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1. Introduction

Theory of Multisets is an important generalization of classical set theory which
has emerged by violating a basic property of classical sets that an element can belong
to a set only once. Many authors like Yager [14], Blizard [1], Girish and John [5],
Hickman [6] etc. have studied the properties of multisets. Multisets are very useful
structures arising in many areas of mathematics and computer science [4, 8, 10, 12].
Again the theory of vector space is one of the most important algebraic structures
in modern mathematics and this has been extended in different setting [3, 7, 9, 13].
In [2], we introduced a notion of multi vector space and studied some of its basic
properties. As a continuation of our earlier paper [2], here we have attempted to
formulate the concept of basis and dimension of multi vector space and to study
their properties.

2. Preliminaries

In this section, the definition of a multiset (mset in short) and some of its proper-
ties are given. Unless otherwise stated, X will be assumed to be an initial universal
set and MS(X) denotes the set of all mset over X.

Definition 2.1 ([5]). An mset M drawn from the set X is represented by a count
function CM : X → N, where N represents the set of non negative integers. For any
positive integer ω, [X]ω denotes the mset spaces.



Moumita Chiney et al./Ann. Fuzzy Math. Inform. 15 (2018), No. 1, 1–8

The algebraic operations of msets, level sets and operations on level sets are
considered as in [5, 11]. Throughout the rest of the paper X,Y will denote vector
spaces over K (where K is the field of real or complex numbers) and msets are taken
from [X]ω, [Y ]ω.

Definition 2.2 ([2]). Let A1, A2, ..., An, B ∈ [X]
ω

and λ ∈ K, then A1+A2+...+An
and λB are defined as follows:

CA1+A2+...+An
(x) = ∨{CA1

(x1) ∧ CA2
(x2) ∧ ... ∧ CAn

(xn) : x1, x2, ..., xn ∈ X
and x1 + x2 + ...+ xn = x}

and
CλB(y) = ∨{CB(x) : λx = y}.

Lemma 2.3 ([2]). Let λ ∈ K and B ∈ [X]
ω
. Then for λ 6= 0, CλB(y) = CB(λ−1y),∀y ∈

X. For λ = 0,

CλB(y) =

0, y 6= θ,

sup
x∈X

CB(x), y = θ.

Definition 2.4 ([2]). A multiset V in [X]ω is said to be a multi vector space or
multi linear space(in short mvector space) over the linear space X, if

(i) V + V ⊆ V,
(ii) λV ⊆ V, for every scalar λ.
We denote the set of all multi vector space over X by MV (X).

Remark 2.5. For V ∈MV (X), V + V + · · ·+ V (n times) = V, i.e., nV = V.

Remark 2.6 ([2]). If V ∈MV (X) with dimX = m, then | CV (X) |≤ m+1, where
| CV (X) | represents the cardinality of CV (X).

Theorem 2.7 ([2]). (Representation theorem) Let V ∈ MV (X) with dim X = m
and range of CV = {n0, n1, ...., nk} ⊆ {0, 1, 2, ..., ω}, k ≤ m, n0 = CV (θ) and
ω ≥ n0 > n1 > ... > nk ≥ 0. Then there exists a nested collection of subspaces of X
as
{θ} ⊆ Vn0 $ Vn1 $ Vn2 $ .... $ Vnk

= X such that V = n0Vn0 ∪ n1Vn1 ∪ ..... ∪
nkVnk

. Also
(1) If n,m ∈ (ni+1, ni], then Vn = Vm = Vni

.
(2) If n ∈ (ni+1, ni] and m ∈ (ni, ni−1], then Vn % Vm.

Definition 2.8 ([2]). Let X be a finite dimensional vector space with dim X = m
and V ∈MV (X). Consider Proposition 2.7. Let Bni

be a basis on Vni
, i = 0, 1, ..., k

such that

(2.8.1) Bn0
$ Bn1

$ Bn2
$ ... $ Bnk

Define a multi subset β of X by:

Cβ(x) =

{
∨{ni : x ∈ Bni}
0, otherwise.

Then β is called a multi basis of V corresponding to (2.8.1). We denote the set of
all multi bases of V by BM (V ).

2
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Lemma 2.9. Let s, t ∈ R and A, A1 and A2 be multisets on a vector space X. Then
(1) s.(t.A) = t.(s.A) = (st).A
(2) A1 ≤ A2 ⇒ t.A1 ≤ t.A2.

Proposition 2.10. Let V ∈MV (X). Then x ∈ X, a 6= 0⇒ CV (ax) = CV (x).

Proposition 2.11. Let V ∈MV (X) and u, v ∈ X such that CV (u) > CV (v). Then

CV (u+ v) = CV (v).

Proposition 2.12. Let V ∈MV (X) and v, w ∈ X with CV (v) 6= CV (w). Then

CV (v + w) = CV (v) ∧ CV (w).

3. Multi linear independence and M-basis

Definition 3.1. Let V ∈MV (X) and dimX = m. A finite set of vectors {xi}ni=1 is
called multi linearly independent in V , if {xi}ni=1 is linearly independent in X and
for all {ai}ni=1 ⊂ R with ai 6= 0 , CV (

∑n
i=1aixi) = ∧ni=1CV (aixi).

Proposition 3.2. Let V ∈MV (X) and dimX = m. Then any set of vectors {xi}Ni=1

(N ≤ m), which have distinct counts is linearly and multi linearly independent.

Remark 3.3. Converse of the above proposition is not true. Let X = R2 and ω = 6.
We define a multi vector space CV : X → N by:

CV (x) =

{
6, if x = (0, 0)

1, otherwise.

Then {(1, 0), (0, 1)} is multi linearly independent, but CV ((1, 0)) = CV ((0, 1)).

Definition 3.4. A M-basis for a multi vector space V ∈ MV (X) is a basis of X
which is multi linearly independent in V .

We denote the set of all M-bases of V by B(V ).

Proposition 3.5. Let X be a vector space with dim X = m, B = {ei}mi=1 be a
basis of X and 0 6= n0 ≥ n1 ≥ n2 ≥ ... ≥ nm be a finite sequence of number from
{0, 1, 2, ..., ω}. Define a multiset V drawn from X as follows:

(i) CV (θ) = n0.
(ii) CV (ei) = ni, 1 ≤ i ≤ m
(iii) for x(6= θ) =

∑m
i=1 aiei, CV (x) = ∧i∈J(x)CV (ei),

where J(x) = {i, 1 ≤ i ≤ m, ai 6= 0}.
Then V is multi vector space over X with M -basis B.

Proof. Let x, y ∈ X \ {θ}. Then x and y can be uniquely written in the following
way:
x =

∑
i∈E∪Dx

xiei, y =
∑
i∈E∪Dy

yiei such that E ∩ Dx = φ, E ∩ Dy = φ,

Dx ∩ Dy = φ, E ∪ Dx and E ∪ Dy are finite, non-empty and for all i ∈ E ∪ Dx,
xi 6= 0 and for all i ∈ E ∪Dy, yi 6= 0.

Suppose a, b 6= 0 and a, b ∈ R and ax + by 6= θ. Let Z = {i ∈ E : axi + byi = 0}
and N = E \Z. At this stage, suppose that E, Dx, Dy, Z and N are all non-empty.
In case, some of these sets are empty the proof is almost similar. Now,

CV (ax+ by) = CV (
∑
i∈E(axi + byi)ei +

∑
i∈Dx

(axi)ei +
∑
i∈Dy

(byi)ei)

3
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= CV (
∑
i∈N (axi + byi)ei +

∑
i∈Dx

(axi)ei +
∑
i∈Dy

(byi)ei).

All coefficient in the above linear combination are non-zero and thus by definition
of CV , we have,

CV (ax+ by) = (∧i∈NCV (ei)) ∧ (∧i∈Dx
CV (ei)) ∧ (∧i∈Dx

CV (ei))
= (∧i∈Nni) ∧ (∧i∈Dxni) ∧

(
∧i∈Dyni

)
= ∧i∈N∪Dx∪Dy

(ni) ≥ ∧i∈E∪Dx∪Dy
(ni)

= (∧i∈E∪Dxni) ∧
(
∧i∈E∪Dyni

)
= CV (x) ∧ CV (y).

If a, b 6= 0 and a, b ∈ R and ax+ by 6= θ, then CV (ax+ by) ≥ CV (x) ∧ CV (y).
In the case where ax+ by = θ, we must have CV (ax+ by) ≥ CV (x) ∧ CV (y).
In the case where a or b is zero, without loss of generality we may say a = 0, then

CV (0x+ by) = CV (by) ≥ CV (x) ∧ CV (by) = CV (x) ∧ CV (y).

�

Lemma 3.6. If V ∈MV (X) and Y is a proper subspace of X, then for any t ∈ X\Y
with CV (t) = sup[CV (X \ Y )], CV (t+ y) = CV (t) ∧ CV (y), for all y ∈ Y.

Proof. Since ω is finite, such a t exists. Let y ∈ Y. If CV (y) 6= CV (t), then by
Proposition 2.12, CV (t+ y) = CV (t) ∧CV (y). If CV (y) = CV (t), then by Definition
2.4, CV (t+ y) ≥ CV (t) ∧ CV (y). Since t+ y ∈ X \ Y and CV (t) = sup[CV (X \ Y )],
we must have CV (t+ y) ≤ CV (t) = CV (y) and thus CV (t+ y) = CV (t)∧CV (y). �

Lemma 3.7. Let V ∈ MV (X), Y be a proper subspace of X and CV |Y = CV ′ . If
B∗ is a M-basis for V ′, then there exists t ∈ X \ Y such that B+ = B∗ ∪ {t} is a
M-basis for W, where CW = CV |≺B+� and ≺B+� is the vector space spanned by
B+.

Proof. Pick t ∈ X \ Y such that CV (t) = sup[CV (X \ Y )]. Then by Lemma 3.6,
B+ = B∗ ∪ {t} is a multi linearly independent and hence a M-basis for W, where
CW = CV |≺B+� . �

Proposition 3.8. All multi vector spaces V ∈ MV (X) with dim X = m have
M-basis.

Proposition 3.9. Let V ∈ MV (X) where dim X = m and CV (X \ {θ}) =
{n0, n1, n2, ..., nk}, k ≤ m. Then a basis B = {e1, e2, ..., em} of X is a M-basis
for V if and only if B ∩ Vni is a basis of Vni for any i = 0, 1, ..., k.

Proposition 3.10. Let V be a multi vector space over X where dimX = m. Then
there is an one-to-one correspondence between BM (V ) and B(V ).

Proposition 3.11. Let V ∈MV (X) with dimX = m and range of CV (X \ {θ}) =
{n0, n1, ...., nk} ⊆ {0, 1, 2, ..., ω}, k ≤ m. If a basis B = {e1, e2, ..., em} of X is a
M-basis, then CV (B) = {n0, n1, ...., nk}.

Remark 3.12. Converse of the above proposition is not true. For example, suppose
X = R4, ω = 5. Define multi vector space V with CV as follows:

CV ((0, 0, 0, 0)) = 5, CV ((0, 0, 0,R \ {0})) = 5, CV ((0, 0,R \ {0},R)) = 5,
CV ((0,R \ {0},R,R)) = 2, CV (R4 \ (0,R,R,R)) = 2.

Then B = {(0, 0, 0, 1), (−1, 1, 1, 1), (1,−1, 1, 1), (1, 1,−1, 1)} is a basis of R4 and
4
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CV (B) = {2, 5} = CV (R4). But B is not a M-basis as B is not multi linearly
independent.

Definition 3.13. Let V ∈ MV (X) with dim X = m, range of CV (X \ {θ}) =
{n0, n1,..., nk}⊆ {0, 1, 2, ..., ω}, k ≤ m and B0 be any M-basis for V. Then

CV (B0) = {n0, n1, ...., nk}.

We define multi index of a multi M-basis B0 with respect to V by:

[B0]M = {ri : ri is the number of element of B0 taking the value ni}.

Proposition 3.14. For a multi vector space V , multi index of M-basis with respect
to V is independent of M-basis.

Proof. Let V ∈MV (X) with dimX = m, range of CV (X \ {θ}) = {n0, n1, ...., nk}
⊆ {0, 1, 2, ..., ω}, k ≤ m and ω ≥ n0 > n1 > ... > nk ≥ 0. Then for any two M-bases
B0, B

′
0 of V, CV (B0) = CV (B′0) = {n0, n1, ...., nk}. Let [B0]M = {ri} and [B′0]M =

{r′i}. Now, | B0 ∩ Vni
|=
∑i
j=0rj and | B′0 ∩ Vni

|=
∑i
j=0r

′
j , for i = 0, 1, 2, ..., k.

As B0 ∩ Vni
and B′0 ∩ Vni

are both basis of Vni
, | B0 ∩ Vni

|=| B′0 ∩ Vni
|, for all

i = 0, 1, 2, ..., k. Thus [B0]M = [B′0]M . �

Remark 3.15. As multi index of M-basis with respect to a multi vector space V is
independent of M-basis, we can use only the term multi index of V.

Definition 3.16. Let V ∈MV (X) with dimX = m, CV (X) = {n0, n1, ...., nk}
⊆ {0, 1, 2, ..., ω}, k ≤ m and B be any basis for X.

Define index of a basis B with respect to V by:

[B] = {ri : ri is the number of element of B taking the value ni}.

Proposition 3.17. Let V ∈MV (X) with dimX = m, CV (X \ {θ}) = {n0, n1, ....
, nk}⊆ {0, 1, 2, ..., ω}, k ≤ m and B be any basis of X with CV (B) = {n0, n1, ...., nk}.
If index [B] of B with respect to V is equal to the multi index of V , then B becomes
a M-basis.

Proof. Let us assume that ω ≥ n0 > n1 > ... > nk ≥ 0. Then {θ} $ Vn0
$

Vn1 $ Vn2 $ .... $ Vnk
= X. Suppose that [B]M = {ri : i = 0, 1, 2, ...k}. Then

dim Vni
=
∑i
j=0rj =| B ∩ Vni

|, for all i = 0, 1, 2, ..., k. Thus, B ∩ Vni
becomes a

basis for Vni for each i = 0, 1, 2, .., k. By Proposition 3.9, B is a M-basis for V. �

4. Dimension of multi vector space

Definition 4.1. We define the dimension of a multi vector space V over X by:

dim(V ) = sup
B a base for X

(∑
x∈B

CV (x)

)
.

Clearly, dim is a function from the set of all multi vector spaces to N.

Proposition 4.2. Let V ∈ MV (X) where dim X = m < ∞. If B is a M-basis for
V and B∗ is any basis for X, then

∑
x∈B∗

CV (x) ≤
∑
x∈B

CV (x).

5
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Proposition 4.3. If V is a multi vector space over a finite dimensional vector space
X, then dim(V ) =

∑
x∈B

CV (x), where B is any M-basis for V.

Remark 4.4. If V is a multi vector space over a finite dimensional vector space X,
then dim(V ) is independent of M-basis for V. It follows from Proposition 3.9 and
Proposition 3.11.

Proposition 4.5. Let X be any finite dimensional vector space and V,W ∈MV (X)
such that CV (θ) ≥ sup[CW (X \ {θ})] and CW (θ) ≥ sup[CV (X \ {θ})]. Then there
exists a basis B for X which is also a M-basis for V, W , V ∩W and V +W.

In addition, if A1 = {x ∈ X : CV (x) < CW (x)}, A2 = X \ A1, then for all
v ∈ B ∩A1,

(CV ∩W )(v) = CV (v) and CV+W (v) = CW (v)
and for all v ∈ B ∩A2,

(CV ∩W )(v) = CW (v) and CV+W (v) = CV (v).

Proof. We prove this by induction on dim X. In case dim X = 1 the statement is
clearly true.

Now suppose that the theorem is true for all the multi vector space with dimension
of the underlying vector space equal to n.

Let V and W be two multi vector spaces over X with dim X = n + 1 > 1.
Let B1 = {vi}n+1

i=1 be any M-basis for V. We may assume that CV (v1) ≤ CV (vi),

for all i = {2, 3, ..., n + 1}. Let H =≺ {vi}n+1
i=2 � . Since n + 1 > 1, H 6= {θ}.

Clearly dim H = n. Define the following two multi vector spaces: V1 with count
function CV1

= CV |H and W1 with the count function CW1
= CW |H . By inductive

hypothesis there exists a basis B∗, for H which is also a M-basis for V1, W1, V1∩W1

and V1 +W1. Also for all v ∈ B∗ ∩A1,
(CV1∩W1)(v) = CV1(v) and CV1+W1(v) = CW1(v)

and for all v ∈ B∗ ∩A2,
(CV1∩W1

)(v) = CW1
(v) and CV1+W1

(v) = CV1
(v).

We shall now show that B∗ can be extended to B such that B is a M-basis for V,
W , V ∩W and V +W. Furthermore, for all v ∈ B ∩A1,

(CV ∩W )(v) = CV (v) and CV+W (v) = CW (v)
and for all v ∈ B ∩A2,

(CV ∩W )(v) = CW (v) and CV+W (v) = CV (v).

Step - 1: First it will be shown that for all x ∈ H,
(4.5.1) C(V+W ) |H (x) = CV1+W1

(x)

Since B∗ is a M-basis of V1 +W1, (4.5.1) implies that B∗ is multi linearly indepen-
dent in V +W.

Step - 2: Let v∗ ∈ X \H such that CW (v∗) = sup[CW (X \H)]. By Lemma 3.6
and Lemma 3.7, B(= B∗ ∪ {v∗}) is an extended M-basis of B∗ for W.

Step - 3: Since CV (X\H) = CV (v1), CV (v1) = CV (v∗) and then B(= B∗∪{v∗})
is an extended M-basis of B∗ for V.

6
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Step - 4: Next it is shown that B(= B∗ ∪ {v∗}) is an extended M-basis of B∗

for V ∩W.

Step - 5: In this step it is shown that B(= B∗ ∪ {v∗}) is an extended M-basis
of B∗ for V +W.

Step - 6: Finally, it is shown that if v∗ ∈ A1 then CV+W (v∗) = CW (v∗) and if
v∗ ∈ A2 then CV+W (v∗) = CV (v∗).
Through all this step, the proof is done. �

Corollary 4.6. If V,W ∈MV (X) with dim X is finite and CV (θ) ≥ sup[CW (X \
{θ})] and CW (θ) ≥ sup[CV (X \ {θ})], then dim(V + W ) = dim V + dim W −
dim (V ∩W ).

Example 4.7. Suppose X = R2, ω = 6. Define two multi vector spaces V and W
with count functions CV and CW respectively as follows:

CV ((0, 0)) = 5, CV ((0,R \ {0})) = 3, CV (X \ R) = 1,
CW ((0, 0)) = 6, CW ({(x, x) : x ∈ R\{0}}) = 2, CW (X \{(x, x) : x ∈ R}) = 1.

Then CV (θ) ≥ sup[CW (X \ {θ})] and CW (θ) ≥ sup[CV (X \ {θ})]. It is also easy to
check that

CV ∩W ((0, 0)) = 5, CV ∩W ({(x, x) : x ∈ R \ {0}}) = 1,
CV ∩W (X \ {(x, x) : x ∈ R}) = 1, CV+W ((0, 0)) = 5,
CV+W ((0,R \ {0})) = 3; CV+W (X \ (0,R)) = 2

and
B = {(0, 1), (1, 1)} is a M-basis for V, W, V ∩W and V +W.

Thus dim (V +W ) = 3 + 2 = 5, dim(V ∩W ) = 1 + 1 = 2,
dim V = 3 + 1 = 4, dim W = 2 + 1 = 3.

So, dim V + dim W − dim (V ∩W ) = 4 + 3− 2 = 5 = dim (V +W ).

Definition 4.8. Let V ∈MV (X) and f : X → Y be a linear map. Then we define
f(V ) as:

Cf(V )(x) =

{
sup{CV (z) : z ∈ f−1(x)} if f−1(x) 6= φ

0 otherwise.

and ˜kerf = (kerf, CV |kerf ), ˜imf = (imf,CV |imf ).

Proposition 4.9. If V ∈MV (X) where dim X is finite and f : X → Y is a linear

map, then dim( ˜kerf) + dim( ˜imf) = dim(V ).

5. Conclusion

There is a future scope of study about infinite dimensional multi vector space and
behavior of linear operators over multi vector spaces.
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