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1. Introduction

We have found several generalizations of ideals of a lattice to arbitrarily par-
tially ordered set (poset) in a literature which has been studied by different authors.
Closed ideals or normal ideals of a poset were introduced by Birkhoff [2], who gives
credit to Stone[15] for the case of Boolean algebras. Next, in 1954, the second type
of ideal of a poset called Frink ideal has been introduced by Frink [6]. Following this
Venkatanarasimhan developed the theory of semi-ideals and ideals for posets [17]
and [18], in 1970. These ideals are called ideals in the sense of Venkataranasimhan
or V-ideals for short. Next, the concept of ideals of a poset have been suggested by
Erné [4] in 1979 which are called m-ideal. This ideal generalize almost all ideals of
a poset suggested by different authors. Latter, Halaś [9] in 1994, introduced a new
ideal of a poset which seems to be a suitable generalization of the usual concept of
ideal in a lattice. We will simply call it ideal in the sense of Halaš.

On the other hand, the notion of fuzzy ideals of a lattice has been studied by
different authors in series of papers [1, 14, 16, 19].

In this paper we introduce several generalizations of fuzzy ideals of a lattice to
an arbitrary poset whose truth values are in a complete lattice satisfying the infinite
meet distributive law and give several characterizations of them. We also prove
that the set of all L-fuzzy ideals of a poset forms a complete lattice with respect
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to point-wise ordering. Throughout this work L stands for a non-trivial complete
lattice satisfying the infinite meet distributive law: a ∧ supS = sup{a ∧ s : s ∈ S},
for any a ∈ L and for any subset S of L.

2. Preliminaries

We briefly recall certain necessary concepts, terminologies and notations from
[2, 3, 8].

A binary relation ” ≤ ” on a set Q is called a partial order, if it is reflexive, anti-
symmetric and transitive. A pair (Q,≤) is called a partially ordered set or simply
a poset, if Q is a non-empty set and ≤ is a partial order on Q. When confusion is
unlikely, we use simply the symbol Q to denote a poset (Q,≤).

Let Q be a poset and A ⊆ Q. Then the set Au = {x ∈ Q : x ≥ a ∀a ∈ A} is called
the upper cone of A and the set Al = {x ∈ Q : x ≤ a ∀a ∈ A} of A is called the lower
cone of A. Aul shall mean {Au}l and Alu shall mean {Al}u. Let a, b ∈ Q. Then
the upper cone {a}u is simply denoted by au and the upper cone {a, b}u is denoted
by (a, b)u. Similar notations are used for lower cones. We note that A ⊆ Aul and
A ⊆ Alu and if A ⊆ B in Q, then Al ⊇ Bl and Au ⊇ Bu. Moreover, Alul = Al,
Aulu = Au , {au}l = al and {al}u = au.

An element x0 inQ is called the least upper bound ofA or supremum of A, denoted
by supA (receptively, the greatest lower bound of A or infimum of A, denoted by
infA), if x0 ∈ Au and x0 ≤ x, for each x ∈ Au (respectively, if x0 ∈ Al and x ≤ x0,
for each x ∈ Al).

An element x0 in Q is called the largest (respectively, the smallest) element, if
x ≤ x0 (respectively, x0 ≤ x), for all x ∈ Q. The largest (respectively, the smallest)
element, if it exists in Q, is denoted by 1 (respectively, by 0).

A poset (Q ≤) is called bounded, if it has 0 and 1. Note that if A = ∅, we have
Aul = (∅u)l = Ql which is either empty or consists of the least element 0 of Q alone,
if it exists.

Now we recall definitions of ideals of a poset that are introduced by different
scholars.

Definition 2.1. (i) [2] A subset I of a poset Q is called a closed or normal ideal of
Q, if Iul ⊆ I (or equivalently, Iul = I, since I ⊆ Iul).

(ii) [6] A subset I of a poset Q is called a Frink ideal in Q if Ful ⊆ I, whenever
F is a finite subset of I. ,

(iii) [17] A non-empty subset I of a poset Q is called a semi-ideal or an order ideal
of Q, if a ≤ b and b ∈ I implies a ∈ I.

(iv) [18] A subset I of a poset Q is called a V-ideal or an ideal in the sense of
Venkatannarasimhan, if I is a semi-ideal and for any non-empty subset A ⊆ I , if
supA exists, then supA ∈ I.

(v) [9] A subset I of a poset Q is called an ideal in Q in the sense of Halaš, if
(a, b)ul ⊆ I, whenever a, b ∈ I

Note that every ideal of a poset Q contains Ql. The following definition generalize
all the definitions of ideal given above.
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Definition 2.2 ([4]). Let Q be a poset and m denote any cardinal number. Then a
subset I of a poset Q is called an m-ideal in Q, if for any subset A of I of cardinality
strictly less than m, written as A ⊂m I, we have Aul ⊆ I.

Remark 2.3 ([5]). The following special cases are included in this general definition:

(1) 2-ideals are semi-ideals containing Ql.
(2) 3-ideals are ideals in the sense of Halaś containing Ql.
(3) ω-ideals are Frinkideals containing Ql where ω the least infinite cardinal

number.
(4) Ω-ideals are closed ideals, where the symbol Ω mean if I has cardinality κ

then Ω is a cardinal greater than κ.
(5) V-ideals are 2-ideals which are closed under finite supremum and containing

Ql.

Remark 2.4. The following remarks are due to Halaš and Rachunek [11].

(1) if Q is a lattice then a non-empty subset I of Q is an ideal as a poset if and
only if it is an ideal as a lattice.

(2) if a poset Q does not have the least element then the empty subset ∅ is an
ideal in Q (since ∅ul = (∅u)l = Ql = ∅).

Definition 2.5. Let A be any subset of a poset Q. Then the smallest ideal contain-
ing A is called an ideal generated by A and is denoted by (A]. The ideal generated
by a singleton set A = {a}, is called principal ideal and is denoted by (a].

Note that for any subset A of Q if supA exists then Aul = (supA].

The followings are some characterizations of ideals generated by a subset A of a
poset Q. We write F ⊂⊂ A to mean F is a finite subset of A.

(1) (A]C =
⋃
{Bul : B ⊆ A} is the closed ideal or normal ideal generated by A

where the union is taken overall subsets B of A.
(2) (A]F =

⋃
{Ful : F ⊂⊂ A} is the Frink ideal generated by A, where the

union is taken overall finite subsets F of A
(3) Define C1 =

⋃
{(a, b)ul : a, b ∈ A} and Cn =

⋃
{(a, b)ul : a, b ∈ Cn−1} for

each positive integer n ≥ 2, inductively. Then (A]H =
⋃
{Cn : n ∈ N} is

the ideal generated by A in the sense of Halaś, where N denotes the set of
positive integers.

(4) If a ∈ Q, then (a] = {x ∈ Q : x ≤ a} = al is the principal ideal generated
by a.

Lemma 2.6 ([10]). Let I(Q) be the set of all ideals of a poset Q in the sense of
Halaś and I, J ∈ I(Q). Then the supremum I ∨ J of I and J in I(Q) is:

I ∨ J =
⋃
{Cn : n ∈ N},

where C1 =
⋃
{(a, b)ul : a, b ∈ I ∪ J} and Cn =

⋃
{(a, b)ul : a, b ∈ Cn−1}, for each

positive integer n ≥ 2.

Definition 2.7 ([9]). An ideal I of a poset Q is called a u-ideal, if (x, y)u ∩ I 6= ∅,
for all x, y ∈ I.
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Note that an easy induction shows I is a u-ideal, if Fu ∩ I 6= ∅, for any finite
subset F of I.

Theorem 2.8 ([9]). Let I(Q) be the set of all ideals of Q in the sense of Halaś and
I, J be u-ideals of a poset Q. Then the supremum I ∨ J of I and J in I(Q) is:

I ∨ J =
⋃
{(a, b)ul : a ∈ I, b ∈ J}.

Definition 2.9 ([7]). Let X be a non-empty set. An L-fuzzy subset µ of X is a
mapping from X into L, where L is a complete lattice satisfying the infinite meet
distributive law.

Note that if L is a unit interval of real numbers, then µ is the usual fuzzy subset
of X originally introduced by Zadeh [20].

Definition 2.10 ([16]). Let µ be an L-fuzzy subset of X. Then for each α ∈ L, the
set µα = {x : µ(x) ≥ α} is called the level subset of µ at α.

Lemma 2.11 ([12]). Let µ be an L- fuzzy subset of a poset Q. Then µ(x) = sup{α ∈
L : x ∈ µα}, for all x ∈ Q.

Definition 2.12 ([7]). Let L be a complete lattice satisfying the infinite meet dis-
tributivity and X be a non-empty set. For any L-fuzzy subsets µ and σ, define
µ ⊆ σ if and only µ(x) ≤ σ(x), for all x ∈ X.

It can be easily verified that ⊆ is a partial order on the set LX of L- fuzzy subsets
of X and is called the point wise ordering.

Definition 2.13 ([13]). Let µ and σ be an L-fuzzy subsets a non-empty set X. The
union of fuzzy subsets µ and σ of X, denoted by µ∪σ, is a fuzzy subset of X defined
by: for all x ∈ X,

(µ ∪ σ)(x) = µ(x) ∨ σ(x)

and the intersection of fuzzy subsets µ and σ of X, denoted by µ ∩ σ, is a fuzzy
subset of X defined by: for all x ∈ X,

(µ ∩ σ)(x) = µ(x) ∧ σ(x).

More generally, the union and intersection of any family {µi}i∈∆ of L-fuzzy sub-
sets of X, denoted by

⋃
i∈∆ µi and

⋂
i∈∆ µi respectively, are defined by:

(
⋃
i∈∆

µi)(x) = sup
i∈∆

µi(x) and (
⋂
i∈∆

µi)(x) = inf
i∈∆

µi(x),

for all x ∈ X, respectively.

Definition 2.14 ([16]). An L-fuzzy subset µ of a lattice X with 0 is said to be an
L -fuzzy ideal of X, if µ(0) = 1 and µ(a ∨ b) = µ(a) ∧ µ(b), for all a, b ∈ X.

Definition 2.15. Let µ be an L- fuzzy subset of a lattice X. The smallest fuzzy
ideal of X containing µ is called a fuzzy ideal generated by µ and is denoted by (µ].

Lemma 2.16. Let FI(Q) be the set of all L-fuzzy ideals of a lattice X and µ be an
L fuzzy subset of X. Then (µ] =

⋂
{θ ∈ FI(Q) : µ ⊆ θ}.
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3. L-fuzzy ideals of a poset

In this section, we introduce several notions of L-fuzzy ideals of a poset and give
several characterizations of them. Throughout this paper Q stands for a poset (Q ≤)
with 0 unless otherwise stated.

We shall begin with the following definition.

Definition 3.1. An L- fuzzy subset µ of Q is called an L- fuzzy closed ideal, if it
satisfies the following conditions:

(i) µ(0) = 1,
(ii) for any subset A of Q, µ(x) ≥ inf{µ(a) : a ∈ A} ∀x ∈ Aul.

Lemma 3.2. A subset I of Q is a closed ideal of Q if and only if its characteristic
map χI is a closed L-fuzzy ideal of Q.

Proof. Suppose I is a closed ideal of Q. Since 0 ∈ Iul ⊆ I, we have χI(0) = 1. Let
A be any subset of Q and x ∈ Aul.

If A ⊆ I, then we have x ∈ Aul ⊆ Iul ⊆ I. Thus χI(x) = 1 = inf{χI(a) : a ∈ A}.
If A * I, then there is b ∈ A such that b /∈ I. Thus χI(b) = 0. This implies

inf{χI(a) : a ∈ A} = 0. So χI(x) ≥ 0 = inf{χI(a) : a ∈ A}, for all x in Aul. Hence
for any A ⊆ Q, we have χI(x) ≥ inf{χI(a) : a ∈ A}, for all x ∈ Aul. Therefore χI is
a fuzzy closed ideal of Q.

Conversely, suppose χI is a fuzzy closed ideal. Since χI(0) = 1, we have 0 ∈ I, i.e.,
{0} = Ql ⊆ I. Let x ∈ Iul. Then by hypotheses, χI(x) ≥ inf{χI(a) : a ∈ I} = 1.
This implies χI(x) = 1. Thus x ∈ I. So Iul ⊆ I. Hence I is a closed ideal. This
proves the result. �

The following result Characterize the L- fuzzy closed ideal of Q in terms of its
level subsets.

Lemma 3.3. An L- fuzzy subset µ of Q is an L- fuzzy closed ideal of Q if and only
if µα is a closed ideal of Q, for all α ∈ L.

Proof. Let µ be an L- fuzzy closed ideal of Q and α ∈ L. Then µ(0) = 1 ≥ α. Thus
0 ∈ µα, i.e., {0} = Ql ⊆ µα. Again let x ∈ (µα)ul. Then µ(x) ≥ inf{µ(a) : a ∈
µα} ≥ α. Then x ∈ µα Thus (µα)ul ⊆ µα. So µα is a closed ideal.

Conversely, suppose that µα is a closed ideal of Q, for all α ∈ L. In particular,
µ1 is a closed ideal. Since {0} = Ql ⊆ (µ1)ul ⊆ µ1, we have 0 ∈ µ1. Then µ(0) = 1.
Again let A be any subset of Q. Put α = inf{µ(a) : a ∈ A}. Then µ(a) ≥ α,
∀a ∈ A. Thus A ⊆ µα. This implies Aul ⊆ µulα ⊆ µα. Since x ∈ Aul, x ∈ µα. So
µ(x) ≥ α = inf{µ(a) : a ∈ A}. Hence µ is an L-fuzzy closed ideal of Q. This proves
the result. �

Corollary 3.4. Let µ be a fuzzy closed ideal of a poset Q. Then µ is anti-tone in
the sense that µ(x) ≥ µ(y), whenever x ≤ y.

Proof. Let x, y ∈ Q such that x ≤ y. Put µ(y) = α . Since µ a fuzzy closed ideal,
we have µα is a closed ideal of Q, i.e., (µα)ul ⊆ µα. Since µ(y) = α, y ∈ µα. Then
yl = {y}ul ⊆ (µα)ul ⊆ µα. Thus x ≤ y ⇒ x ∈ yl ⇒ x ∈ µα. So µ(x) ≥ α = µ(y).
This proves the result. �
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Lemma 3.5. The intersection of any family of fuzzy closed ideals is a fuzzy closed
ideal.

Theorem 3.6. Let (A]C be a closed ideal generated subset A of Q and χA be its
characteristics functions. Then (χA] = χ(A]C .

Proof. Since (A]C is a closed ideal of Q containing A, by Lemma 3.2, we have χ(A]C

is a fuzzy closed ideal. Since A ⊆ (A], we have χA ⊆ χ(A]C . We remain to show
that it is the smallest fuzzy closed ideal containing χA. Let µ be any L-fuzzy closed
ideal such that χA ⊆ µ. Then µ(a) = 1, for all a ∈ A. Now we claim χ(A] ⊆ µ. Let

x ∈ Q. If x /∈ (A], then χ(A](x) = 0 ≤ µ(x). If x ∈ (A]C , then x ∈ Bul, for some
subset B of A. Thus µ(x) ≥ inf{µ(b) : b ∈ B} = 1 = χ(A]C (x). So χ(A]C (x) ≤ µ(x),
for all x ∈ Q. Hence the claim holds. This completes the proof. �

In the following theorem we characterize the fuzzy closed ideal generated by a
fuzzy subset of Q in terms of its level ideals.

Theorem 3.7. Let µ be an L-fuzzy subset of Q. Then the L-fuzzy subset µ̂ of Q
defined by µ̂(x) = sup{α ∈ L : x ∈ (µα]C}, for all x ∈ Q is a fuzzy closed ideal of Q
generated by µ.

Proof. We show µ̂ is the smallest fuzzy closed ideal containing µ. Let x ∈ Q and
put µ(x) = β. Then x ∈ µβ ⊆ (µβ ]C . Thus β ∈ {α ∈ L : x ∈ (µα]C}. So

µ(x) = β ≤ sup{α ∈ L : x ∈ (µα]C} = µ̂(x).

Hence µ ⊆ µ̂.
Again since 0 ∈ Ql ⊆ (µα]C , for all α ∈ L, we have µ̂(0) = 1. Let A be any subset

of Q and x ∈ Aul. On the other hand,
inf{µ̂(a) : a ∈ A} = inf{sup{αa : a ∈ (µαa ]C} : a ∈ A}

= sup{inf{αa : a ∈ A} : a ∈ (µαa
]C}.

Put λ = inf{αa : a ∈ A}. Then λ ≤ αa, for all a ∈ A. Thus (µαa
]C ⊆ (µλ]C , ∀a ∈ A.

So A ⊆ (µλ]C and thus x ∈ Aul ⊆ ((µλ]C)ul ⊆ (µλ]C . Hence

inf{µ̂(a) : a ∈ A} = sup{inf{αa : a ∈ A} : a ∈ (µαa ]C}
≤ sup{λ ∈ L : x ∈ (µλ]C}
= µ̂(x).

Therefore µ̂ is a Fuzzy closed ideal.
Again let θ be any fuzzy closed ideal of Q such that µ ⊆ θ. Then µα ⊆ θα. Thus

(µα]C ⊆ (θα]C = θα. So for any x ∈ Q, µ̂(x) = sup{α ∈ L : x ∈ (µα]C} ≤ sup{α ∈
L : x ∈ θα} = θ(x). Hence µ̂ ⊆ θ. This proves that µ̂ is the smallest fuzzy closed
ideal containing µ. Therefore µ̂ = (µ]. �

In the following we give an algebraic characterization of L-fuzzy Closed ideal
generated by a fuzzy subset of Q.

Theorem 3.8. Let µ be a fuzzy subset of Q. Then the fuzzy subset µ̄ defined by

µ(x) =

{
1 ifx = 0

sup{infa∈A µ(a) : A ⊆ Q and x ∈ Aul} ifx 6= 0

is a fuzzy closed ideal of Q generated by µ.
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Proof. It is enough to show that µ = µ̂, where µ̂ is a fuzzy subset defined in the
above theorem. Let x ∈ Q. If x = 0, then µ̄(x) = 1 = µ̂(x). Let x 6= 0. Put

Ax = { inf
a∈A

µ(a) : A ⊆ Q and x ∈ Aul} and Bx = {α : x ∈ (µα]C}.

Now we show supAx = supBx. Let α ∈ Ax. Then α = infa∈A µ(a), for some
subset A of Q such that x ∈ Aul. This implies that α ≤ µ(a), for all a ∈ A. Thus
A ⊆ µα ⊆ (µα]C . Since (µα]C is a closed ideal, we have Aul ⊆ ((µα]C)ul ⊆ (µα]C .
So x ∈ (µα], i.e., α ∈ Bx. Hence Ax ⊆ Bx. Therefore supAx ≤ supBx.

Again let α ∈ Bx. Then x ∈ (µα]C . Since (µα]C =
⋃
{Aul : A ⊆ µα}, we

have x ∈ Aul, for some subset A of µα. This implies µ(a) ≥ α, for all a ∈ A.
Thus inf{µ(a) : a ∈ A} ≥ α. Put β = inf{µ(a) : a ∈ A}. Then β ∈ Ax. Thus
for each α ∈ Bx, we get β ∈ Ax such that α ≤ β. So supAx ≥ supBx. Hence
supAx = supBx and thus µ = µ̂. Therefore µ = (µ]. �

The above result yields the following.

Theorem 3.9. The set FCI(Q) of all L-fuzzy closed ideals of Q forms a complete
lattice, in which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family
{µi : i ∈ ∆} of L-fuzzy closed ideals of Q respectively are given by:

(supi∈∆µi)(x)

= (
⋃
i∈∆

µi)(x) =

{
1 ifx = 0

sup{infa∈A(
⋃
i∈∆ µi)(a) : A ⊆ Q and x ∈ Aul} ifx 6= 0

and (infi∈∆ µi)(x) = (
⋂
i∈∆ µi)(x), for all x ∈ Q.

Corollary 3.10. For any µ and θ in FCI(Q), the supremum µ∨θ and the infimum
µ ∧ θ of µ and θ ,respectively are:

(µ ∨ θ)(x)

= (µ ∪ θ)(x) =

{
1 ifx = 0

sup{infa∈A(µ ∪ θ)(a) : A ⊆ Q and x ∈ Aul} ifx 6= 0

and (µ ∧ θ)(x) = (µ ∩ θ)(x), for all x ∈ Q.

Now we introduce the fuzzy version of the ideals of a poset introduced by Frink
[6].

Definition 3.11. An L- fuzzy subset µ of Q is called an L- fuzzy Firink ideal, if it
satisfies the following conditions:

(i) µ(0) = 1,
(ii) for any finite subset F of Q, µ(x) ≥ inf{µ(a) : a ∈ F} ∀x ∈ Ful.

Lemma 3.12. An L- fuzzy subset µ of Q is an L- fuzzy Frink ideal of Q if and only
if µα is a Frink ideal of Q, for all α ∈ L.

Corollary 3.13. A subset I of Q is a Frink ideal of Q if and only if its characteristic
map χI is an L-fuzzy Frink ideal of Q.

Lemma 3.14. The intersection of any family of fuzzy Frink-ideals is a Fuzzy frink-
ideal.
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Theorem 3.15. Let (A]F be a Frink-ideal generated subset A of Q and χA be its
characteristics functions. Then (χA] = χ(A]F .

In the following theorems we give characterizations of fuzzy Frink ideals generated
by a fuzzy subset of Q.

Theorem 3.16. For any fuzzy subset µ of Q, define a fuzzy subset µ̂ of Q by
µ̂(x) = sup{α ∈ L : x ∈ (µα]F }, for all x ∈ Q. Then µ̂ is a Frink fuzzy ideal of Q
generated by µ.

In the following we give an algebraic characterization of fuzzy ideals generated by
fuzzy sets. We write F ⊂⊂ Q to mean that F a finite subset of Q.

Theorem 3.17. Let µ be a fuzzy subset of Q. Then the fuzzy subset µ̄ defined by:

µ(x) =

{
1 ifx = 0

sup{infa∈F µ(a) : F ⊂⊂ Q and x ∈ Ful} ifx 6= 0

is a Frink fuzzy ideal of Q generated by µ.

The above result yields the following.

Theorem 3.18. The set FFI(Q) of all L-fuzzy Frink ideal of Q forms a complete
lattice, in which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family
{µi : i ∈ ∆} of L-fuzzy Frink ideals of Q are given by:

sup
i∈∆

µi =
⋃
i∈∆

µi and inf
i∈∆

µi =
⋂
i∈∆

µi.

Corollary 3.19. For any µ and θ in FFI(Q), the supremum µ∨θ and the infimum
µ ∧ θ of µ and θ, respectively are:

µ ∨ θ = µ ∪ θ and µ ∧ θ = µ ∩ θ.

Now we introduce the fuzzy version of semi-ideals and V-ideals of a poset intro-
duced by Venkatanarasimhan [17, 18].

Definition 3.20. An L- fuzzy subset µ of Q is called an L- fuzzy semi-ideal or
L-fuzzy order ideal, if µ(x) ≥ µ(y), whenever x ≤ y in Q.

Definition 3.21. An L- fuzzy subset µ of Q is called an L- fuzzy V -ideal, if it
satisfies the following conditions:

(i) µ(0) = 1,
(ii) for any x, y ∈ Q, µ(x) ≥ µ(y), whenever x ≤ y,
(iii) for any non-empty finite subset F of Q, if supF exists, then

µ(supF ) ≥ inf{µ(a) : a ∈ F}.

Theorem 3.22. Every L-fuzzy Frink ideal is an L-fuzzy V -ideal.

Proof. Let µ is an L-fuzzy Frink ideal and let x, y ∈ Q such that x ≤ y. Put µ(y) = α.
Since µ an L-fuzzy Frink ideal, we have µα is a Frink ideal of Q. Since µ(y) = α,
y ∈ µα. Then {y} ⊆ µα. Thus {y}ul ⊆ µα. Since x ≤ y, x ∈ yl = yul ⊆ µα. So
µ(x) ≥ α = µ(y).
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Again let F be any nonempty subset of Q such that supF exists in Q. Then
Ful = (supA]. Thus supF ∈ Ful and µ(supF ) ≥ inf{µ(a) : a ∈ F}. So µ is an
L-fuzzy V -ideal. �

Now we introduce the fuzzy version ideals of a poset introduced by Halaš [9]
which seems to be a suitable generalization of the usual concept of L-fuzzy ideal of
a lattice.

Definition 3.23. An L- fuzzy subset µ of Q is called an L- fuzzy ideal in the sense
of Halaś, if it satisfies the following conditions:

(i) µ(0) = 1,
(ii) for any a, b ∈ Q , µ(x) ≥ µ(a) ∧ µ(b), for all x ∈ (a, b)ul.

In the rest of this paper, an L- fuzzy ideal of a poset will mean an L-fuzzy ideal
in the sense of Halaś given in the above definition.

Lemma 3.24. An L- fuzzy subset µ of Q is an L- fuzzy ideal of Q if and only if µα
is an ideal of Q in the sense of Halaś, for all α ∈ L.

Corollary 3.25. A subset I of Q is an ideal of Q in the sense of Halaś if and only
if its characteristic map χI is an L-fuzzy ideal of Q.

Lemma 3.26. If µ is an L- fuzzy ideal of Q, then the following assertions hold:

(1) for any x, y ∈ Q, µ(x) ≥ µ(y), whenever x ≤ y,
(2) for any x, y ∈ Q, µ(x ∨ y) ≥ µ(x) ∧ µ(y), whenever x ∨ y exists.

Theorem 3.27. Let (Q,≤) be a lattice. Then an L-fuzzy subset µ of Q is an L-
fuzzy ideal in the poset Q if and only it an L-fuzzy ideal in the lattice Q.

Proof. Let µ be an L-fuzzy ideal in the poset Q and a, b ∈ Q. Then µ(0) = 1. Since
a ∨ b ∈ (a ∨ b] = (a, b)ul, we have µ(a ∨ b) ≥ µ(a) ∧ µ(b). Since µ is anti-tone,
we have µ(a) ≥ µ(a ∨ b) and µ(b) ≥ µ(a ∨ b). Thus µ(a) ∧ µ(b) ≥ µ(a ∨ b). So
µ(a ∨ b) = µ(a) ∧ µ(b). Hence µ is an L-fuzzy ideal in the lattice Q.

Conversely, suppose µ is an L-fuzzy ideal in the lattice Q. Let a, b ∈ Q and
x ∈ (a, b)ul. Then x ≤ y, for all y ∈ (a, b)u. Since a ∨ b ∈ (a, b)u, we have x ≤ a ∨ b.
Thus µ(x) ≥ µ(a ∨ b) = µ(a) ∧ µ(b). So µ is an L-fuzzy ideal in the poset Q. This
completes the proof. �

Lemma 3.28. The intersection of any family of L-fuzzy ideals is an L- fuzzy deal.

Theorem 3.29. Let (A]H be an ideal generated subset A of Q in the sense of Halaś
and χA be its characteristics functions. Then (χA] = χ(A]H .

Definition 3.30. Let µ be a fuzzy subset of Q and N be a set of positive integers.
Define a fuzzy subset Cµ1 of Q by Cµ1 (x) = sup{µ(a) ∧ µ(b) : x ∈ (a, b)ul}, ∀ x ∈ Q.
Inductively, let Cµn+1(x) = sup{Cµn(a) ∧ Cµn(b) : x ∈ (a, b)ul}, for each n ∈ N .

Now we give a characterization of an L-fuzzy ideal generated by a fuzzy subset
of a poset Q.

Theorem 3.31. The set {Cµn : n ∈ N} form a chain and the fuzzy subset µ̂ defined
by: for all x ∈ Q,

µ̂(x) = sup{Cµn(x) : n ∈ N}
is a fuzzy ideal generated by µ.
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Proof. Let x ∈ Q and n ∈ N . Then

Cµn+1(x) = sup{Cµn(a) ∧ Cµn(b) : x ∈ (a, b)ul}
≥ Cµn(x) ∧ Cµn(x) (since x ∈ xl = (x, x)ul)

= Cµn(x), ∀ x ∈ Q.

Thus Cµn ⊆ C
µ
n+1, for each n ∈ N . So {Cµn : n ∈ N} is a chain.

Now we show µ̂ is the smallest fuzzy ideal containing µ. Since

µ̂(x) = sup{Cµn(x) : n ∈ N}
≥ Cµ1 (x)

= sup{µ(a) ∧ µ(b) : x ∈ (a, b)ul}
≥ µ(x) ∧ µ(x) (since x ∈ (x, x)ul)

= µ(x), ∀ x ∈ Q,

we have µ ⊆ µ̂. Let a, b ∈ L and x ∈ (a, b)ul. Then

µ̂(x) = sup{Cµn(x) : n ∈ N}
≥ Cµn(x) for all n ∈ N
= sup{Cµn−1(y) ∧ Cµn−1(z) : x ∈ (y, z)ul} for all n ≥ 2.

≥ Cµn−1(a) ∧ Cµn−1(b) ∀n ≥ 2 (since x ∈ (a, b)ul)

= Cµm(a) ∧ Cµm(b), ∀ m ∈ N .

Thus

µ̂(x) ≥ sup{Cµm(a) ∧ Cµm(b) : m ∈ N}
= sup{Cµm(a) : m ∈ N} ∧ sup{Cµm(b) : m ∈ N}
= µ̂(a) ∧ µ̂(b).

So µ̂ is a fuzzy ideal.
Again let θ be any fuzzy ideal of Q such that µ ⊆ θ. Now let a, b ∈ Q and

x ∈ (a, b)ul. Then θ(x) ≥ θ(a) ∧ θ(b) ≥ µ(a) ∧ µ(b). This implies

θ(x) ≥ sup{µ(a) ∧ µ(b) : x ∈ (a, b)ul} = Cµ1 (x), ∀x ∈ (a, b)ul.

Again for any x ∈ (a, b)ul, we have θ(x) ≥ θ(a)∧ θ(b) ≥ Cµ1 (a)∧Cµ1 (b). This implies

θ(x) ≥ sup{Cµ1 (a) ∧ Cµ1 (b) : x ∈ (a, b)ul} = Cµ2 (x).

Thus by induction, we have θ(x) ≥ Cµn(x) ∀n ∈ N and ∀ x ∈ (a, b)ul. So for any
x ∈ Q,

µ̂(x) = sup{Cµn(x) : n ∈ N}
= sup{Cµn(a) ∧ Cµn(b) : x ∈ (a, b)ul}
≤ sup{θ(a) ∧ θ(b) : x ∈ (a, b)ul} (since, a, b ∈ (a, b)ul.)

≤ θ(x).

Hence µ̂ ⊆ θ. This completes the proof. �

The above result yields the following.
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Theorem 3.32. The set FI(Q) of all L-fuzzy ideal of Q forms a complete lattice, in
which the supremum supi∈∆µi and the inifimum infi∈∆ µi of any family {µi : i ∈ ∆}
in FI(Q) respectively are: for all x ∈ Q,

(supi∈∆µi)(x) = sup{C
⋃

i∈∆ µi

n (x) : n ∈ N} and ( inf
i∈∆

µi)(x) = (
⋂
i∈∆

µi)(x).

Corollary 3.33. For any µ and θ ∈ FI(Q) the supremum µ ∨ θ and the infimum
µ ∧ θ of µ and θ respectively are: for all x ∈ Q,

(µ ∨ θ)(x) = sup{Cµ∪θn (x) : n ∈ N} and (µ ∧ θ)(x) = (µ ∩ θ)(x).

Theorem 3.34. The following implications hold, where none of them is an equiva-
lence:

(1) L- fuzzy closed ideal =⇒ L-fuzzy Frink ideal =⇒ L-fuzzy V -ideal =⇒ L-fuzzy
semi-ideal,

(2) L- fuzzy closed ideal =⇒ L-fuzzy Frink ideal =⇒ L-fuzzy ideal =⇒ L- fuzzy
semi-ideal.

The following examples show that the converse of the above implications do not
hold in general.

Example 3.35. Consider the Poset ([0, 1],≤) with the usual ordering. Define a
fuzzy subset µ : [0, 1] −→ [0, 1] by:

µ(x) =

{
1 ifx ∈ [0, 1

2 )

0 ifx ∈ [ 1
2 , 1].

Then µ is L-fuzzy Frink ideal but not L- fuzzy closed ideal.

Example 3.36. Consider the poset (Q,≤) depicted in the figure below. Define a
fuzzy subset µ : Q −→ [0, 1] by: µ(0) = µ(a) = 1, µ(a′) = µ(b′) = µ(c′) = µ(d′) =
µ(1) = 0.2, µ(b) = 0.6, µ(c) = 0.5 and µ(d) = 0.7.

Figure 1

Then µ is L-fuzzy ideal but not L-fuzzy Frink-ideal.

Example 3.37. Consider the poset (Q,≤) depicted in the figure below. Define a
fuzzy subset µ : Q −→ [0, 1] by: µ(0) = 1, µ(a) = µ(b) = 0.8 and µ(c) = 0.6.
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Figure 2

Then µ is L-fuzzy V-ideal but not L-fuzzy Frink-ideal.

Example 3.38. Consider the poset (Q,≤) depicted in the figure below. Define
a fuzzy subset µ : Q −→ [0, 1] by: µ(0) = µ(a) = 1, µ(b) = 0.8, µ(c) = 0.9,
µ(d) = µ(e) = 0.2 and µ(1) = 0.

Figure 3

Then µ is L-fuzzy semi-ideal but not L-fuzzy ideal.

Theorem 3.39. Let x ∈ Q and α ∈ L. Define an L- fuzzy subset αx of Q by

αx(y) =

{
1 if y ∈ (x]

α if y /∈ (x],

for all y ∈ Q. Then αx is an L-fuzzy ideal of Q.

Proof. By the definition of αx, we clearly have αx(0) = 1. Let a, b ∈ Q and y ∈
(a, b)ul.

If a, b ∈ (x], then (a, b)ul ⊆ (x] and αx(a) = αx(b) = 1. Thus αx(y) = 1 = 1∧ 1 =
αx(a) ∧ αx(b).

If a /∈ (x] or b /∈ (x], then αx(a) = α or αx(b) = α. Thus

αx(y) ≥ α = αx(a) ∧ αx(b).

So in either cases, we have αx(y) ≥ αx(a) ∧ αx(b), for all y ∈ (a, b)ul. Hence αx is
an L-fuzzy ideal. �

Definition 3.40. The L-fuzzy ideal αx defined above is called the α-level principal
fuzzy ideal corresponding to x.

Definition 3.41. An L-fuzzy ideal µ of a poset Q is called a u-L-fuzzy ideal, if for
any a, b ∈ Q, there exists x ∈ (a, b)u such that µ(x) = µ(a) ∧ µ(b).
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Note that this property is immediately extends from {a, b} to any finite subset
of Q. That is, if µ is a u-L-fuzzy ideal then there exists x ∈ Fu such that µ(x) =
µ(a) ∧ µ(b).

Lemma 3.42. An L- fuzzy ideal µ of Q is a u-L-fuzzy ideal of Q if and only if µα
is a u-ideal of Q, for all α ∈ L.

Proof. Suppose µ is a u-L-fuzzy ideal and α ∈ L. Since µ is an L- fuzzy ideal, µα is
an ideal of Q. Let a, b ∈ µα. Then µ(a) ≥ α and µ(b) ≥ α. Thus µ(a) ∧ µ(b) ≥ α.
Since µ is a u- L- fuzzy ideal, there exists x ∈ (a, b)u such that µ(x) = µ(a) ∧ µ(b).
So µ(x) ≥ α. Hence x ∈ µα ∩ (a, b)u and thus µα ∩ (a, b)u 6= ∅. Therefore µα is a u-
L- fuzzy ideal of a poset Q.

Conversely, suppose µα is a u- ideal of a poset Q, for all α ∈ L. Then µ is an
L- fuzzy ideal. Let a, b ∈ Q and put α = µ(a) ∧ µ(b). Then µα ∩ (a, b)u 6= ∅. Let
x ∈ µα ∩ (a, b)u. Then x ∈ µα and x ∈ (a, b)u. This implies µ(x) ≥ α = µ(a) ∧ µ(b)
and a ≤ x, b ≤ x. Since µ is anti-tone, we have µ(a) ≥ µ(x) and µ(b) ≥ µ(x). Thus
µ(a) ∧ µ(b) ≥ µ(x). So there exists x ∈ (a, b)u such that µ(x) = µ(a) ∧ µ(b). Hence
µ is a u-L-fuzzy ideal. �

Corollary 3.43. Let (Q,≤) be a poset with 1 and let x ∈ Q and α ∈ L. Then the
α-level principal fuzzy ideal corresponding to x is a u-L-fuzzy ideal.

Remark 3.44. Every L-fuzzy ideal is not a u-L-fuzzy ideal. For example consider
the poset (Q ≤ ) depicted in the figure below and define a fuzzy subset µ : Q −→ [0, 1]
and of Q by µ(0) = 1, µ(a) = µ(b) = 0.9, µ(c) = µ(d) = µ(1) = 0.7. Then µ is an
L-fuzzy ideal but not a u- L-fuzzy ideal.

Figure 4

Theorem 3.45. Every u- L-fuzzy ideal is an L- fuzzy Frink ideal.

Proof. suppose µ is a u- L-fuzzy ideal. Let F be a finite subset of Q . Then there
is y ∈ Fu such that µ(y) = inf{µ(a) : a ∈ F}. Let x ∈ Ful. Then x ≤ s, ∀s ∈ Fu.
Since y ∈ Fu, x ≤ y. Thus µ(x) ≥ µ(y) = inf{µ(a) : a ∈ F}. So

µ(x) ≥ inf{µ(a) : a ∈ F}.

Hence µ is an L-fuzzy Frink ideal. �
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Theorem 3.46. Let µ and θ be u- L-fuzzy ideals of Q. Then the supremum µ ∨ θ
of µ and θ in FI(Q) is given by: for all x ∈ Q,

(µ ∨ θ)(x) = sup{µ(a) ∧ θ(b) : x ∈ (a, b)ul}.
Proof. Let σ be an L-fuzzy subset of Q defined by: for each x ∈ Q,

σ(x) = sup{µ(a) ∧ θ(b) : x ∈ (a, b)ul}.
We claim σ is the smallest L-fuzzy ideal of Q containing µ ∪ θ. Let x ∈ Q. Then

σ(x) = sup{µ(a) ∧ θ(b) : x ∈ (a, b)ul}
≥ µ(x) ∧ θ(0), (since x ∈ (x, 0)ul)

= µ(x) ∧ 1 = µ(x).

Thus σ ⊇ µ. Similarly, we can show σ ⊇ θ. So σ ⊇ µ ∪ θ.
Let a, b ∈ Q and x ∈ (a, b)ul. Then

σ(a) ∧ σ(b) = sup{µ(c) ∧ θ(d) : a ∈ (c, d)ul} ∧ sup{µ(e) ∧ θ(f) : b ∈ (e, f)ul}
= sup{µ(c) ∧ θ(d) ∧ µ(e) ∧ θ(f) : a ∈ (c, d)ul, b ∈ (e, f)ul}
≤ sup{µ(c) ∧ θ(d) ∧ µ(e) ∧ θ(f) : a, b ∈ (c, d, e, f)ul}
= sup{µ(c) ∧ µ(e) ∧ θ(d) ∧ θ(f) : a, b ∈ (c, d, e, f)ul}.

Since µ and θ are u-L-fuzzy ideals, for each c, e and d, f, there are r ∈ (c, e)u and
s ∈ (d, f)u such that µ(r) = µ(c) ∧ µ(e) and θ(s) = θ(d) ∧ θ(f). Since r ∈ (c, e)u

and s ∈ (d, f)u, {c, d, e, f}ul ⊆ {s, r}ul. Thus a, b ∈ {s, r}ul. So (a, b)ul ⊆ {s, r}ul
and thus x ∈ {s, r}ul. Hence for all x ∈ (a, b)ul,

σ(a) ∧ σ(b) ≤ sup{µ(r) ∧ θ(s) : x ∈ (r, s)ul} ≤ σ(x).

Therefore σ is an L-fuzzy ideal.
Let φ be any L-fuzzy ideal of Q such that µ ∪ θ ⊆ φ. Then for any x ∈ Q, we

have

σ(x) = sup{µ(a) ∧ θ(b) : x ∈ (a, b)ul}
≤ sup{φ(a) ∧ φ(b) : x ∈ (a, b)ul}
≤ φ(x).

Thus σ ⊆ φ. So σ = (µ ∪ θ] = µ ∨ θ. Hence σ is the supremum of µ and θ in
FI(Q). �

Now we complete this paper by introducing the following definition which gener-
alize all the L-fuzzy ideals of a poset introduced above.

Definition 3.47. An L- fuzzy subset µ of Q is an L- fuzzy m-ideal, if it satisfies
the following conditions:

(i) µ(0) = 1,
(ii) for any subset A of Q of cardinality strictly less than m, we have µ(x) ≥

inf{µ(a) : a ∈ A}, ∀x ∈ Aul, where m is any cardinal.

Remark 3.48. Note that the L- fuzzy Ω-ideals are nothing but the L-fuzzy closed
ideal, the L- fuzzy ω-ideals are nothing but the L-Fuzzy Frink-ideals, the L- fuzzy
3-ideals are nothing but the L- fuzzy ideals and the L-fuzzy 2-ideals are nothing but
the L-fuzzy semi-ideals.
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