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Abstract. In the decision-making process, consistency is a crucial is-
sue which causes wide public concern of exports. The lack of consistency
in preference relations results in an inconsistent solution. In this paper,
we propose a characterization of the consistency property using newly de-
fined transitivity property for intuitionistic fuzzy multiplicative preference
relations (IFMPR) together with complementing missing elements for in-
complete IFMPR. In 2015 Jiang et al. worked on incomplete intuitionistic
fuzzy multiplicative preference relations (incomplete IFMPRs) in which
the IFMPRs split into two multiplicative preference relation (MPRs), and
the missing elements were calculated by using the consistency of MPRs.
Using new transitivity property of IFMPR, and we have developed two dif-
ferent methods to find the missing element of IFMPRs. The first method is
two-step procedure method containing estimating step followed by adjust-
ing step. In estimating step, the missing elements of incomplete IFMPRs
are calculated by using a new transitive property instead of splitting IFM-
PRs into two multiplicative preference relations(MPRs). Sometimes the
initial value may not satisfy the conditions of IFMPRs. An optimization
model is developed in the second step to adjust the initial values that are
solved by MATLAB optimization tool. The second proposed method is
goal programming model based on new transitivity property to calculate
the missing elements directly. Acceptably Consistent with complete IFM-
PRs is also checked. Two numerical examples are carried out to illustrate
the above-said methods.
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1. Introduction

D ecision making is one of the most important tasks for individuals and organi-
zations and is an interdisciplinary research area attracting researchers from almost
all fields from psychologists, economists, to computer scientists. Among all the fields
from psychologists, economists, to computer scientists, the fuzzy decision is an im-
portant branch of fuzzy theory. Liu and Liao [11] gave a bibliometric analysis of
fuzzy decision-related research to find out some underlying patterns and dynamics
in the direction of the fuzzy decision. Yu and Liao [28] make a scientometric review
on IFS studies to reveal the most cited papers based on the 1318 references retrieved
from SCIE and SSCI databases via Web of science. Liao, Zhang, and Luo [10] present
some new distance measures between intuitionistic fuzzy multiplicative sets, which
incorporate the projection-based distance measure and the psychological distance
measures. In 1980 Saaty[16] introduced the Analytic hierarchy process, is the most
important working Multi-criteria decision making (MCDM) method. Mathemati-
cally to describe the decision making problem, different type of preference relation
have been proposed (see [13, 15, 16, 20, 21, 22, 23]). In different decision-making
problems, there are different types of preference relations indicate different forms of
preference information in matrices and exert their power. The preference relations
are classified into two forms: fuzzy preference relations (FPR) and multiplicative
preference relations (MPRs). In FPRs, [13] the decision maker express the infor-
mation by using 0-1 ratio scale whereas the MPR [15] the intensity of the pairwise
comparison of objects by using 1/9−9 ratio scale (also called 1-9 ratio scale). Due to
the time pressure and lack of information or knowledge, sometimes it is complicated
for the decision makers to provide their preferences. To express their preference
information, interval-valued preference relations [17, 23] allow the decision makers
to use the interval numbers.

All the elements of both FPRs and MPRs are single values, which only involves
the intensities of preferences relation. But it is possible that, in the decision-making
process, the decision maker not sure about the preference information namely, uncer-
tainty degrees (hesitation degrees). Intuitionistic fuzzy preference relations (IFPRs)
[22] and intuitionistic fuzzy multiplicative preference relations (IFMPRs) [20] are
defined to indicate the positive information xi is preferred to xj , the degree of neg-
ative details xi is not preferred to xj and simultaneously the degree that cannot
determine by the decision maker. Recently, Zhang et al.[33] created intuitionistic
fuzzy multiplicative ORESTE strategy and further featured by a contextual analysis
concerning the patients’ prioritization.

Consistency plays a significant role in decision-making process. Consistency mea-
sures the level of agreement among the preference data given by the individual DMs
[19]. A good amount of researchers have paid their attention to the use of consis-
tency of preference relations in decision making under uncertain environments. For
good understanding one may refer to [4, 8, 26, 27].

In 2015 Jiang et al. [9] discussed the consistency property of an IFMPR espe-
cially the acceptable consistency. Based on it, two approaches have developed to
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complement all missing elements of incomplete IFMPRs. Ren[14] verified that the
intuitionistic fuzzy multiplicative weighted geometric aggregation (IFMWGA) oper-
ator is of excellent characteristics in remaining the consistency of the IFMPRs. To
adjust the inconsistent IFMPRs into an acceptably consistent one, they proposed
an iterative process and also, they Provide an adjustment process to restore and
improves the consistency of inconsistent IFMPR. Zhang et al. [32] suggested several
goal programming models to manage unity and consensus of IFMPRs and develop
consistency and consensus-based approach for dealing with group decision-making
(GDM) with IFMPRs. Zhang and Guo [29] has developed a linear programming-
based algorithm to check and improve the consistency of an IFMPR. Also, Zhang
and Guo [29] discuss the relationships between an IFMPR and a normalized intu-
itionistic fuzzy multiplicative weight vector and develop two approaches to group
decision making based on complete and incomplete IFMPRs, respectively. In this
paper, our work focuses on only IFMPRs.

Sometimes decision maker may not yet have a good understanding of a particular
question, and this he/she is unable to make a direct comparison between every
two objects; therefore it is sometimes necessary to allow the decision maker to skip
some dubious comparisons flexibly. In this case, incomplete preference relations are
obtained, and the whole process may slow down. In the decision-making process,

to present a complete preference relation, a decision maker should make n(n−1)
2

judgments at each level, and when n is large, it becomes an onerous task. Therefore
sometimes, due to lack of time and busy schedule of the decision maker, incomplete
preference relations are obtained. Our work focus on incomplete IFMPR.

In this paper, the new consistency property of IFMPR is defined. Based on
which two novel method is provided for estimating the missing element of incomplete
IFMPRs, where one traditional “two-step procedure methods” is divided into two
sub-steps such as: (i) “Estimating step”: Initial values are evaluated for the missing
elements of the incomplete IFMPRs without splitting into two MPRs; (ii)“Adjusting
step”: An optimization model is developed to adjust the initial values derived from
the estimating step which is solved by MATLAB optimization tool. We have also
developed a goal programming model to estimate the missing element without split-
ting into two MPRs. Both novel methods give the equivalent result. Then the
acceptably consistent of IFMPR has been checked. Techniques are illustrated with
suitable examples.

Paper is organised as follows. In section 2, some basic concepts are defined briefly,
and new transitivity property of IFMPR is defined. In section 3, we have developed
an algorithm to find the missing elements by using newly defined transitivity prop-
erty of IFMPR and proposed an optimization model for adjusting the initial values.
In section 4 a goal programming model is intended to complete the incomplete IFM-
PRs. Two numerical examples illustrate the developed procedures. In the section
5, we have given a comparative analysis of our work with the work of [9] and [12].
Concluding remarks are provided in the last part.

2. Preliminaries

Let X = {x1, · · · , xn} be a discrete set of alternatives/criteria in a decision mak-
ing problem and set N = {1, · · · , n} be the set of indices. A decision maker needs to
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provide his/her preferences over the alternatives/criteria using the pairwise compar-
ison method. The preferences values are provided by the decision maker from the
ratio scale [1/9, 9] introduced by Satty [16] to estimate and differentiate the intensity
of preferences. Based on the above ratio scale, some basic concepts of IFMPRs are
defined.

2.1. Intuitionistic fuzzy multiplicative preference relation.

Definition 2.1 ([20]). An intuitionistic fuzzy multiplicative preference relation

(IFMPR) is R̃ = [r̃ij(xi, xj)]n×n, where r̃ij(xi, xj) = (µ(xi, xj), ν(xi, xj)), i, j ∈ N,
is an intuitionistic fuzzy multiplicative number (IFMN), and µ(xi, xj) indicates cer-
tainty degree to which xi is preferred to xj and ν(xi, xj) is the certainty degree to
which xi is not preferred to xj , and they satisfy the following characteristics:

1/9 ≤ µ(xi, xj) , ν(xi, xj) ≤ 9, µ(xi, xj) = ν(xj , xi) , ν(xi, xj) = µ(xj , xi)

µ(xi, xi) = ν(xi, xi) = 1 , 0 < µ(xi, xj) ν(xi, xj) ≤ 1 , ∀ i, j ∈ N.

For the sake of convenience µ(xi, xj) and ν(xi, xj) are denoted by µij and νij
respectively.

In 2013 Xu [24] gave the concept of the consistent property of IFMPR R̃ =
(r̃ij)n×n = (µij , νij)n×n based on the transitivity

(µij , νij) = (µikµkj , νikνkj), for all i, j, k ∈ N and i ≤ k ≤ j.(2.1)

It is to note that the equation (2.1) is restricted for the condition i ≤ k ≤ j, while
the transitive property of a MPR is unconstrained which satisfies for all i, j, k ∈ N . If
the equation (2.1) is utilized to check the consistency of an IFMPR for all i, j, k ∈ N ,
the transitivity and consistency properties some times do not hold. This is because
that when ‘k’ comes from the row of lower triangular matrix, the equation does not
hold. For example:





(1, 1) (1/2, 1) (1, 1/2)
(1, 1/2) (1, 1) (2, 1/2)
(1/2, 1) (1/2, 2) (1, 1)





3×3

is a consistent IFMPR given in [24]. Jiang et al. [9] relax the condition i ≤ k ≤ j,
it is follow that a23 = (µ21µ13, ν21ν13) = (1, 1/4). But a23 = (2, 1/2) 6= (1, 1/4).
To over come this type of transitivity limitation, Jiang et al. [9] proposed a more
general consistency property of an IFMPR split into two MPRs by using the formula

aij =

{

µij i < j
1 i = j
1/νij i > j

and bij =

{

νij i < j
1 i = j
1/µij i > j .

(2.2)

where the MPR A = (aij)n×n is preferred information matrix given by the de-
cision maker with respect to the alternative xi over xj and B = (bij)n×n is the
non-preferred information matrix given by the decision maker with respect to the
alternative xi over xj . Based on the above concept, Jiang et al. [9] defined the
consistent IFMPR.

Definition 2.2 ([9]). A IFMPR R̃ = (r̃ij)n×n is said to be consistent, if both MPRs
A and B given by the equation (2.2) are consistent such that

aij = aikakj , bij = bikbkj ∀i, j, k ∈ N
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In this work, instead of splitting IFMPRs into MPRs we have defined an new
consistency property of IFMPR.

Definition 2.3. An IFMPRs R̃ = (r̃ij)n×n is called consistent, if it satisfy the
transitivity property, where r̃ij is

(µij , νij) =







(µik, νik)⊗ (µkj , νkj) if i ≤ k, k ≤ j
( 1
µki

, 1
νki

)⊗ (µkj , νkj) if i ≥ k, k ≤ j

(µik, νik)⊗ ( 1
µjk

, 1
νjk

) if i < k, k > j.
(2.3)

In this work for convenience, we have used the multiplication of two IFMNs as
the multiplication of two order pairs. Let a = (µ, ν), a1 = (µ1, ν1) and a2 = (µ2, ν2)
be intuitionistic fuzzy multiplicative numbers (IFMNs) and λ > 0. Then

a1 ⊗ a2 = (µ1, ν1)⊗ (µ2, ν2) = (µ1µ2, ν1ν2) ,

aλ =

(

2µλ

(2 + µ)λ − µλ
,
(1 + 2ν)λ − 1

2

)

is given by Xia[20], for λ > 0.
In decision-making problem, it may be the case that decision maker may not have

a good understanding on a particular question, and therefore he/she is unable to
make a direct comparison between two alternatives or criteria. Consequently, it is
more appropriate and flexible to skip some similarities, and in that cases, the decision
maker may prefer to express their judgments with incomplete preference relation.

According to previously discussed, the decision makers may provide less than n(n−1)
2

judgments in practical decision making and the incomplete IFMPR will be presented.
So, it is essential to investigate the incomplete preference relations as a useful tool in
decision-making problem, and many research results have been developed. Herrera-
Viedma et al. [7] proposed the definition of incomplete preference relation. The
concept of IFMPRs is extended to the situations where the preference information
given by decision maker is incomplete. Jiang et al. [9] propose to extend the above
situation to incomplete IFMPR where some elements are missing in the preference
relation matrix.

Definition 2.4 ([9]). An IFMPR r̃ij = (µij , νij)n×n is called an incomplete IFMPR,
if some elements in it are missing and all available elements satisfy the characteristics
of IFMPR stated in Definition 2.1.

3. Complement of an incomplete IFMPRs

In this section, we define the consistent property of incomplete IFMPR.

Definition 3.1. An incomplete IFMPR is said to be consistent, if all the known
element satisfy the equation (2.3).

In an incomplete MPR P = (pij)n×n, the element pij and pkl are called adjoin-
ing if (i, j) ∩ (k, l) is non empty set, e.g if pi0j0 = pi0k × pkj0 , where pi0k and pkj0
are adjoining known elements and pi0j0 be an unknown elements, then pi0j0 can be
found directly and the corresponding incomplete MPR is called acceptable. MPR
P are called an unacceptable incomplete multiplicative preference relation, if there
does not exist adjoining known element such that unknown factor can be calculated
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[21]. In that cases, therefore, it is necessary to return the unacceptable incomplete
multiplicative preference relation to the decision maker for revaluation until an ac-
ceptable incomplete multiplicative preference relation can be obtained. Wang and
Xu [18] showed that if an incomplete MPRs are acceptable, then there exists at least
one known element(except diagonal elements) in each line/column of MPR matrix
P , i.e., their exit at least n − 1 judgment provided by the decision maker. Later
according to Cai and Deng[2], Xu[21] and Alonso et al.[1] prove that an incomplete
multiplicative preference relation which is acceptable. Then there exists at least a
set of an n − 1 number of non-leading diagonal known elements, where each of the
criteria is compared at least once, which includes the case when a complete row
or column of preference values is known. In this work, we have applied the same
above-said applications in the incomplete IFMPRs scenario.

Taking inspiration from the work of Jiang et al. [9], we propose a two-step
procedure method to estimate the missing values in an incomplete IFMPR without
splitting IFMPRs into two MPRs. The idea is first to evaluate their value using
the simple connecting path approach and subsequently improve upon them using an
optimization problem.

3.1. Estimating step. To complement the missing elements in an incomplete MPR,
Harker [5, 6] designed a geometric mean method based on the connective paths. The
general structure of a connecting path of length θ + 1, denoted by cp(θ+1), has the
following form: cp(θ+1): ∗ij = pi k1pk1 k2 . . . pkθ j , where ∗ij denotes the missing ele-
ment to be estimated and the elements on the right hand side are known entities in
the path connecting i with j, where i, j, k1, . . . , kθ ∈ N, 0 ≤ ℓ ≤ n − 2. The con-
necting path of length two is an elementary connecting path cp(2) : ∗ij = pi k1pk1 j

for k1 ∈ N, and k1 6= i, j. Harker [5, 6] argued that the value of the missing element
∗ij is the geometric mean of all elementary connecting paths related to it with no

vertex repeats more than once in the path. Consequently, ∗ij =
(
∏nθ

r=1 cp(r)
)1/nθ ,

where nθ is the number of all possible connecting fully known paths (that is, no
missing entries along the path) from i to j. A major limitation of this method is
that the number of connecting paths of different lengths between i and j may be
extremely large and computationally intractable for many real problems. For in-
stance, Deschrijver and Kerre [3] presented an example of a matrix of size 10 only
with the number of connecting paths exceeding 109,000. Jiang et al. [9] improved
this method for incomplete IFMPR by taking elementary connecting path instead of
all connecting paths of all sizes. In that case the matrix of size 10, the number of all
elementary connecting path would not surpass 8, which is much less than 109,000.
Based on the new consistency property of IFMPRs, the initial value of the missing
element of incomplete IFMPRs can be calculated by using a geometric mean method
which is denoted by r̃

′

ij , where r̃
′

ij =

(µ∗
ij , ν

∗
ij) =























(

∏

k∈Tij
{(µik, νik)⊗ (µkj , νkj)}

)1/tij
if i ≤ k, k ≤ j;

(

∏

k∈Tij
{( 1

µki
, 1
νki

)⊗ (µkj , νkj)}
)1/tij

if i ≥ k, k ≤ j;
(

∏

k∈Tij
{(µik, νik)⊗ ( 1

µjk
, 1
νjk

)}
)1/tij

if i < k, k > j,

(3.1)

where Tij = {k|(µik, νik), (µkj , νkj) ∈ Ω}, Ω is the set of known element and tij is the
number of element present in the set Tij which indicates that there may exist different

76



Sahu and Gupta /Ann. Fuzzy Math. Inform. 16 (2018), No. 1, 71–86

pairs of adjoining known elements to find out the unknown elements. The initial values are

denoted by
(

µ
∗(0)
ij , ν

∗(0)
ij

)

.

Remark 3.2. It is to note that in equation 3.1, µkj ×
1

µki
6= µkj ×µik, and it should follow

in other expression also.

3.2. Adjusting step. The IFMPR is consistent if equation 2.3 is satisfied. Sometimes
initial values of the missing element may not satisfy the conditions of IFMPRs. To overcome
this difficulty we have developed a local optimization model(Model(M)) by minimizing the
error.

Model(M)

Min

n
∑

i,k=1

n
∑

j=i+1

(

εkiji≤k,k≤j
+ εkiji≥k,k≤j

+ εkiji<k,k>j

)

s.t.

εkiji≤k,k≤j
=| (µij , νij)− (µikµkj , νikνkj) |;

εkiji≥k,k≤j
=

∣

∣

∣

∣

(µij , νij)−

(

µkj

µki
,
νkj
νki

)
∣

∣

∣

∣

;

εkiji<k,k>j
=

∣

∣

∣

∣

(µij , νij)−

(

µik

µjk
,
νik
νjk

)∣

∣

∣

∣

;

µijνij ≤ 1; 1/9 ≤ µij ; νij ≤ 9;

µ
(0)
ij = µ∗(0)

ij ; ν
(0)
ij = ν∗(0)

ij ; i 6= j 6= k; i, j, k ∈ N,

where µ∗(0)

ij and ν∗(0)

ij are the initial value obtain from estimating step. For proper under-
standing, we have represented an algorithm that illustrates the above methods.

Algorithm 1
Step 1: Consider an incomplete IFMPRs of R̃ = (r̃ij)n×n in which some elements are

missing and the known elements satisfy the transitivity property of the equation (2.3).

Step 2: The initial value r
′

ij of the missing element of incomplete IFMPRs is calculated
using the equation (3.1).

Step 3: Initial values obtained in step 2 are adjusted by the Model(M), and the adjusting

values are denoted by r̃
′′

ij .

Step 4: The complete IFMPRs R̃c = (r̃c,ij )n×n, is obtained where

r̃c,ij =

{

r̃
′′

ij r̃ij /∈ Ω
r̃ij r̃ij ∈ Ω.

(3.2)

In the next section, we have developed a goal programming model to estimate the missing
values.

4. Goal programming model to estimate the missing values

In 2015 Meng and Chen [12] construct a linear programming model to evaluate the
missing value with incomplete MPRs, which is based on consistency index. To cope with
incomplete intuitionistic fuzzy multiplicative preference relation (incomplete IFMPR), this
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section developed a deviation model to evaluate the missing value which is based on new
transitivity property which was discussed in Section 2. Let R̃ = (µij , νij) be an incomplete

IFMPR. We know that R̃ is consistent if and only if the equation (2.3) holds for the strictly
upper triangular elements. To minimize the errors, Approximate the equation (2.3). Define

(εij)i≤k,k≤j = δij |(µij , νij)− (µikµkj , νikνkj)|(4.1)

(εij)i≥k,k≤j = δij

∣

∣

∣

∣

(µij , νij)−

(

µkj

µki
,
νkj
νki

)∣

∣

∣

∣

(εij)i<k,k>j = δij

∣

∣

∣

∣

(µij , νij)−

(

µik

µjk
,
νik
νjk

)∣

∣

∣

∣

for i, j = 1, 2, · · ·n, i < j

where, δij =

{

1 k ∈ Tij

0 otherwise,

where Tij = {k|(µik, νik), (µkj , νkj) ∈ Ω}, Tij is the set of known element. Using the above
equation (4.1), we construct the following goal programming model to estimate the missing
value

Min(εij)i≤k,k≤j = δij |(µij , νij)− (µikµkj , νikνkj)|

Min(εij)i≥k,k≤j = δij

∣

∣

∣

∣

(µij , νij)−

(

µkj

µki
,
νkj
νki

)∣

∣

∣

∣

Min(εij)i<k,k>j = δij

∣

∣

∣

∣

(µij , νij)−

(

µik

µjk
,
νik
νjk

)∣

∣

∣

∣

subject to,

1

9
≤ µij ; νij ≤ 9; (µij , νij) ∈ U ;

where U = {(µij , νij)|(µij , νij) is a missing value

for i, j = 1, 2, · · ·n, i < j}.

The solution of the minimization problem can be obtained by solving the goal program-
ming Model(P).

Model(P)

MinD =
n
∑

i,k=1

n
∑

j=i+1

(

d
(+)
ij,k

)

i≤k,k≤j
+

(

d
(−)
ij,k

)

i≤k,k≤j
+

(

d
(+)
ij,k

)

i≥k,k≤j

+
(

d
(−)
ij,k

)

i≥k,k≤j
+

(

d
(+)
ij,k

)

i<k,k>j
+

(

d
(−)
ij,k

)

i<k,k>j

subject to,

δij{(µij , νij)− (µikµkj , νikνkj)} −
(

d
(+)
ij,k

)

i≤k,k≤j
+

(

d
(−)
ij,k

)

i≤k,k≤j
= 0;
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δij

{

(µij , νij)−

(

µkj

µki
,
νkj
νki

)}

−
(

d
(+)
ij,k

)

i≥k,k≤j
+

(

d
(−)
ij,k

)

i≥k,k≤j
= 0;

δij

{

(µij , νij)−

(

µik

µjk
,
νik
νjk

)}

−
(

d
(+)
ij,k

)

i<k,k>j
+

(

d
(−)
ij,k

)

i<k,k>j
= 0;

µijνij ≤ 1; 1/9 ≤ µij ; νij ≤ 9;
(

d
(+)
ij,k

)

i≤k,k≤j
,
(

d
(−)
ij,k

)

i≤k,k≤j
,
(

d
(+)
ij,k

)

i≥k,k≤j
,
(

d
(−)
ij,k

)

i≥k,k≤j
,
(

d
(+)
ij,k

)

i<k,k>j
,
(

d
(−)
ij,k

)

i<k,k>j
≥ 0;

where,

(

d
(+)
ij,k

)

i≤k,k≤j
= [(µij , νij)− (µikµkj , νikνkj)] ∨ 0;

(

d
(−)
ij,k

)

i≤k,k≤j
= [(µikµkj , νikνkj)− (µij , νij)] ∨ 0;

(

d
(+)
ij,k

)

i≥k,k≤j
=

[

(µij , νij)− (
µkj

µki
,
νkj
νki

)

]

∨ 0;
(

d
(−)
ij,k

)

i≥k,k≤j
=

[

(
µkj

µki
,
νkj
νki

)− (µij , νij)

]

∨ 0;

(

d
(+)
ij,k

)

i<k,k>j
=

[

(µij , νij)− (
µik

µjk
,
νik
νjk

)

]

∨ 0;
(

d
(−)
ij,k

)

i<k,k>j
=

[

(
µik

µjk
,
νik
νjk

)− (µij , νij)

]

∨ 0;

For the sake of convenience, here we use,
(

d
(+)
ij,k

)

i≤k,k≤j
=

(

d(+)
µij,k

, d(+)
νij,k

)

i≤k,k≤j
,
(

d
(−)
ij,k

)

i≤k,k≤j
=

(

d(−)
µij,k

, d(−)
νij,k

)

i≤k,k≤j
,

(

d
(+)
ij,k

)

i≥k,k≤j
=

(

d(+)
µij,k

, d(+)
νij,k

)

i≥k,k≤j
,
(

d
(−)
ij,k

)

i≥k,k≤j
=

(

d(−)
µij,k

, d(−)
νij,k

)

i≥k,k≤j
,

(

d
(+)
ij,k

)

i<k,k>j
=

(

d(+)
µij,k

, d(+)
νij,k

)

i<k,k>j
,
(

d
(−)
ij,k

)

i<k,k>j
=

(

d(−)
µij,k

, d(−)
νij,k

)

i<k,k>j
,

where
(

d
(+)
µij,k

)

i≤k,k≤j
= [log µij − (log µik + log µkj)] ∨ 0;

(

d
(−)
µij,k

)

i≤k,k≤j
= [(log µik + log µkj)− log µij ] ∨ 0;

(

d
(+)
νij,k

)

i≤k,k≤j
= [log νij − (log νik + log νkj)] ∨ 0;

(

d
(−)
νij,k

)

i≤k,k≤j
= [(log νik + log νkj)− log νij ] ∨ 0;

(

d
(+)
µij,k

)

i≥k,k≤j
= [log µij − (log µkj − log µki)] ∨ 0;

(

d
(−)
µij,k

)

i≥k,k≤j
= [(log µkj − log µki)− log µij ] ∨ 0;

(

d
(+)
νij,k

)

i≥k,k≤j
= [log νij − (log νkj − log νki)] ∨ 0;

(

d
(−)
νij,k

)

i≥k,k≤j
= [(log νkj − log νki)− log νij ] ∨ 0;

(

d
(+)
µij,k

)

i<k,k>j
= [log µij − (log µik − log µjk)] ∨ 0;

(

d
(−)
µij,k

)

i<k,k>j
= [(log µik − log µjk)− log µij ] ∨ 0;

(

d
(+)
νij,k

)

i<k,k>j
= [log νij − (log νik − log νjk)] ∨ 0;

(

d
(−)
νij,k

)

i<k,k>j
= [(log νik − log νjk)− log νij ] ∨ 0.

To illustrate the above procedure we have presented two examples.
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Example 4.1. Let us consider a decision making problem with five sets of alternatives
xi(i = 1, 2, · · · , 5). The decision maker judges these five alternatives by pairwise comparison
and provides his/her judgement as r̃12 = (µ12, ν12) = (5, 1/7), r̃14 = (µ14, ν14) = (3, 1/7),
r̃23 = (µ23, ν23) = (9/5, 3/7), r̃25 = (µ25, ν25) = (1/5, 3), r̃35 = (µ35, ν35) = (1/9, 7),
r̃45 = (µ45, ν45) = (1/7, 3). The matrix representation of the above information is given by

R̃ =













(1, 1) (5, 1/7) (∗, ∗) (3, 1/7) (∗, ∗)
(1/7, 5) (1, 1) (9/5, 3/7) (∗, ∗) (1/5, 3)
(∗, ∗) (3/7, 9/5) (1, 1) (∗, ∗) (1/9, 7)

(1/7, 3) (∗, ∗) (∗, ∗) (1, 1) (1/7, 3)
(∗, ∗) (3, 1/5) (7, 1/9) (3, 1/7) (1, 1)













5×5

The initial value of missing element are calculated using the equation (3.1), are given in
Table 1.

Table 1. Calculation of Missing element(initial value)

Missing element Adjoining element Calculated value
(

µ
∗(0)
13 , ν

∗(0)
13

)

(µ12, ν12), (µ23, ν23) (9, 3/49)

(

µ
∗(0)
15 , ν

∗(0)
15

)

(µ12, ν12), (µ25, ν25) (1.44877, 0.0297)

(µ14, ν14), (µ45, ν45)
(

µ
∗(0)
24 , ν

∗(0)
24

)

(µ21, ν21), (µ14, ν14) (2.38454, 0.366025)

(µ25, ν25), (µ54, ν54)
(

µ
∗(0)
34 , ν

∗(0)
34

)

(µ35, ν35), (µ54, ν54) (0.777, 2.333)

Some initial values does not satisfies the property of IFMPRs e.g µ34 × ν34 � 1. To
adjust these values solve this problem using an optimization Model(M) that minimize the
error.

Model(M)

Min {|{(9− µ13)
2 + (3/49 − ν13)

2}0.5|+ |{(1− µ15)
2 + (3/7− ν15)

2}0.5|

+|{(3/7− µ15)
2 + (3/7− ν15)

2}0.5|+ |{(3/5− µ24)
2 + (1− ν24)

2}0.5|

+|{(7/5− µ24)
2 + (1− ν24)

2}0.5|+ |{(0.777 − µ34)
2 + (2.333 − ν34)

2}0.5|};

s.t.

µ13 × ν13 ≤ 1;µ15 × ν15 ≤ 1;µ24 × ν24 ≤ 1;

µ34 × ν34 ≤ 1; 1/9 ≤ µ13; ν13 ≤ 9;

1/9 ≤ µ15; ν15 ≤ 9; 1/9 ≤ µ24; ν24 ≤ 9;

1/9 ≤ µ34; ν34 ≤ 9;µ13
∗(0) = 9, ν13

∗(0) = 3/49;

µ15
∗(0) = 1.44877, ν15

∗(0) = 0.0297;

µ24
∗(0) = 2.3845, ν24

∗(0) = 0.366;

µ34
∗(0) = 0.777, ν13

∗(0) = 2.333.

After solving the above optimization model, the adjusting values are given µ13 = 9, ν13 =
0.111, µ15 = 0.74, ν15 = 0.429, µ24 = 0.912, ν24 = 1, µ34 = 0.441, ν34 = 2.268. This model is
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solved by MATLAB optimization tool box. The complete IFMPR R̃c is given below
































(1, 1) (5, 1/7) (9, 0.111) (3, 1/7) (0.74, 0.429)

(1/7, 5) (1, 1) (9/5, 3/7) (0.912, 1) (1/5, 3)

(0.111, 9) (3/7, 9/5) (1, 1) (0.441, 2.268) (1/9, 7)

(1/7, 3) (1, 0.912) (2.268, 0.441) (1, 1) (1/7, 3)

(0.429, 0.74) (3, 1/5) (7, 1/9) (3, 1/7) (1, 1)

































5×5

To check the consistency degree, the complete IFMPR is split into two MPRs and their
corresponding CR values are given in row-1 of table 2.

C =













1 5 9 3 0.74
1
5

1 9
5

0.912 1
5

1
9

5
9

1 0.441 1
9

1
3

1
0.912

1
0.441

1 1
7

1
0.74

5 9 7 1













5×5

D =













1 1
7

0.111 1
7

0.429
7 1 3

7
1 3

1
0.111

7
3

1 2.268 7
7 1 1

2.268
1 3

1
0.429

1
3

1
7

1
3

1













5×5

The Example 4.1 is also solved by the goal programming problem and the missing ele-
ments are µ13 = 9, ν13 = 0.111, µ15 = 1, ν15 = 0.429, µ24 = 1, ν24 = 1, µ34 = 0.428, ν34 =
2.333. This model(P) is solved using Lingo software. The consistency ratio of both MPRs
obtain from two different methods such as two-step procedure method, and goal program-
ming model method are given in Table 2. Therefore, the complete IFMPR R̃c is acceptably
consistent. Table 2. Consistency ratio

Two-step procedure Method CR(C) 0.0114
CR(D) 0.0094

Goal programming model (Model(P)) CR(C′) 0.0144
CR(D′) 0.0094

In Table 2 C′,D′ are two multiplicative preference relations are obtained by splitting
the complete IFMPRs where missing element are found from the model(P).

Example 4.2. Let us consider a decision making problem with seven sets of alterna-
tives xi(i = 1, 2, · · · , 7). The decision maker judge these seven alternatives by pairwise
comparison and provides his/her judgement as follows: r̃12 = (µ12, ν12) = (3/5, 1/4),
r̃16 = (µ16, ν16) = (1/5, 1/2), r̃23 = (µ23, ν23) = (1/2, 8/5), r̃26 = (µ26, ν26) = (1/3, 2),
r̃34 = (µ34, ν34) = (2/9, 15/4), r̃36 = (µ36, ν36) = (2/3, 5/4), r̃45 = (µ45, ν45) = (7, 1/7),
r̃46 = (µ46, ν46) = (3, 1/3), r̃56 = (µ56, ν56) = (3/7, 7/3), r̃67 = (µ67, ν67) = (1/7, 3). The

matrix representation of the above information is given by R̃1.

R̃1 =





















(1, 1) (3/5, 1/4) (∗, ∗) (∗, ∗) (∗, ∗) (1/5, 1/2) (∗, ∗)
(1/4, 3/5) (1, 1) (1/2, 8/5) (∗, ∗) (∗, ∗) (1/3, 2) (∗, ∗)

(∗, ∗) (8/5, 1/2) (1, 1) (2/9, 15/4) (∗, ∗) (2/3, 5/4) (∗, ∗)
(∗, ∗) (∗, ∗) (15/4, 2/9) (1, 1) (7, 1/7) (3, 1/3) (∗, ∗)
(∗, ∗) (∗, ∗) (∗, ∗) (1/7, 7) (1, 1) (3/7, 7/3) (∗, ∗)

(1/2, 1/5) (2, 1/3) (5/4, 2/3) (1/3, 3) (7/3, 3/7) (1, 1) (1/7, 3)
(∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗) (∗, ∗) (3, 1/7) (1, 1)





















7×7

The initial value of missing element is calculated by using the equation (3.1) which is
given in Table 3.
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Table 3. Calculation of Missing element(initial value)

Missing element Adjoining element Calculated value
(

µ
∗(0)
13 , ν

∗(0)
13

)

(µ12, ν12), (µ23, ν23) (3/10, 2/5)

(

µ
∗(0)
14 , ν

∗(0)
14

)

(µ16, ν16), (µ64, ν64) (1/15, 3/2)

(

µ
∗(0)
15 , ν

∗(0)
15

)

(µ16, ν16), (µ65, ν65) (7/15, 3/14)

(

µ
∗(0)
17 , ν

∗(0)
17

)

(µ16, ν16), (µ67, ν67) (1/35, 3/2)

(

µ
∗(0)
24 , ν

∗(0)
24

)

(µ23, ν23), (µ34, ν34) (0.17, 3.77)

(µ26, ν26), (µ46, ν46)

(

µ
∗(0)
25 , ν

∗(0)
25

)

(µ26, ν26), (µ56, ν56) (7/9, 6/7)

(

µ
∗(0)
27 , ν

∗(0)
27

)

(µ26, ν26), (µ67, ν67) (1/21, 6)

(

µ
∗(0)
35 , ν

∗(0)
35

)

(µ34, ν34), (µ45, ν45) (5.69, 0.13)

(µ36, ν36), (µ56, ν56)

(

µ
∗(0)
37 , ν

∗(0)
37

)

(µ36, ν36), (µ67, ν67) (2/21, 15/4)

(

µ
∗(0)
47 , ν

∗(0)
47

)

(µ46, ν46), (µ67, ν67) (3/7, 1)

(

µ
∗(0)
57 , ν

∗(0)
57

)

(µ56, ν56), (µ67, ν67) (3/49, 7)

Some initial values does not satisfies the property of IFMPRs e.g µ14, µ17, µ27, µ37, µ57 � 1

9
.

To adjust these value we have solved optimization Model(M), that minimize the error.
Min {2|{(3/10 − µ13)

2 + (2/5− ν13)
2}0.5|+ |{(1/15 − µ14)

2 + (3/2− ν14)
2}0.5|

+|{(7/15 − µ15)
2 + (3/14 − ν15)

2}0.5|+ |{(1/35 − µ17)
2 + (3/2− ν17)

2}0.5|
+2|{(1/9 − µ24)

2 + (6− ν24)
2}0.5|+ |{(7/9 − µ25)

2 + (6/7 − ν25)
2}0.5|

+|{(1/21 − µ27)
2 + (6− ν27)

2}0.5|+ 2|{(14/9 − µ35)
2 + (15/28 − ν35)

2}0.5|
+|{(2/21 − µ37)

2 + (15/4 − ν37)
2}0.5|+ |{(3/7 − µ47)

2 + (1− ν47)
2}0.5|

+|{(3/49 − µ57)
2 + (7− ν57)

2}0.5|},
subject to

µ13×ν13 ≤ 1, µ14×ν14 ≤ 1, µ15×ν15 ≤ 1, µ17×ν17 ≤ 1, µ24×ν24 ≤ 1, µ25 ×ν25 ≤ 1,
µ27 × ν27 ≤ 1, µ35 × ν35 ≤ 1, µ37 × ν37 ≤ 1, µ47 × ν47 ≤ 1, µ57 × ν57 ≤ 1,
1/9 ≤ µ13, ν13 ≤ 9, 1/9 ≤ µ14, ν14 ≤ 9, 1/9 ≤ µ15, ν15 ≤ 9, 1/9 ≤ µ17, ν17 ≤ 9,
1/9 ≤ µ24, ν24 ≤ 9, 1/9 ≤ µ25, ν25 ≤ 9, 1/9 ≤ µ27, ν27 ≤ 9, 1/9 ≤ µ35, ν35 ≤ 9,
1/9 ≤ µ37, ν37 ≤ 9, 1/9 ≤ µ47, ν47 ≤ 9, 1/9 ≤ µ57, ν57 ≤ 9,

µ13
∗(0) = 0.5237, ν13

∗(0) = 0.0745; µ14
∗(0) = 1/15, ν14

∗(0) = 3/2,

µ15
∗(0) = 7/15, ν15

∗(0) = 3/14;µ17
∗(0) = 1/35, ν17

∗(0) = 3/2;

µ24
∗(0) = 0.17, ν24

∗(0) = 3.77;µ25
∗(0) = 7/9, ν25

∗(0) = 6/7;
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µ27
∗(0) = 1/21, ν27

∗(0) = 6;µ35
∗(0) = 5.69, ν35

∗(0) = 0.127;

µ37
∗(0) = 2/21, ν37

∗(0) = 15/4;µ47
∗(0) = 3/7, ν47

∗(0) = 1;µ57
∗(0) = 3/49, ν57

∗(0) = 7.

The adjusting value are given by:
(µ13, ν13) = (0.3, 0.4), (µ14, ν14) = (0.111, 1.5), (µ15, ν15) = (0.467, 0.214),
(µ17, ν17) = (0.111, 1.5), (µ24, ν24) = (0.111, 6), (µ25, ν25) = (0.778, 0.857),
(µ27, ν27) = (0.111, 6), (µ35, ν35) = (1.556, 0.536), (µ37, ν37) = (0.111, 3.748),
(µ47, ν47) = (0.429, 1), (µ57, ν57) = (0.111, 7).

Example 4.2 solved by Model(P) also and we obtained the same result. The complete

IFMPR is given in the matrix R̃c1 .

R̃c1

=





















(1, 1) (3/5, 1/4) (0.3, 0.4) (0.111, 1.5) (0.467, 0.214) (1/5, 1/2) (0.111, 1.5)
(1/4, 3/5) (1, 1) (1/2, 8/5) (0.111, 6) (0.778, 0.857) (1/3, 2) (0.111, 6)
(0.4, 0.3) (8/5, 1/2) (1, 1) (2/9, 15/4) (1.556, 0.536) (2/3, 5/4) (0.111, 3.748)

(1.5, 0.111) (6, 0.111) (15/4, 2/9) (1, 1) (7, 1/7) (3, 1/3) (0.429, 1)
(0.214, 0.467) (0.857, 0.778) (0.536, 1.556) (1/7, 7) (1, 1) (3/7, 7/3) (0.111, 7)
(1/2, 1/5) (2, 1/3) (5/4, 2/3) (1/3, 3) (7/3, 3/7) (1, 1) (1/7, 3)
(1.5, 0.111) (6, 0.111) (3.748, 0.111) (1, 0.429) (7, 0.111) (3, 1/7) (1, 1)





















7×7

To check the consistency degree of IFMPR, R̃c1 split into two MPRs C and D.

C =





















1 3
5

0.3 0.111 0.47 1
5

0.111
5
3

1 1
2

0.111 0.778 1
3

0.111
1
0.3

2 1 2
9

1.556 2
3

0.111
1

0.111
1

0.111
9
2

1 7 3 0.429
1

0.467
1

0.778
1

1.556
1
7

1 3
7

0.111
5 3 3

2
1
3

7
3

1 1
7

1
0.111

1
0.111

1
0.111

1
0.429

1
0.111

7 1





















7×7

D =





















1 1
4

0.4 1.5 0.214 1
2

1.5
4 1 8

5
6 0.857 2 6

1
0.4

5
8

1 15
4

0.536 5
4

3.748
1

1.5
1
6

4
15

1 1
7

1
3

1
1

0.214
1

0.857
1

0.536
7 1 7

3
7

2 1/2 4
5

3 3
7

1 3
1

1.5
1
6

1
3.748

1 1
7

1
3

1





















7×7

CR(C) = 0.0230 and CR(D) = 0 both are acceptable threshold value. According to

Satty[16] both C and D are acceptably consistent. Therefore R̃c1 is also acceptably con-
sistent.

5. A Comparative analysis with existing methods

In this section, we compare our proposed method with Jiang et al. [9] for IFMPR and
Meng and Chen [12] for MPRs.

(1) In 2015, Jiang et al. [9] discussed the consistency property, especially the acceptable
consistency of an IFMPR by splitting into two MPRs. Based on it, Jiang et al. developed
two approaches to complement all missing elements of incomplete IFMPRs. according to
Jiang et al. [9], the incomplete IFMPR split into two MPRs, and the calculation of missing
factor involves two steps, i.e. “estimating step” and “ adjusting step.” A geometric mean
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method is used in the estimating step to calculate the initial values of missing element. Two
different approaches are developed for improving the initial values: one is local optimization
models, which is time-saving and other is an iterative method that can operate the whole
optimization process suitably.

Using Jiang et al. [9] methods, Example 4.1 is solved where incomplete IFMPRs is split
into two MPRs as C and D. Using geometric mean method missing element is calculated
and adjusting values are computed by using local optimization model (LOP1)[9]. Since the
consistency ratio (CR) of C and D are 0.0197 and 0.0112. Hence the complete IFMPR
is acceptably consistent. Consistency ratio of C and D obtained from our methods (both
two-step procedure method and Goal programming model) are less than(see Table 2) from
Jiang et al. [9] methods. Similarly, in Example 4.2, the complete IFMPR is also acceptably
consistent. Both the model gives the equivalent result.

(2) To measure the multiplicative consistency of an MPR, Meng and Chen [12] proposed
the notion of multiplicative geometric consistent index (MGCI). The consistency of an MPR
is considered to be unacceptable if the MGCI of an MPR is less than the average value
tabulated in Table 1 in their paper. The authors continued their study to include the case
of incomplete MPR. They formulated multi-objective programming model to estimate the
missing values. Using the goal programming approach and a suitable transformation, the
proposed model was converted into an equivalent linear program. The missing values in an
MPR were then obtained using the inverse transformation at the optimal solution of the
linear program.

In Example 4.1, the incomplete IFMPR is split into two incomplete MPRs using the
equation (2.2). The missing elements of two incomplete MPRs are obtained using Meng and
Chen’s linear programming model (LP)(see [12]). Consistency ratio of two MPRs obtained
from Meng and Chen’s model are 0.0199 and 0.0097 respectively which are less than from
both two-step procedure method and Goal programming model (Model(P)).

6. Conclusion

In this paper, we have introduced a new transitivity property of IFMPR. Based on
this, we have presented two approaches for completing incomplete IFMPRs. In the first
approach, missing element can be calculated by using the new transitivity property, and
an optimization model has been developed to adjust the initials values. In the second
approach, the missing elements are evaluated by goal programming model based on new
transitivity property. Two numerical examples are presented that illustrate the above
method. Acceptably consistent with complete IFMPRs has been checked. Also, we have
compared our method with Jiang et al. [9] and Meng and Chen [12] method.

The hesitant fuzzy preference relation (HFPR) is a useful tool for decision-makers to
elicit their preference information over a set of alternatives. Recently lots of researchers
have done in hesitant fuzzy preference relation (HFPR), that allow the decision makers
(DMs) to provide several possible preference values over two alternatives. One may refer
to [25, 30, 31]. Our work can extend to deal with HFPR and incomplete HFPRs. Also, the
missing element of incomplete HFPR can find by using goal programming.
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