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ABSTRACT. In [7], the authors reported that a soft T;-space need not
be a soft T;_1-space, for i = 3,4, 5 [Line 4 and 5 in abstract] and [Theorem
3.21], and the soft T;-spaces in the sense of [3] and soft Tj-spaces in their
work are equivalent, for ¢+ = 0,1,2,3 [Line 7 and 8 in abstract] and [Line
12 and 13, p.p. 522]. In this note, we correct the errors in these assertions
by proving that every soft Ts-space is a soft T>-space and presenting two
counterexamples to show that a soft T;-space in the sense of [3] is not
equivalent to a soft Tj-space in the sense of 7], for ¢ = 2, 3.
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1. INTRODUCTION

Molodtsov [1] in 1999, initiated the concept of soft sets as a new mathemati-
cal tool for dealing with uncertainties. Shabir and Naz [6] in 2011, employed this
notion in establishing the concept of soft topological spaces. They introduced soft
separation axioms by utilizing ordinary points and investigated its basic properties.
The authors of [2] and [5] defined a concept of soft point, which is a special case
of the definition of soft point in [8], and verified some results related to soft limit
points and soft neighborhood systems. Georgiou et al. [3] in 2013, introduced and
studied new soft axioms namely soft T;-spaces, for i = 0,1, 2,3, and Tantawy et al.
[7] investigated new soft axioms namely soft T;-spaces, for i = 0,1,2,3,4,5.

We observe that there are some mistakes in [7]. To correct these mistakes, we
prove that every soft Tj-space is a soft Th-space with respect to [7] and provide
two examples to illustrate that soft T;-spaces in [3] and soft T;-spaces in [7] are not
equivalent, for 1 = 2, 3.
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2. PRELIMINARIES

In what follows, we recall some definitions that will be needed in the sequels.

Definition 2.1 ([1]). A pair (G, A) is said to be a soft set over X provided that
G is a map of A into the family of all subsets of X. For short, we write (G, A) as
ordered pairs G4 = {(a,G(a)) : a € A and G(a) € 2%}

Definition 2.2 ([1]). The relative complement of a soft set (G, A), denoted by
(G, A)¢, is given by (G, A)¢ = (G, A), where a map G¢: A — 2% is defined by

G°(a) = X — G(a), for each a € A.

Definition 2.3 ([6]). A collection 7 of soft sets over X with a fixed set of parameter
A is called a soft topology on X, if it satisfies the following three axioms:
(i) the null soft set & and the absolute soft set X are members of 7,
(ii) the soft union of an arbitrary number of soft sets in 7 is also a member of 7,
(iii) the soft intersection of a finite number of soft sets in 7 is also a member of 7.
The triple (X, 7, A) is called a soft topological space. Each soft set in 7 is called
soft open and its relative complement is called soft closed.

Definition 2.4 (]2, 5]). A soft subset (P, A) of (X, 7, A) is called soft point, if there
isa € A and x € X satisfies that P(a) = {z} and P(e) = &, for each e € A\ {a}.
A soft point will be shortly denoted by z,.

Definition 2.5 ([3]). A soft topological space (X, 7, A) is said to be:

(i) soft Tp-space, if for every pair of distinct points x,y € X and for every a € A,
there is a soft open set Uy such that © €, Uy and y €, Ug ory €, Ux and x &, Ua,

(ii) soft Ty-space, if for every pair of distinct points z,y € X and for every a € A,
there are soft open sets Uy and V4 such that x €, Ua,y €, Ua and y €, Va,
T ga VAa

(iii) soft Th-space, if for every pair of distinct points z,y € X and for every
a € A, there are soft open sets U4 and V4 such that x €, Ua, y €, V4 and
U(@)NV(a) = 2,

(iv) soft Ts-space, if for every x € X, for every a € A and for every soft closed
set H,4 such that x &, H 4, there are soft open sets U4 and V4 such that z € V(a),
H(a) CU(a) and U(a)V(a) = @.

Definition 2.6 ([7]). A soft topological space (X, 7, A) is said to be:

(i) soft Tp-space, if for every pair of distinct soft points x4, y, € X, there is a soft
open set Uy such that x, € Uy and y, & Uy or y, € Uy and z, & Uag,

(ii) soft Ty-space, if for every pair of distinct soft points z,,y, € X, there are soft
open sets Uy and V4 such that z, € Ua,y, € Ua and y, € Va, x4 & Va,

(iil) soft Th-space, if for every pair of distinct soft points z,,y, € X, there are
disjoint soft open sets Uy and V4 containing z, and y,, respectively,

(iv) soft regular, if for every soft closed set H4 and z, € X such that z, & Ha,
there are disjoint soft open sets U4 and V4 such that HAoCUy, and z, € Va,

(v) soft Ts-space, if it is both soft regular and soft T;-space.
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3. MAIN RESULTS

Tantawy et al. [7] claimed that a soft Ts-space is a soft Ty-space provided that
Zq is a soft closed set, for each € X and a € A [Line 4 and 5 in abstract] and
[Theorem 3.21, p.p. 519]. In the following result, we prove that a soft T3-space is a
soft Th-space without imposing z, is a soft closed set.

Theorem 3.1. Every soft Ts-space (X, 7, A) is a soft Ta-space.

Proof. Let x, # y, € X. Since (X, 7,A) is a soft Tj-space, there exists a soft open
sets Ua such that x, € Us and y, € Us. Now, z, ¢ UG and U§ is a soft closed set
containing y,. It follows, by soft regularity of (X, 7, A), that there exist disjoint soft
open sets W, and Vy such that z, € W4 and y, € UEQVA. Then the desired result
is proved. O

Tantawy et al. [7] claimed that the soft T;-spaces in the sense of [3] and soft
T;-spaces in their work are equivalent, for ¢ = 0,1, 2,3 [Line 7 and 8 in abstract] and
[Line 12 and 13, p.p. 522]. The following two examples illustrate that this result
need not be true in general in case of i = 2, 3.

Example 3.2. Let A = {a,b,c} be a set of parameters and let the universe set
X = {x,y}. Then a soft collection 7 = {@, X, (G;,A) : i = 1,2,...,8} is a soft
topology on X, where

(G1,4) ={(a,{z}), (b,{y}), (¢, {z})},
(G27 A) = {(av {y})v (ba {.’t}), (Cv {{E})},
(G?n A) = {((J’?X)7 (b7X)7 (Cv {C(:})},
(G4’ A) = {(a" @)7 (b, Q)’ (Cv {I})L
(G5a A) = {(CL, @)7 (b’ Q)’ (Cv {y})}a
(Gﬁa A) - {(av {l‘}), (b’ {y})’ (C7X)}7
(G77 A) - {(av {y})v (ba {x})a (C’X)}a
(G87 A) = {(a7 ®)7 (b, @)7 (ch)}'

Obviously (X, 7, A) is a soft Th-space in the sense of [3]. On the other hand,
xp # yp. For any two soft open sets (G;, A), (G, A) such that =, € (G, A) and
w € (G, A), we have that € G;(c) [ G,(c). Hence it is not a soft Tr-space with
respect to the definition of [7].

Example 3.3. Let A = {a,b} be a set of parameters and let the universe set
X = {z,y,2}. Then a soft collection 7 = {&, X, {(a,{z,y}), (b, {z}))},{(a,{z}),
(b,{x,y})}} is a soft topology on X. Obviously, (X, 7, A) is a soft T3-space in the
sense of [3]. On the other hand, z, # y, and any soft open set containing x, contains
Yo as well. Thus it is not a soft Tj-space with respect to the definition of [7]. So it
is not a soft Ts-space with respect to [7].
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