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ABSTRACT.  In this paper, we have introduced various types of r-fuzzy
ideal continuity based on a fuzzy ideal I on a fuzzy topological space (X, 7).
According to various types of r-fuzzy ideal openness, many implications
between these types of r-fuzzy ideal continuity are illustrated. Fuzzy ideal
openness and fuzzy ideal -continuity are the core of these types of conti-
nuity. Fuzzy grills are investigated, and it is shown that studying concepts
in view of fuzzy ideals is equivalent to studying the same concepts in view
of fuzzy grills.
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1. INTRODUCTION AND PRELIMINARIES

Using a fuzzy ideal 7 defined on a fuzzy topological space (X, 1), it is generated
afuzzy ideal topological space (X, 7, I). Itis a way of generalization of many notions
and results in fuzzy topological spaces. The main definition of fuzzy topology was
defined by Sdstak in [8]. The notion of fuzzy ideal was given in [7], and various
types of fuzzy continuity were defined and studied in [1, 2, 4, 5, 6, 7]. The notion
of fuzzy grill was given in [3]. Tripathy and et. in [9, 10, 11, 12, 13], introduced
many research studies on fuzzy topological spaces, fuzzy ideal topological spaces
and several types of fuzzy continuity.

In this paper, several types of r-fuzzy ideal openness and r-fuzzy ideal continuity
areintroduced and studied. Itisproved many implicationsinbetween these notions
of r-fuzzy ideal continuity itself in fuzzy ideal topological spaces, and also between
these notions of r-fuzzy ideal continuity and the notions of usual r-fuzzy continuity
in fuzzy topological spaces. Fuzzy grill notion is introduced and it is proved
that there is a one-to-one correspondence between the fuzzy ideal notion and the
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fuzzy grill notion. From that correspondence, any topological fuzzy property was
generalized to the fuzzy ideal topological spaces could be generalized to the fuzzy
grill topological spaces, and the converse is also true. As a conclusion, adding
a fuzzy ideal 1 on a fuzzy topological space (X,7) gives us a generalization of
fuzzy topological properties equivalent to the generalization has been made by
adding a fuzzy grill G on the space (X, 7). r-fuzzy ideal compactness and fuzzy
grill compactness are introduced using the fuzzy ideal 7 and the fuzzy grill G on
X respectively, giving a generalization of r-fuzzy compactness. This is a short
study on fuzzy ideal compactness, just to illustrate that studying one of the fuzzy
topological properties based on fuzzy ideals or based on fuzzy grills is identical.
Throughout the paper, X refers to an initial universe, IX is the set of all fuzzy sets on
X (whereI =[0,1],1p = (0,1], A°(x) = 1-A(x) Vx € X and for all t € I, {(x) = t Vx € X).
(X, 1) is a fuzzy topological space as in [5].

A map 7 : I¥ — I is called a fuzzy ideal ([7]) on X if it satisfies the following
conditions:

) I0) =1,
() A<p = I(A)>TI(p)forall A, uel¥,

(i) Z(AV u) > Z(A) A Z(u) forall A, u € IX.

If 71 and 7, are fuzzy ideals on X, we have 1 is finer than 7, (7 is coarser than
1), denoted by 71 < 1, iff T1(A) < I(A) VA € IX. The triple (X, 7, 1) is called a
fuzzy ideal topological space. Also, T is called proper if 7(1) = 0. Define the fuzzy
ideal 7°by I°(u)=1 at p=0 and I°(u) =0 otherwise.

Let us define the fuzzy difference between two fuzzy sets as follows:

(D if A<p,
AAp) = { AApS  otherwise.

Consider the family ) denotes the set of all fuzzy subsets of a given set X
satisfying the following condition: VYA, ue€Q, A<p or u<A.
Note that: For each A, u, v € Q, we have:
W) vAMAR = (VAL V (v A p),
2 AV Av = AAV) V (LAD).

Definition 1.1. Let (X, 7, 7) be a fuzzy ideal topological space and A € IX. Then,
the r-fuzzy open local function A;(z, I) of A is defined by:

Ax(t, I) = /\{y e X T(AAp) > 1, T(u) > 1},
Occasionally, we will write A} or A;(Z) for A;(t, I) and it will be no ambiguity.

Example 1.2. Let (X, 7, 1) be a fuzzy ideal topological space. The simplest fuzzy
ideal on X is the ideal 7°. If I = I° then, for each A € IX, r € I;, we have
Ay = cl(A, 7).

Proposition 1.3. Let (X, 7, I) be a fuzzy ideal topological space and 1,1, be fuzzy ideals
on X. Then
(1) A <u implies Ay < uj,
(2) if I1 <1y, then Ay(11) = Ai(T>),
138
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B) A =cly (AL, r) <cl(A,r)and (A}); < A
@) AV < AV, and AL A pp > (A A )y
(5) if I(u) >r, then (AV u). > AL

Proof. (1) Suppose A; £ u;, then there exists v € [X with T(uAv) > r, for each
T(v°) > r such that A} > v > yj. Since A < y, AAv < pAvand I (AAv) > IT(uAv) > 7,
for each 7(v°) > r. Thus A; < v and so we arrive at a contradiction. Hence A; < .

(2) Suppose Ai(Z1) # Ai(Z7), then there exists v € IX with T1(AAv) > r, for each
T(1°) = r such that A;(Z71) < v < Aj(J7). Since (Z1 is finer than 75) Z(AAvV) >
T1(AAv) > r, for each T(v°) = r, A}(J2) < v. Which is a contradiction. Thus
NI = A (D).

(3) Suppose A; £ cl;(A,7). Then, there exists v € IX with A < v, 7(+°) > r such
that A2 > v > cl(A,r). Since A < v, T(AAv) > r with 7(v°) > r. Thus A} < v.
It is a contradiction. So A; = cl;(A;,r) < cl(A, 7). Hence from (3), we have
A5 = (A5 1) < el 1) = A5

(4) Since A, u < AV u. By (1), we have A; < (A V w);, uy < (A V u);. Then
AV < (AV )y

(5) Can be easily established using standard technique. ]

Lemma 1.4. Let 7 : Q — I be a fuzzy topology on X and I : Q — I a fuzzy ideal on X.
Then, for each A, u € Q, r € Iy,

(1) AV = AV o,

@) If I(u) =1, then (AV )y = A

Proof. (1) Already, wehave A;Vyu; < (AVu);. Suppose A;Vu; # (AVu);. Then, there
exist vi, vy € Q, T(AAvy) > r with 7(v]) > r and I (uAvz) > r with 7(v5) > r such that
AV < viVyy < (AV ) But(AV p)AWI Vo) = (AAWV1 V1))V (UA(VL Vin)) <
(AAV1) V (UAVy), and then T((A V p)A(v1 Vvp)) = r and t((v1 V 12)°) = r. Thus
(AV )y < v1 Vv, whichis a contradiction. So A} V u; > (A V p);.

(2) Clear. O

Proposition 1.5. Let (X, 7, 1) be a fuzzy ideal topological space and {uj: j € J} CIXa
family. Then

W) V@) el < (V) : jely,

@) ANy = jeD = (Aw) = jel
Proof. (1) Since uj < \/ u;jVj € ], and by (1) in Proposition 1.3, we have (\/(y))); =
(uj);, j € J. Then (1) holds.

(2) Similar to the proof of (1). O
Definition 1.6. Let (X, 7, 1) be a fuzzy ideal topological space and u € IX. Then
ci(ur)=p VvV and inti(u,r) = p A ((E))"

cl; is a fuzzy closure operator and 7*(7) is a fuzzy topology on X generated by cl,
thatis, (v"(X))(u) = Vir € Ip: cli(u,r) = pu}. Now, if 7 = I°, then for each
pelXrely, ci(ur)=pvu;=upVcdyr)=cddyr). So, v(I°) =1
Proposition 1.7. Let (X, T, 1) be a fuzzy ideal topological space and A, . € IX, r € Iy. Then

(1) int;(AV u,r) 2 int;(A,r) Vint (u,7),
139
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(2) int;(A,7r) < int;(A,7) < A < ci(A, 1) < (A7),
(3) cl'(A%,7) = (int'(A, 7)) and int:(A°,7) = (cL.(A, 7).,
4) int;(A A p,r) < int;(A,7r) Adnt;(y, 7).

Proof. (1) From Proposition 1.3 (4), we have
inGA VL) = AV E) A (VP
AV A (A A (u)))

AA (A V (uA (1))
int;(A,r) Vv int;(y,7).

vV IV

(2) Follows directly from definitions of cl;, int; and cl,.

(B) (A%, 7) = (A) Vv (1)) = (A) V LAR)T = [A A (AT = [intz (A, )]
(4) From Proposition 1.3 (4), we have

AAw A (A p))))

(AA(AD)) A (@A (@)))

int;(A,r) A int (7).

int;(AAu,r)

IA

O

Lemma 1.8. Let 7 : Q) — I be a fuzzy topology on X and I : QO — I a fuzzy ideal on X.
Then, for each A, u € Q, r € Iy, the operator int;, : Q X Iy — Q satisfies the following:

int, (A A p),7r) = int;(A,7) A inti(u, 7).

Proof. From Proposition 1.7 (4), and from Lemma 1.4. O

Corollary 1.9. Let (X, 71,1), (X, 12, 1) be fuzzy ideal topological spaces and t1 < T,.
Then, for each A € IX, r € Iy, Aj(t2,X) < Aj(t1, 1) and ©j(I) < t3y(1).

Corollary 1.10. Let (X,7,11), (X, 7,1>) be fuzzy ideal topological spaces and 11 < I>.
Then, foreach A € IX, r € Iy, Ai(t,I1) > Ai(t, I2) and ©(I1) < T°(12).

Proposition 1.11. Let (X, 1) be a fuzzy topological space, and 11,1, fuzzy ideals on X.
Then, for each A € IX, r € I,

(1) /\:(T/ Il A IZ) = /\:(T/ Il) 4 /\:(T/ IZ)/
() At 11V Iy) = AUt (Z2), 11) A AT (1h), 12).

Proof. (1) Suppose A;(t,11 AL3) £ Ay(t,11)V A(t, I3). Then, there exist vy, v, € X,
I1(AAv1) 2 rwith 7(v]) > rand T2(AAv,) > r with T(v§) > rsuch that Aj(t, 71 A 1) >
1 Vvy > AT, I1) V Au(t, I3). Since (£1 A 12)(AA(v1 V) = rand T((v1 V n)°) > 7,
Ax(t, 271 A I3) <v1V vy Whichis a contradiction. Thus, Aj(t, 71 A Zp) < Aj(t, I1)V
/\:(T, Iz)

Conversely, since 71 A1, < 11,1, by Proposition 1.3 (2), we get that A;(7, 71 A
I5) = A(t, I1) vV AT, I,). Thus Aj(t, 11 A Lo) = A, I1) V Ai(T, I)).

(2) Suppose Ay(t, 11V 1) # AN1"(L2),11) A Ay(1°(Z1),12). Then, there exists
velX, (I1V I,)(AAV) > r with 7(v°) > r such that

At IV ) <v < AT (T), I1) A AT (), Ta).
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Thus 71(AAV) > r or I(AAV) > r with t(v°) > r. But t < 7" implies 7°(Z1)(v°) >
r and T(Z£)(v°) = r. So A(t*(L2),Z1) < v and AN(7t*(L1),Z2) < v, whichis a
contradiction.

Conversely, similarly, we get that A;(t, 71VI,) < Ay (t'(Z2), T1)AA(T*(Z1),12). O

(1) and (7*(1))*(Z) (t*, for short) are equal for any fuzzy ideal on X.

Corollary 1.12. Let (X, 1, 1), be a fuzzy ideal topological space. For any A € IX, r € I,
then Ay(t, 1) = Ay(t*, 1) and ©v'(X) = v (Putting 11 = I, in Proposition 1.11).

Corollary 1.13. Let (X, 7) be a fuzzy topological space and 11, 1, fuzzy ideals on X. Then,
(from Proposition 1.11),

(1) TV I)=(T"(L2)) (1) = (T"(L1))y (L2),
Q) TI1AI) =TT1) AT (T2)

2. CONTINUITY BETWEEN FUZZY IDEAL TOPOLOGICAL SPACES
Definition 2.1. Amap f: (X, 7, 7) — (Y, 0) is called:

(i) fuzzy ideal continuous (FICt, for short), if f~1(A) < int((f"1(A);),7), for

each A € IY with o(A) > 7, r € I,

(ii) fuzzyideal precontinuous (FIPCt, forshort), if f~1(A) < int.(cl;(f"1(A),7),7),
for each A € IY with a(A) > 1, r € I,

(iii) fuzzy ideal semi-continuous (FISCt, forshort), if f~1(A) < cli(int.(f~1(A),7),7),
for each A € IV with 6(A) > 1, r € I,

(iv) fuzzyideal a-continuous (FIaCt, for short), if f~1(A) < int.(cl;(int.(f~1(A),7),7),7),
for each A € IV with o(A) > 1, r € Iy,

(v) fuzzyideal B-continuous (FIBCt, for short), if f~1(A) < cl.(int.(cl;(f (1), 1), 1), 7),
for each A € IY with 6(A) > 7, r € I,.

The implications in the following diagrams are satisfied:

FCt FlaCt FISCt ——— = FSCt

FICt FIPCt FIfCt ——— = FBCt

and
FlaoCt —— FaCt

FIPCt —— FPCt
141
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where FCt, FSCt, FaCt, FBCt, FPCt are the abbreviations of both of the notions of
fuzzy continuity, fuzzy semi-continuity, fuzzy a-continuity, fuzzy p-continuity and
fuzzy pre-continuity, respectively which are studied in details in [7, 4, 5, 6, 1, 2].

Example 2.2. Let X be a non-empty set. Define 7,7} : X —>1,i=1,2,3,4,5,
k=1,2 as follows:
1 atA=0,1
71(A) = { 03 atA=04,06
0 otherwise,

1 atA = 6,T
T2(A) = { 03 atA=05
0 otherwise,

1 atA=0,1
73(A) ={ 03 atA=05,07
0 otherwise,

1 atA = 6,T
4(A) =<{ 03 atA =08
0 otherwise,

1 atA=0,1
75(A) = { 03 atA=0.2,08
0 otherwise,

1 atA=0
I1(A) =3 03 at0<A<04
0 otherwise,

1 atA=0
I,(A) ={ 03 at0<A<0.1
0 otherwise.
(1) The identity function idx : (X, 71,71) — (X, 12) is FPCt but it is neither FCt
nor FICt.
(2) The identity function idx : (X, 13,12) — (X, t4) is FICt but it is not FCt.
(3) The identity function idx : (X, 75, 71) — (X, 72) is FIBCt but it is neither FISCt
nor FlaCt.
(4) The identity function idx : (X, 75, 71) — (X, 12) is FIPCt but it is not FlaCt.

Example 2.3. Let X = {a,b,¢}, 7,7°, 1 : IX — [ be defined by:

1 atA=0,1
T(/\) = 0.5 at A= ag3VbysVcos
0 otherwise,

1 at A = 6,T
T(A) =4 033 at A= apaVbosVcor
0 otherwise,
142
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1 atA=0
I(A) =¢ 05 at0<A<0.3
0 otherwise.
Then, the identity function f : (X, 7, 7) — (X, 7*) is FIBCt, but it is neither FIPCt nor
FlaCt.

Theorem 2.4. Let f : (X,7,1) — (Y,0) be a function. Then, the following statements are
equivalent:

(1) fis FIBCt,

(2) f~Y(A)isr-FIB-closed (i.e. f~1(A) > int,(cl.(int,(f~1(A),7),7),7)), foreach A € IY

with o(A°) > 1, r €1y,

(3) int (cl(int;(f~1(A),7),7),7) < fUcls(A, 7)), foreach A €IV, r € I,

(4) f(int.(cl(int;(u,7),7),7)) < clo(f(w),r), for each p € IX, r € I.
Proof. (1) = (2): Easy, so omitted.

(2) = (3): Let A € IY, r € I). Since o((cl,(A,7))) > r, by (2), f1(cls(A, 7)) is

r-FIB-closed and (f~!(cl;(A, 7))) is r-FIB-open. Thus

(FHelo@, M) < ele(inte (i ((F 7 (clo (A, M))), 7), 1), 7)
(inte(cle (int;((f 7 (clo(A, ))), 1), 1), 7))

So we obtain int(cl(int.((f(cl,(A, 7)), 7),7),7) < fH(cl,(A, 7).
(3) = (4): For any u € I%, r € Iy, by (3), we have

intc(cle(int; (1, 7), 1), 1) < inte(cle(inty (F (F(W), 1), 1),7) < F7H(elo(f (1), 7).

Then f(int (cl.(int;(u,7),7),7)) < cls(f(1), 7).
(4) = (1): Let A € I', r € Iy with 6(A) > r. Then, by (4),

f(int(cl (int,(f (A, 7),1),7) < do(f(f(A)), 1) < (A7) = A5,
which means int.(cl,(int;(f"1(A),7),7),7) < f1(A°) = (f"1(A))°. Thus we obtain
that f~1(A) < cl(int(cl;(f~}(A),7),7),7). So f~l(A) is r-FIB-open. Hence f is
FIBCt. o

Theorem 2.5. Let f : (X, 7,1) — (Y,0) be a function. Then, the following statements are
equivalent:
(1) f is FIPCt,
(2) f~YA)is r-FI-preclosed (i.e. f~1(A) > cl(int.(f1(A), 7), 7)), foreach A € IV with
o(A) =1, rel,
(3) cl(inti(f71(A),1),7) < fUcs(A, 7)), foreach A €IV, r € I,
(@) f(cl(inti(y,1),7)) < clo(f(u),7), for each u € IX, r € I.

Proof. Can be established following Theorem 2.4. o

Theorem 2.6. Let f : (X, 7,1) — (Y,0) be a function. Then, the following statements are
equivalent:
(1) fis FISCt,
(2) f~YA) is r-Fl-semi-closed (i.e. f~'(A) > int.(cl.(f"1(A),7),7)), for each A € I¥
with a(A°) 21, r € Iy,
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(3) int (cLi(f~1(A),7),7) < fUcs(A, 7)), foreach A €IV, r € I,
(4) f(int(cli(y,1),7) < clo(f(u),7), for each u € IX, r € I.

Proof. Can be established following Theorem 2.4. ]

Theorem 2.7. Let f : (X, 7,1) — (Y,0) be a function. Then, the following statements are
equivalent:

(1) fis FlaCt,

(2) f~Y(A)is r-Fla-closed (i.e. f™1(A) > cl.(int;(cl.(f*(A),7),7),7)), foreach A € I'

with 6(A°) > 1, r € I,

(3) clo(inti(cl(f71(A),7),7),7) < FUcls(A, 7)), foreach A € IV, 7 € I,

(@) f(cl(inti(cle(u,7),7),7) < clo(f(w),7), for each p € IX, r € I.
Proof. Can be established following Theorem 2.4. ]
Corollary 2.8. Let f : (X,7,1) — (Y,0) be an FlaCt function. Then

(1) f(cLi(A, 7)) < cdo(f(A), 1), for each r-Fl-preopen set A € IX, r € I,

(2) cL(f~Y(w), ) < fUcly(p, 7)), for each r-Fl-preopen set u € IV, r € I.

Proof. (1) Let A € IX be an r-FI-preopen set and r € I. Then A < int.(cl;(A,7),7).
Thus, by Theorem 2.7, we obtain

flelz(A,1) flcl(A,1)

flcle(inte(cl(A, 7), 1), 1))

flele(int:(cly (A, 7),7), 1)

f(cle(inti (cle(4,7),7),7))

cly(f(A), 7).

(2) Let u € I be an r-FI-preopen set and r € Iy. Then, by Theorem 2.7, we have
(W) < d(fT ),

cle(f~ (into(cl; (1,1, 1), 7)

cle(inte (el (inte (7 (inty (T (, 1), 1), 7),7),7),7)

cle(int; (cle(f~" (into (cly (1, 7), 7)), ), 7),7)

fH(elo(into (el (s, 1), 1), 1)

Sl (7))

IANININ CIN A

A

ININ IN A

Corollary 2.9. A function f : (X,7,1) — (Y,0)is FlaCt iff it is FISCt and FIPCt.

Corollary 2.10. Let f : (X, 7, 1) — (Y, 0) be a function, O a fuzzy operator on X, and 6 a
fuzzy operator on Y. Then, f is (5, 0)-continuous, if for each u € I¥ with o(u) > r, r € Iy,
we have 1 (u) < O(F 16y, 7)), 7).

We observe that the above definition generalizes the concepts of FICt (resp. FCt) when
we choose 6 = int;, and O = idy (resp. O = int; and 6 = idy). Also,
(1) if we take O = int.cl; and 6 = idy, then f is FIPCt,
(2) if we take O = cl int, and 6 = idy, then f is FISCt,
144
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(3) if we take 6 = int.cl int,; and 6 = idy, then f is FIaCt,
(4) if we take 6 = clyint.cl; and 6 = idy, then f is FIBCt.

3. Fuzzy GRILL TOPOLOGICAL SPACES

Amap G : I¥ — [ is called a fuzzy grill ([3]) on X, if it satisfies the following
conditions:
(i) G(0)=0 and G(1) =1,
(i) A<u = GA) < G(p) forall A, u € I%,
(iii) GA) V G(u) > GAV u) forall A, u € IX.
The triple (X, 7, G) is called a fuzzy grill topological space. Let G(X) denote the set
of all fuzzy grills on X.
Define the fuzzy grill G° by G°(u) =0 at u = 0and G°(u) = 1, otherwise.

Definition 3.1. Let (X, 7, G) be a fuzzy grill topological space and A € IX. Then, the
r-fuzzy local function A7 (7, G) of A is defined by:

A%(1,G) = /\{p e IX: GARW) <1, T(U°) = 7).
If G = G° then, for each A € IX, r € I), we have Ay = cl(A, 7).
Definition 3.2. Let (X, 7, G) be a fuzzy grill topological space and y € IX. Then,
i, r) =p vy and inti(u,r) = p A ()"
cl? is a fuzzy closure operator and 7°(G) is a fuzzy topology on X generated by cl3,
thatis, (°(@)(u) = Vir € Ilp: cli(us,r) = u}. Now, if G = G°, then for each
pelX,rely, i =pVur=pVcdcdyr)=cyr). So, 1°(G°) = 1.

Theorem 3.3. Let X be a non-empty set and let I, G : IX — I be two mappings satisfying
the following conditions:

3.1) ) = \/Ir : G <r;rel) VAel,

(3.2) Gr(A) = /\{r TN >r;rely) VAelX

If G is a fuzzy grill on X, then Ig is a fuzzy ideal on X generated by G. Also, if I is
a fuzzy ideal on X, then Gy is a fuzzy grill on X generated by I. This correspondence is
given by (3.1) and (3.2).

Proof. Let G be a fuzzy grill on X. Since G(0) =0 < rV¥r eIy, T4(0)=1.

Let u < A elIX, Ig(A) > r, r € I). Then, G(A) < r; r € Iy, which implies
G(u) < GA) <1; rely, and thus G(u) < r; r € Iy. So ITg(u) = r; r € I. That is,
Tg(w) = T4(M).

Let A, p € IX, with Tg(A) > 7, Tg(u) > s; 1,5 € Iy. Then G(A) <1, G(u) <s; 1,8 € Iy,
which means (rVs) > G(A) vV G(u) > G(A V ), thatis, Tg(A Vv u) > (rvs). Thus
TgAV ) > Tg(A)AIg(u). So Igisafuzzyideal on X generated by the fuzzy grill
G.

Similarly, Gr is a fuzzy grill on X generated by the fuzzy ideal 7. O
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Remark 3.4. Similar results as found in Proposition 1.3, Proposition 1.11 and Corol-
lary 1.9, Corollary 1.13 are also satisfied with respect to fuzzy grills in place of fuzzy
ideals.

Corollary 3.5. Let (X, T, G) be a fuzzy grill topological space. Then
(1) 13(6) = Ai(Ig), YA € X and AT) = ANGr) VA € K,
(2) cli(A,r) = (A, ), YA € IX,
©®) (@) =Tg), T)=1(G1)

Corollary 3.6. Forall G € G(X) and for all I € I(X), we have Gr, =G, Ig, =1.
Proposition 3.7. For I(X) and G(X), there is a one-to-one correspondence mapping.

Proof. Let h : G(X) — I(X) be a mapping defined by h(G) = Ig for each fuzzy
grill GonX. For G1,G> € G(X), we have: G = G, implies Ig, = Ig,, and also
Ig =1g, impliesthat G1 =G I = G T, = G». That s, I is an injective function.
From Theorem 3.3, we get that for any 7 € 7(X), there is a fuzzy grill Gr € G(X)
so that (from Corollary 3.6) h(Gr) = Ig, = I, and thus h is a surjective function.
Hence, & is a one-to-one correspondence between 7(X) and G(X).
The same result could be proved by amap k: 7(X) — G(X) defined by

k(I) = Gr for each fuzzy ideal 7 on X.

Several types of fuzzy continuity could be defined using the notion of fuzzy grills
similar to Definition 2.1 as follows:

Definition 3.8. Amap f: (X, 7,G) — (Y,0) is called:
(i) fuzzy grill continuous (FGCt, for short), if f~1(A) < int((f}(A)s), ), for

each A € IY with o(A) > 7, r € I,

(ii) fuzzy grill precontinuous (FGPCt, for short), if f~1(A) < int.(cl3(f1(A),7),7),
for each A € IY with (1) > 1, r € I,

(iii) fuzzy grill semi-continuous (FGSCt, for short),if f~1(A) < cl?(int.(f1(A), 1), 7),
for each A € IV with o(A) > 1, r € Iy,

(iv) fuzzy grill a-continuous (FGaCt, for short) if f~1(A) < int.(cl}(int(f (1), 1), 7),7)
for each A € IY with a(A) > 7, 7 € L.

(v) fuzzy grill B-continuous (FGBCt, for short), if f71(A) < cl.(int.(cl3(f1(A),7),7),7),
for each A € IY with 6(A) > 7, r € I,.

Also, the implications and diagrams of fuzzy ideal continuity are satisfied with
respect to fuzzy grills.

Corollary 3.9. Forall G € G(X) and for all T € I(X), we have f:(X,7,1g) = (Y,0)is
FICt (resp., FIcPCt, FIGSCt, FlgaCt, FIGECt) if f:(X,1,G) — (Y, 0) is FGCt (resp.,
FGPCt, FGSCt, FGaCt, FGBCt).

Conversely, f : (X,7,Gr) — (Y,0) is FG[Ct (resp., FGiPCt, FG;SCt, FG;aCt, FGifCt)
if f:(X,7,T)— (Y,0)is FICt (resp., FIPCt, FISCt, FlaCt, FIBCt).

Proof. Straightforward. ]
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From the correspondence proved in Proposition 3.7, we get that Definition 2.1
and Definition 3.8 are identical. Hence, fuzzy continuity based on fuzzy ideals or
based on fuzzy grills are the same.

Here, we show the equivalence between fuzzy ideal compactness and fuzzy grill
compactness.

Definition 3.10. (X, 7,7) be a fuzzy ideal topological space, A € IX,r € . Then

A is said to be r-fuzzy ideal compact (r-FI-compact, for short), if for every family

{uj € X T(uj) 2 rj€ Jhwith A <\ uj, there exists a finite subset ]y of ] such that
jel

TAACN pj) =
j€lo
If I = I°, then the concepts of r-fuzzy compact and r-FI-compact are equivalent.
Definition 3.11. Let (X, 7, G) be a fuzzy grill topological space, A € IX,r € I,. Then
A is said to be r-fuzzy grill compact (r-FG-compact, for short), if for every family
{uj € X T(uj) 2 rj€ Jhwith A <\ uj, there exists a finite subset ]y of ] such that
jel

GARCY ) <.

Jj€ho
If G = G°, then the concepts of r-fuzzy compact and r-FG-compact are equivalent.

Now, we prove that the topological properties are the same from the point of
view of fuzzy ideals and fuzzy grills.
Theorem 3.12. Let (X,7,G) be a fuzzy grill topological space and A € IX is an r-FG-
compact. Then, A is an r-FI-compact with respect to I g as well.

Conwersely, if (X, t, 1) is a fuzzy ideal topological space and A is an r-FI-compact, then
A is an r-FG-compact with respect to Gr.

Proof. Let {uj € I* : ©(uj) > 1, j € ]} be a family with A < \/ ;. Then by r-FG-
jel

compactness of A, there exists a finite subset ]y of | such that g(/\/_\(’\/ (uy) <r.

j€h
Thus from (3.1), Ig(AA(V (4j))) = . So A is an r-FI-compact with respect to Ig.
j€lo
Similarly, we can prove the converse. m]

Corollary 3.13. Let (X, 7) be a fuzzy topological space. Then
(1) If Gisa fuzzy grill on X, and (X, T, G) is an r-FG-compact space, then (X, t, I g) is
an r-FI-compact space,
(2) If 1 is a fuzzy ideal on X, and (X, t, I) is an r-FI-compact space, then (X, 7, Gr) is
an r-FG-compact space.

Proof. Obvious from Equations (3.1) and (3.2). O

4. CONCLUSION

Results already introduced and studied with fuzzy ideals are satisfied with re-
spect to fuzzy grills from that correspondence between the two notions of fuzzy
ideal and fuzzy grill. We have established the equivalence between fuzzy ideal
compactness and fuzzy grill compactness.
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