
Annals of Fuzzy Mathematics and Informatics

Volume 15, No. 2, (April 2018) pp. 169–180

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2018.15.2.169

@FMI
c© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

Variants of compatible mappings in fuzzy metric
spaces

Pawan Kumar, Balbir Singh, Z. K. Ansari

@FMI

@ F M I

@ F M I

@ F M I

@ F M I

@ F M I
@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I
@ F M I @ F M I
@ F M I

Reprinted from the
Annals of Fuzzy Mathematics and Informatics

Vol. 15, No. 2, April 2018



Annals of Fuzzy Mathematics and Informatics

Volume 15, No. 2, (April 2018) pp. 169–180

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

https://doi.org/10.30948/afmi.2018.15.2.169

@FMI
c© Research Institute for Basic

Science, Wonkwang University

http://ribs.wonkwang.ac.kr

Variants of compatible mappings in fuzzy metric
spaces

Pawan Kumar, Balbir Singh, Z. K. Ansari

Received 5 September 2017; Revised 15 December 2017; Accepted 17 January 2018

Abstract. In this paper, we introduce the notions of compatible
mappings of type(R), type (K) and type (E) in Fuzzy metric spaces and
prove some common fixed point theorems for these mappings.In fact, we
call these maps as variants of compatible mappings.

2010 AMS Classification: 47H10, 54H25

Keywords: Fuzzy metric space, Compatible mappings, Compatible mappings of
type (R), type (K), type (E).

Corresponding Author: Balbir Singh (balbir.vashist007@gmail.com)

1. Introduction

It proved a turning point in the development of fuzzy mathematics when the no-
tion of fuzzy set was introduced by Zadeh [20]. Fuzzy set theory has many applica-
tions in applied science such as neural network theory, stability theory, mathematical
programming, modelling theory, engineering sciences, medical sciences (medical ge-
netics, nervous system), image processing, control theory, communication etc. There
are many view points of the notion of the metric space in fuzzy topology, see, e.g.,
Erceg [2], Jungck [8], Deng [1], Kaleva and Seikkala [9], Kramosil and Michalek [10],
George and Veermani [4]. In this paper, we are considering the Fuzzy metric space
in the sense of Kramosil and Michalek [10].

Definition 1.1. A binary operation ∗ on [0, 1] is a t-norm, if it satisfies the following
conditions:

(i) ∗ is associative and commutative,
(ii) a ∗ 1 = a for every a ∈ [0, 1],
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.
Basics examples of t-norm are t-norm ∆L, ∆L(a, b) = max(a + b − 1, 0), t-norm

∆P , ∆P (a, b) = ab and t-norm ∆M ,∆M (a, b) = min{a, b}.
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Definition 1.2. The 3-tuple (X,M,∆) is called a fuzzy metric space (in the sence
of Kramosil and Michalek), if X is an arbitrary set, ∆ is a continuous t-norm and M
is a fuzzy set on X2 × [0,∞) satisfying the following conditions: for all x, y, z ∈ X
and s, t > 0,

(i) M(x, y, 0) = 0, M(x, y, t) > 0,
(ii) M(x, y, t) = 1, for all t > 0 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, z, t+ s) ≥ ∆(M(x, y, t),M(y, z, s)),
(v) M(x, y, ·) : [0,∞)→ [0, 1] is left continuous.
Note that M(x, y, t) can be thought of as the degree of nearness between x and

y with respect to t. We identify x = y with M(x, y, t) = 1 for all t > 0 and
M(x, y, t) = 0 with t = 0.

Definition 1.3. A sequence {xn} in (X,M,∆) is said to be:
(i) convergent with limit x, if lim

n→∞
M(xn, x, t) = 1, for all t > 0,

(ii) Cauchy sequence in X, if given ε > 0 and λ > 0, there exists a positive integer
N(ε, λ) such that M(xn, xm, ε) > 1− λ, for all n,m ≥ N(ε, λ),

(iii) complete ,if every Cauchy sequence in X is convergent in X.
Fixed point theory in fuzzy metric space has been developing since the paper

of Grabiec [3]. Subramanyam [18] gave a generalization of Jungck [6] theorem for
commuting mapping in the setting of fuzzy metric space.

In 1996, Jungck [7] introduced the notion of weakly compatible as follows:

Definition 1.4. Two maps f and g are said to be weakly compatible, if they
commute at their coincidence points.

In 1999, Vasuki [19] introduced the notion of R-weakly commutingas follows:

Definition 1.5. Two self-mapping f and g of a fuzzy metric space (X,M,∆) are
said to be R-weakly commuting, if M(fgx, gfx, t) ≥M(fx, gx, t/R), for each x ∈ X
and for each t > 0.

In 1994, Mishra [11] generalized the notion of weakly commuting to compatible
mappings in fuzzy metric space akin to the concept of compatible mapping in metric
space.

Definition 1.6 ([14]). Let f and g be self-mappings from a fuzzy metric space
(X,M,∆) into itself. A pair of map {f, g} is said to be compatible, if
lim
n→∞

M(fgxn, gfxn, t) = 1, whenever {xn} is a sequence in X such that lim
n→∞

fxn =

lim
n→∞

gxn = u, for some u ∈ X and for all t > 0.

In 1994, Pant [12] introduced the concept of R-weakly commuting maps in metric
space. Later on, Vasuki [19] initiated the concept of non-compatible mapping in
fuzzy metric space and introduced the notion of R-weakly commuting mapping in
fuzzy metric space and proved some common fixed point theorems for these map-
pings.

Definition 1.7 ([12]). Let f and g be self-mapping from a fuzzy metric space
(X,M,∆) into itself. Then the mappings f and g are said to be non-compatible, if
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lim
n→∞

M(fgxn, gfxn, t) 6= 1, whenever {xn} is a sequence in X such that lim
n→∞

fxn =

lim
n→∞

gxn = u, for some u ∈ X and for all t > 0.

In 1999, Pant [13] introduced a new continuity condition, known as reciprocal
continuity as follows:

Definition 1.8 ([13]). Two self-maps f and g of a fuzzy metric space (X,M,∆)
are called reciprocally continuous, if lim

n→∞
fgxn = fz and lim

n→∞
gfxn = gz, whenever

{xn} is a sequence such that lim
n→∞

fxn = lim
n→∞

gxn = z, for some z ∈ X.

If f and g are both continuous then they are obviously reciprocally continuous
but the converse is need not be true.

Recently, Pant et al. [13] generalized the notion of reciprocal continuity to weak
reciprocal continuity as follows:

Definition 1.9 ([13]). Two self-maps f and g of a fuzzy metric space (X,M,∆)
are called weakly reciprocally continuous, if lim

n→∞
fgxn = fz or lim

n→∞
gfxn = gz,

whenever {xn} is a sequence such that lim
n→∞

fxn = lim
n→∞

gxn = z, for some z ∈ X.

If f and g are reciprocally continuous, then they are obviously weak reciprocally
continuous but the converse is not true.

In 2004, Rohan et al. [20] introduced the concept of compatible mappings of type
(R) in a metric space as follows:

Definition 1.10 ([15]). Let f and g be mappings from metric space (X, d) into
itself. Then f and g are said to be compatible of type (R), if

lim
n→∞

d(fgxn, gfxn) = 0, and lim
n→∞

d(ffxn, ggxn) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t, for some

t ∈ X.

In 2007, Singh and Singh et al. [17] introduced the concept of compatible map-
pings of type (E) in a metric space as follows:

Definition 1.11 ([17]). Let f and g be mappings from metric space (X, d) into itself.
Then f and g are said to be compatible of type (E), if lim

n→∞
ffxn = lim

n→∞
fgxn = gt

and lim
n→∞

ggxn = lim
n→∞

gfxn = ft, whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

In 2014, Jha et al. [5] introduced the concept of compatible mappings of type
(K) in a metric space as follows:

Definition 1.12 ([5]). Let f and g be mappings from metric space (X, d) into itself.
Then f and g are said to be compatible of type (K), if

lim
n→∞

d(ffxn, gt) = 0, and lim
n→∞

d(ggxn, ft) = 0,

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t, for some

t ∈ X.
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2. Properties of compatible mappings of types

Now we introduce the notions of compatible mappings of types in the setting of
a Fuzzy metric space as follows:

Definition 2.1. Let f and g be self-mapping on Fuzzy metric space (X,M,∆).
Then f and g are called:

(i) compatible of type (R), if lim
n→∞

M(fgxn, gfxn, t) = 1, and lim
n→∞

M(ffxn, ggxn, t) =

1, whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = u, for some

u ∈ X and for all t > 0,
(ii) compatible of type (K), if lim

n→∞
M(ffxn, gx, t) = 1, and lim

n→∞
M(ggxn, fx, t) =

1, whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = x, for some

x ∈ X and for all t > 0,
(iii) compatible of type (E), if lim

n→∞
ffxn = lim

n→∞
fgxn = gt and lim

n→∞
ggxn =

lim
n→∞

gfxn = ft, whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn =

x, for some x ∈ X.

Now we give some properties related to compatible mappings of type (R) and
type (E).

Proposition 2.2. Let f and g be compatible mappings of type (R) of a Fuzzy metric
space (X,M,∆) into itself. If fx = gx, for some x ∈ X, then fgx = ffx = ggx =
gfx.

Proposition 2.3. Let f and g be compatible mappings of type (R) of Fuzzy metric
space (X,M,∆) into itself. Suppose that lim

n→∞
fxn = lim

n→∞
gxn = x for some x in

X. Then
(1) lim

n→∞
gfxn = fx, if f is continuous at x,

(2) lim
n→∞

fgxn = gx, if g is continuous at x,

(3) fgx = gfx and fx = gx if f and g are continuous at x.

Proposition 2.4. Let f and g be compatible mappings of type (E) of a Fuzzy met-
ric space (X,M,∆) into itself. Let one of f and g be continuous. Suppose that
lim
n→∞

fxn = lim
n→∞

gxn = x for some x ∈ X. Then

(1) fx = gx and lim
n→∞

ffxn = lim
n→∞

ggxn = lim
n→∞

fgxn = lim
n→∞

gfxn,

(2) if there exists u ∈ X such that fu = gu = x, then we have fgu = gfu.

Lemma 2.5 ([13]). Let {yn} be a sequence in a fuzzy metric space (X,M,∆). If
there exists q ∈ (0, 1) such that M(yn+2, yn+1, qt) ≥ M(yn+1, yn, t), t > 0, n ∈ N ,
then {yn} is a Cauchy sequence in X.

Lemma 2.6 ([13]). Let (X,M,∆) be a fuzzy metric space. If there exists q ∈ (0, 1)
such that M(x, y, qt) ≥M(x, y, t) for all x, y ∈ X, and t > 0, then x = y.

3. Main Results

Rohan et al. [15], Singh and Singh [17] and Jha [5] proved the common fixed
point theorems in a complete metric space.

Now we prove the same in Fuzzy metric space.
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Theorem 3.1. Let P , R, S and T be mappings of a complete Fuzzy metric space
(X,M,∆) into itself satisfying the conditions:

(3.1) T (X) ⊂ P (X), S(X) ⊂ R(X),

(3.2) M(Sz, Tw, kt) ≥ min

{
(M(Pz,Rw, t),M(Pz, Sz, t),M(Rw, Tw, t),

M(Sz,Rw, αt),M(Pz, Tw, (2− α)t))

}
hold for all z, w in X, where α ∈ (0, 2), t > 0,

(3.3) one of the mappings P , R, S and T is continuous.

Assume that the pairs P , S and R, T are compatible of type (R). Then P , R, S and
T have a unique common fixed point in X.

Proof. Let us consider a point z0 ∈ X. Since S(X) ⊂ R(X), there exists z1 ∈ X
such that Sz0 = Rz1 = w0, for this point z1, there exists z2 ∈ X such that Tz1 =
Pz2 = w1. Continuing in this way, we can define a sequence {wn} in X such that

w2n = Sz2n = Rz2n+1; w2n+1 = Tz2n+1 = Pz2n+2 .

Now we prove that {wn} is Cauchy sequence in X.
Putting z = z2n, w = z2n+1, α = 1 − β with β ∈ (0, 1) in inequality (3.2), we

have

M(Sz2n, T z2n+1, kt) ≥ min

 (M(Pz2n, Rz2n+1, t),M(Pz2n, Sz2n, t),
M(Rz2n+1, T z2n+1, t),M(Sz2n, Rz2n+1, (1− β)t),

M(Pz2n, T z2n+1, (1 + β)t))


M(w2n, w2n+1, kt) ≥ min

 (M(w2n−1, w2n, t),M(w2n−1, w2n, t),
M(w2n, w2n+1, t),M(w2n, w2n, (1− β)t),

M(w2n−1, w2n+1, (1 + β)t))


M(w2n, w2n+1, kt) ≥ min

(M(w2n−1, w2n, t),M(w2n−1, w2n, t),
M(w2n, w2n+1, t), 1,

M(w2n−1, w2n+1, (1 + β)t))


≥ min

{
(M(w2n−1, w2n, t),M(w2n, w2n+1, t),

M(w2n−1, w2n+1, (1 + β)t))

}
≥ min

{
(M(w2n−1, w2n, t),M(w2n, w2n+1, t),
M(w2n−1, w2n, (t),M(w2n, w2n+1, (βt))

}
≥ min

{
(M(w2n−1, w2n, t),M(w2n, w2n+1, t),

M(w2n, w2n+1, (βt))

}
As ∆ is continuous, letting β → 1, we get

M(w2n, w2n+1, kt) ≥ min

{
(M(w2n−1, w2n, t),M(w2n, w2n+1, t),

M(w2n, w2n+1, (t))

}
= min{M(w2n−1, w2n, t),M(w2n, w2n+1, t)}.

Then M(w2n, w2n+1, kt) ≥ min{M(w2n−1, w2n, t),M(w2n, w2n+1, t)}.
Similarly,

M(w2n+1, w2n+2, kt) ≥ min{M(w2n, w2n+1, t),M(w2n+1, w2n+2, t}.

Thus, for all n even or odd, we have

M(wn, wn+1, kt) ≥ min{M(wn−1, wn, t),M(wn, wn+1, t)}.
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Consequently,

M(wn, wn+1, t) ≥ min

{
M

(
wn−1, wn,

t

k

)
,M

(
wn, wn+1,

t

k

)}
.

By repeated application of above inequality, we get

M(wn, wn+1, t) ≥ min

{
M

(
wn−1, wn,

t

k

)
,M

(
wn, wn+1,

t

km

)}
.

Since M(wn, wn+1,
t

km )→ 1 as m→∞, it follows that

M(wn, wn+1, kt) ≥M(wn−1, wn, t) for all n ∈ N for all t > 0.

So by Lemma 2.5, {wn} is a Cauchy sequence in X and hence it converges to some
point u ∈ X. Consequently, the subsequence {Sz2n}, {Rz2n+1}, {Tz2n+1} and
{Pz2n} of {wn} also converges to u.

Now, suppose that P is continuous. Since P and S are compatible of type (R),
by Proposition 2.3, PPz2n and SPz2n converges to Pu as n→∞.

We claim that u = Pu. Putting z = Pz2n and w = z2n+1, α = 1 in inequality
(3.2), we have

M(SPz2n, T z2n+1, kt) ≥ min

(M(PPz2n, Rz2n+1, t),M(PPz2n, SPz2n, t),
M(Rz2n+1, T z2n+1, t),M(SPz2n, Rz2n+1, t),

M(PPz2n, T z2n+1, t))


Letting n→∞. Then we have

M(Pu, u, kt) ≥ min

{
(M(Pu, u, t),M(Pu, Pu, t),

M(u, u, t),M(Pu, u, t),M(Pu, u, t))

}
M(Pu, u, kt) ≥M(Pu, u, t).

By Lemma 2.6, Au = u.
Next we claim that u = Su. Putting z = u and w = z2n+1, α = 1 in inequality

(3.2), we have

M(Su, Tz2n+1, kt) ≥ min

{
(M(Pu,Rz2n+1, t),M(Pu, Su, t),M(Rz2n+1, T z2n+1, t),

M(Su,Rz2n+1, t),M(Pu, Tz2n+1, t))

}
Letting n→∞. Then we have

M(Su, u, kt) ≥ min

{
(M(u, u, t),M(u, Su, t),

M(u, u, t),M(u, u, t),M(u, u, t))

}
.

Thus M(Su, u, kt) ≥ M(Su, u, t). By Lemma 2.6, Su = u. Since S(X) ⊂ R(X),
there exists a point v ∈ X such that u = Su = Rv.

We claim that u = Tv. Putting z = u and w = v, α = 1 in inequality (3.2), we
have

M(u, Tv, kt) = M(Su, Tv, kt) ≥ min

{
(M(Pu,Rv, t),M(Pu, Su, t),M(Rv, Tv, t),

M(Su,Rv, t),M(Pu, Tv, t))

}
M(u, Tv, kt) ≥ min{M(u, u, t),M(u, u, t),M(u, Tv, t),M(u, u, t),M(u, Tv, t)}.
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Then M(u, Tv, kt) ≥ M(u, Tv, t). By Lemma 2.6, u = Tv. Since R and T are
compatible of type (R) and Rv = Tv = u, by Proposition 2.2, RTv = TRv and
hence Ru = RTv = TRv = Tu. Also, we have

M(u,Ru, kt) = M(Su, Tu, kt)

≥ min

{
(M(Pu,Ru, t),M(Pu, Su, t),M(Ru, Tu, t),

M(Su,Ru, t),M(Pu, Tu, t))

}
= min

{
(M(u,Ru, t),M(u, u, t),M(Ru,Ru, t),

M(u,Ru, t),M(u,Ru, t))

}
.

Thus M(u,Ru, kt) ≥ M(u,Ru, t). By Lemma 2.6, u = Ru. So u = Ru = Tu =
Pu = Sz. Hence u is a common fixed point of P , S, R and T .

Similarly, we can complete the proof when R is continuous.
Next, suppose that S is continuous. Since P and S are compatible of type (R),

by Proposition 2.3, SSz2n and Sz2n converges to Su as n→∞.
We claim that u = Su. Putting z = Sz2n and w = z2n+1, α = 1 in inequality

(3.2), we have

M(SSz2n, T z2n+1, kt) ≥ min

(M(PSz2n, Rz2n+1, t),M(PSz2n, SSz2n, t),
M(Rz2n+1, T z2n+1, t),M(SSz2n, Rz2n+1, t),

M(PSz2n, T z2n+1, t))

 .

Letting n→∞. Then we have

M(Su, u, kt) ≥ min

{
(M(Su, u, t),M(Su, Su, t),M(u, u, t),

M(Su, u, t),M(Su, u, t))

}
.

Thus M(Su, u, kt) ≥ M(Su, u, t). By Lemma 2.6, Su = u. Since S(X) ⊂ R(X),
there exists a point p ∈ X such that u = Su = Rp.

We claim that u = Tp. Putting z = Sz2n and w = p, α = 1 in inequality (3.2),
we have

M(SSz2n, Tp, kt) ≥ min

{
(M(PSz2n, Rp, t),M(PSz2n, Sz2n, t),M(Rp, Tp, t),

M(SSz2n, Rp, t),M(PSz2n, Tp, t))

}
.

Letting n→∞. Then we have

M(u, Tp, kt) ≥ min

{
(M(u, u, t),M(u, u, t),M(u, Tp, t),

M(u, u, t),M(u, Tp, t))

}
.

Thus M(u, Tv, kt) ≥ M(u, Tv, t). By Lemma 2.6, u = Tp. Since R and T are
compatible of type (R) and Rp = Tp = u, by Proposition 2.3, RTp = TRp. So
Ru = RTp = TRp = Tu.

We claim that u = Tu. Putting z = z2n and w = u, α = 1 in inequality (3.2), we
have

M(Sz2n, Tu, kt) ≥ min

{
(M(Pz2n, Ru, t),M(Pz2n, Sz2n, t),M(Ru, Tu, t),

M(Sz2n, Ru, t),M(Pz2n, Tu, t))

}
.

Letting n→∞. Then we have

M(u, Tu, kt) ≥ min

{
(M(u, Tu, t),M(u, u, t),M(Tu, Tu, t),

M(u, Tu, t),M(u, Tu, t))

}
.
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Thus M(u, Tu, kt) ≥ M(u, Tu, t). By Lemma 2.6, Tu = u. Since T (X) ⊂ P (X),
there exists a point x ∈ X such that u = Su = Ax.

We claim that u = Sx. Putting z = x and w = u, α = 1 in inequality (3.2), we
have

M(Sx, u, kt) = M(Sx, Tu, kt)

≥ min

{
(M(Px,Ru, t),M(Px, Sx, t),M(Ru, Tu, t)

M(Sx,Rx, t),M(Px, Tu, t))

}
= min

{
(M(u, u, t),M(u, Sx, t),M(Tu, Tu, t),

M(Sx, u, t),M(u, u, t))

}
.

Then M(Sx, u, kt) ≥ M(u, Sx, t). By Lemma 2.6, u = Sx. Since P and S are
compatible of type (R) and Sx = Px = u, by Proposition 2.3, PSx = SPx. Thus
Pu = PSx = SPx = Su. So u = Ru = Tu = Pu = Su. Hence u is a common fixed
point of P , S, R and T .

Similarly, we can complete the proof when T is continuous.

Uniqueness: If possible let u and v be two fixed point of the mappings P , R, S
and T .

Finally, we claim that u = v. Putting z = u and w = v, α = 1 in inequality (3.2),
we have

M(Su, Tv, kt) = M(u, v, kt)

≥ min

{
(M(Pu,Rv, t),M(Pu, Su, t),M(Rv, Tv, t),

M(Su,Rv, t),M(Pu, Tv, t))

}
= min

{
(M(u, v, t),M(u, u, t),M(v, v, t),

M(u, v, t),M(u, v, t))

}
.

Then M(u, v, kt) ≥ M(u, v, t). By Lemma 2.6, u = v. Thus P , S, R and T have a
unique common fixed point. �

Next we prove the following theorem for compatible mappings of type (K).

Theorem 3.2. Let P , S, R and T be mappings of a complete Fuzzy metric space
(X,M,∆) into itself satisfying the conditions (3.1), (3.2) of Theorem 3.1. Suppose
that the pairs P , S and R, T are reciprocally continuous. Assume that the pairs P ,
S and R, T are compatible of type (K). Then P , S, R and T have a unique common
fixed point in X.

Proof. Now from the proof of Theorem 3.1, we can easily prove that {wn} is Cauchy
sequence in X and thus it converges to some point u ∈ X. Consequently, the
subsequence {Sz2n}, {Rz2n+1}, {Tz2n+1} and {Pz2n} of {wn} also converges to u.
Since the pairs P , S and R, T are compatible of type (K), we have PPz2n → Su,
SSz2n → Pu and RRz2n → Tu, TTz2n+1 → Ru as n→∞.

We claim that Ru = Pu. Putting z = Sz2n and w = Tz2n+1, α = 1 in inequality
(3.2), we have

M(SSz2n, TTz2n+1, kt) ≥ min

 (M(PSz2n, RTz2n+1, t),M(PSz2n, SSz2n, t),
M(RTz2n+1, TTz2n+1, t),M(SSz2n, RTz2n+1, t),

M(RSz2n, T z2n+1, t))

 .
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Letting n→∞ and using reciprocal continuity of the pairs P , S and R, T , we have

M(Pu,Ru, kt) ≥ min

{
(M(Au,Ru, t),M(Pu, Pu, t),M(Ru,Ru, t),

M(Pu,Ru, t),M(Pu,Ru, t))

}
.

we get M(Pu,Ru, kt) ≥M(Pu,Ru, t). By Lemma 2.6, Pu = Ru.
Next we claim that Ru = Su. Putting z = u and w = Tz2n+1, α = 1 in inequality

(3.2), we have

M(Su, TTz2n+1, kt) ≥ min

 (M(Pu,RTz2n+1, t),M(Pu, Su, t),
M(RTz2n+1, TTz2n+1, t),M(Su,RTz2n+1, t),

M(Pu, TTz2n+1, t))

 .

Letting n→∞ and using reciprocal continuity of the pairs P , S and R, T , we have

M(Su,Ru, kt) ≥ min

{
(M(Ru,Ru, t),M(Ru, Su, t),M(Ru,Ru, t),

M(Su,Ru, t),M(Ru,Ru, t))

}
.

Thus M(Su,Ru, kt) ≥M(Su,Ru, t). By Lemma 2.6, Su = Ru.
We claim that Su = Tu. Putting z = u and w = u, α = 1 in inequality (3.2), we

have

M(Su, Tu, kt) ≥ min

{
(M(Pu,Ru, t),M(Pu, Su, t),M(Ru, Tu, t),

M(Su,Ru, t),M(Pu, Tu, t))

}
M(Su, Tu, kt) ≥ min

{
(M(Ru,Ru, t),M(Pu, Pu, t),M(Su, Tu, t),

M(Su, Su, t),M(Su, Tu, t))

}
.

So M(Su, Tu, kt) ≥M(Su, Tu, t). By Lemma 2.6, Su = Tu.
We claim that u = Tu. Putting z = z2n and w = u, α = 1 in inequality (3.2), we

have

M(Sz2n, Tu, kt) ≥ min

{
(M(Pz2n, Ru, t),M(Pz2n, Sz2n, t),

M(Ru, Tu, t),M(Sz2n, Ru, t),M(Rz2n, Tu, t))

}
.

Letting n→∞. Then we have

M(u, Tu, kt) ≥ min

{
(M(u, Tu, t),M(u, u, t),M(u, Tu, t)

M(u, Tu, t),M(u, Tu, t))

}
.

Thus M(u, Tu, kt) ≥ M(u, Tu, t). By Lemma 2.6, u = Tu. So u = Bu = Tu =
Au = Su. Hence u is a common fixed point of P , S, R and T .

Uniqueness: If possible let u and v be two fixed point of the mappings P , R, S
and T .

Finally, we claim that u = v. Putting z = u and w = v, α = 1 in inequality (3.2),
we have

M(Su, Tv, kt) = M(u, v, kt)

≥ min

{
(M(Pu,Rv, t),M(Pu, Su, t),M(Rv, Tv, t)

M(Su,Rv, t),M(Pu, Tv, t))

}
= min{M(u, v, t),M(u, u, t),M(v, v, t),M(u, v, t),M(u, v, t)}.

Then M(u, v, kt) ≥ M(u, v, t). By Lemma 2.6, u = v. Thus P , S, R and T have a
unique common fixed point. �
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Now we prove the following theorem for compatible mappings of type (E).

Theorem 3.3. Let P , R, S and T be mappings of a complete Fuzzy metric space
(X,M,∆) into itself satisfying the conditions (3.1), (3.2) of Theorem 3.1. Suppose
that one of P and S is continuous and one of R and T is continuous. Assume that
the pairs P , S and R, T are compatible of type (E). Then P , R, S and T have a
unique common fixed point in X.

Proof. Now from the proof of Theorem 3.1, we can easily prove that {wn} is Cauchy
sequence in X and hence it converges to some point u ∈ X. Consequently, the
subsequence {Sz2n}, {Rz2n+1}, {Tz2n+1} and {Pz2n} of {wn} also converges to u.

Now, suppose that one of the mappings P and S is continuous. Since P and S are
compatible of type (E), by Proposition 2.4, Pu = Su. Since S(X) ⊂ R(X), there
exists a point v ∈ X such that Su = Rv.

We claim that Su = Tv. Putting z = u and w = v, α = 1 in inequality (3.2), we
have

M(Su, Tv, kt) ≥ min

{
(M(Pu,Rv, t),M(Pu, Su, t),M(Rv, Tv, t),

M(Su,Rv, t),M(Pu, Tv, t))

}
= min

{
(M(Pu, Su, t),M(Su, Su, t),M(Su, Tv, t),

M(Su,Rv, t),M(Su, Tv, t))

}
.

Then M(Su, Tv, kt) ≥ M(Su, Tv, t). By Lemma 2.6, Su = Tv. Thus Pu = Su =
Tv = Rv.

We claim that Su = u. Putting z = u and w = z2n+1, α = 1 in inequality (3.2),
we have

M(Su, Tz2n+1, kt) ≥ min

{
(M(Pu,Rz2n+1, t),M(Pu, Su, t),M(Rz2n+1, T z2n+1, t),

M(Su,Rz2n+1, t),M(Pu, Tz2n+1, t))

}
= min

{
(M(Su, u, t),M(u, u, t),M(u, u, t),

M(Su, u, t),M(Su, u, t))

}
.

Thus M(Su, u, kt) ≥ M(Su, u, t). By Lemma 2.6, u = Su. So u = Ru = Tu =
Pu = Su. Hence u is a common fixed point of P , S, R and T .

Again, suppose R and T are compatible of type (E) and one of the mappings R
and T is continuous. Then we get Rv = Tv = u. By Proposition 2.4, RRv = RTv =
TRv = TTv. Thus Ru = Tu.

We claim that u = Tu. Putting z = z2n and w = u, α = 1 in inequality (3.2), we
have

M(Sz2n, Tu, kt) ≥ min

{
(M(Pz2n, Ru, t),M(Pz2n, Sz2n, t),M(Ru, Tu, t),

M(Sz2n, Ru, t),M(Pz2n, Tu, t))

}
.

Letting n→∞. Then we have

M(Su, u, kt) ≥ min

{
(M(Su, u, t),M(Su, Su, t),M(u, u, t),

M(Su, u, t),M(Su, u, t))

}
.

Thus M(Su, u, kt) ≥ M(Su, u, t). By Lemma 2.6, Su = u. Since S(X) ⊂ R(X),
there exists a point p ∈ X such that u = Su = Rp.
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We claim that u = Tp. Putting z = Sz2n and w = p, α = 1 in inequality (3.2),
we have

M(SSz2n, Tp, kt) ≥ min

{
(M(PSz2n, Rp, t),M(PSz2n, Sz2n, t),M(Rp, Tp, t),

M(SSz2n, Rp, t),M(Pu, Tp, t))

}
.

Letting n→∞. Then we have

M(u, Tp, kt) ≥ min

{
(M(u, u, t),M(u, u, t),M(u, Tp, t),

M(u, u, t),M(u, Tp, t))

}
.

Thus M(u, Tp, kt) ≥ M(u, Tp, t). By Lemma 2.6, u = Tp. Since R and T are
compatible of type (R) and Rp = Tp = u, by Proposition 2.4, RTp = TRp. So
Ru = RTp = TRp = Tu.

We claim that u = Tu. Putting z = z2n and w = u, α = 1 in inequality (3.2), we
have

M(Sz2n, Tu, kt) ≥ min

{
(M(Pz2n, Ru, t),M(Pz2n, Sz2n, t),M(Ru, Tu, t),

M(Sz2n, Ru, t),M(Pz2n, Tu, t))

}
.

Letting n→∞. Then we have

M(u, Tu, kt) ≥ min

{
(M(u, Tu, t),M(u, u, t),M(Tu, Tu, t),

M(u, Tu, t),M(u, Tu, t))

}
.

Thus M(u, Tu, kt) ≥M(u, Tu, t). By Lemma 2.6, Tu = u. So u = Ru = Tu. Hence
u is a common fixed point of P , S, R and T .

Similarly, we can complete the proof when T is continuous.

Uniqueness: If possible let u and v be two fixed point of the mappings P , R, S
and T .

Finally, we claim that u = v. Putting z = u and w = v, α = 1 in inequality (3.2),
we have

M(Su, Tv, kt) = M(u, v, kt)

≥ min

{
(M(Pu,Rv, t),M(Pu, Su, t),M(Rv, Tv, t),

M(Su,Rv, t),M(Pu, Tv, t))

}
= min

{
(M(u, v, t),M(u, u, t),M(v, v, t),

M(u, v, t),M(u, v, t))

}
.

Then M(u, v, kt) ≥ M(u, v, t). By Lemma 2.6, u = v. Thus P , S, R and T have a
unique common fixed point. �
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