic basis of G. Hence gn(G) = |S5| = 2 = a and gn.(G) = |Ss| =
3=0.

Case(4): Let a =2 and b —a > 2. Then b > 4.
Consider the fuzzy graph G' = G — {u1,usg, ..., uq—2} which is as shown in Fig.9.

We—p+1(0.1) Fig.9.

Here, S7 = {v1,vp} is a geodesic basis of G and Sg = {v1,v2,...,vp} is a connected
geodesic basis of G. Hence gn(G) = |S7| =2 = a and
gne(G) = |Ss| = b. O

4. CONCLUSIONS

In this paper, the concept of connected geodesic number of a fuzzy graph is

introduced and its limiting bounds are identified. It is proved that all extreme nodes
of a connected fuzzy graph G and all cut-nodes of its underlying crisp graph G*
belong to its connected geodesic cover. The connected geodesic number of complete
fuzzy graphs, fuzzy cycles, fuzzy trees and of complete bipartite fuzzy graphs are
obtained. For any pair k,n of integers with 3 < k < n, it is proved that there exists
a connected fuzzy graph G : (V, o0, ) on n nodes such that gn.(G) = k. Also, it is
proved that for any positive integers 2 < a < b < ¢, there exists a connected fuzzy
graph G : (V, o, 1) such that gn(G) = a and gn.(G) = b.
By introducing the concept of connected geodesic number in fuzzy graphs, one can
obtain the fuzzy analogue of the concepts of forcing connected geodetic number
and upper connected geodetic number that have already been established in graph
theory.
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