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Abstract. First, we introduce the concept of an intuitionistic set as the
generalzation of an ordinary set and the specialization of an intuitionistic
fuzzy set and thus neutrosophic crisp set, and list its some properties.
Second, we introduce the category ISet consisting of intuitionistic sets
and morphisms between them and study the category ISet in the view-
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1. Introduction

In 1983, Atanassove [1] proposed the notion of intuitionistic fuzzy set as the
generalization of fuzzy sets by introduced by Zadeh [30] considering the degree of
membership and non-membership (See [2, 3, 4, 5, 6], in order to refer to the details
of intuitionistic fuzzy sets). In 1998, Smarandache [28] introduced the concept of
a neutrosophic set as the generalization of fuzzy sets introduced by Atanassove
considering the degree of membership, the degree of indeterminacy and the degree
of non-membership.

After Zadeh [30] introdced the concept of a fuzzy set as as the generalization of an
ordinary set, many researchers [8, 11, 12, 13, 16, 17, 21, 23, 24, 25] have investigated
fuzzy sets in the sense of category theory, for instance, Set(H), Setf (H), Setg(H),
Fuz(H). Among them, the category Set(H) is the most useful one as the ”standard”
category, because Set(H) is very suitable for describing fuzzy sets and mappings
between them. In particular, Carrega [8], Dubuc [11], Eytan [12], Goguen [13],
Pittes [23], Ponasse [24, 25] had studied Set(H) in topos view-point. However Hur
et al. investigated Set(H) in the view of topological universe. Also Hur et al.
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[17] introduced the category ISet(H) consisting of intuitionistic H-fuzzy sets and
morphisms between them, and studied ISet(H) in the sense of topological universe.
Recently, Lim et al. [21] introduced the new category VSet(H) and investigated it
in the sense of topological universe. Furthermore, Hur et al. [18] define the category
NCSet consisting of neutrosophc crisp spaces and morphisms between them and
study its some properties.

On the other hand, Gunduz and Davvaz [14] defined intuitionistic fuzzy submod-
ules and investigated their inverse system. Yang and Li [29] defined the concept of
generalized intuitionistic fuzzy sets, formed a category consisting of the classes of
generalized intuitionistic fuzzy sets and morphisms between them and studied its
some properties.

In 1996, Coker [9] introduced the concept of an intuitionistic set (called an intu-
itionistic crisp set by Salama et al.[27]) as the generalzation of an ordinary set and
the specialization of an intuitionistic fuzzy set and also neutrosophic crisp set (See
[26, 28]). After that time, he [10] applied the notion to topology, and Bayhan and
Coker [7] dealt with pairwise separation axioms in intuitionistic topological spaces
and some relationships between categories Dbl-Top and Bitop. Furthermore, Lee
and Chu [20] introduced the category ITop and investigated some relationships
between ITop and Top.

The concept of a topological universe was introduced by Nel [22], which implies a
Cartesian closed category and a concrete quasitopos. Furthermore the concept has
already been up to effective use for several areas of mathematics.

In this paper, first, we list some definitions and results related to category theory
and also some operations on intuitionistic sets and their some results. Second, we
introduce the category ISet consisting of intuitionistic sets and morphisms between
them and study the category ISet in the view-point of topological universe. Finally,
we find relationships between two categories ISet and NCSet. In particular, we
prove that Two categories ISet and ∗NCSet∗ are isomorphism (See Theorem 5.7).

2. Preliminaries

In this section, we list some basic definitions and well-known results from [15, 19,
22] which are needed in the next sections.

Definition 2.1 ([19]). Let A be a concrete category and ((Yj , ξj))J a family of
objects in A indexed by a class J. For any set X, let (fj : X → Yj)J be a source
of mappings indexed by J . Then an A-structure ξ on X is said to be initial with
respect to (in short, w.r.t.) (X, (fj), (Yj , ξj))J , if it satisfies the following conditions:

(i) for each j ∈ J , fj : (X, ξ)→ (Yj , ξj) is an A-morphism,
(ii) if (Z, ρ) is an A-object and g : Z → X is a mapping such that for each j ∈ J ,

the mapping fj ◦ g : (Z, ρ)→ (Yj , ξj) is an A-morphism, then g : (Z, ρ)→ (X, ξ) is
an A-morphism.

In this case, A is called a topological category and (fj : (X, ξ) → (Yj , ξj))J is
called an initial source in A.

Dual notion: cotopological category.

Result 2.2 ([19], Theorem 1.5). A concrete category A is topological if and only if
it is cotopological.
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Result 2.3 ([19], Theorem 1.6). Let A be a topological category over Set, then it is
complete and cocomplete.

Definition 2.4 ([19]). Let A be a concrete category.
(i) The A-fibre of a set X is the class of all A-structures on X.
(ii) A is said to be properly fibred over Set, it satisfies the followings:

(a) (Fibre-smallness) for each set X, the A-fibre of X is a set,
(b) (Terminal separator property) for each singleton set X, the A-fibre of X

has precisely one element,
(c) if ξ and η are A-structures on a set X such that id : (X, ξ) → (X, η) and

id : (X, η)→ (X, ξ) are A-morphisms, then ξ = η.

Definition 2.5 ([15]). A category A is said to be Cartesian closed, if it satisfies the
following conditions:

(i) for each A-object A and B, there exists a product A×B in A,
(ii) exponential objects exist in A, i.e., for each A-object A, the functor A×− :

A → A has a right adjoint, i.e., for any A-object B, there exist an A-object BA

and a A-morphism eA,B : A × BA → B (called the evaluation) such that for any
A-object C and any A-morphism f : A×C → B, there exists a unique A-morphism
f̄ : C → BA such that the diagram commutes:

Definition 2.6 ([15]). A category A is called a topological universe over Set, if it
satisfies the following conditions:

(i) A is well-structured, i.e. (a) A is concrete category; (b) A satisfies the fibre-
smallness condition; (c) A has the terminal separator property,

(ii) A is cotopological over Set,
(iii) final episinks in A are preserved by pullbacks, i.e., for any episink (gj : Xj →

Y )J and any A-morphism f : W → Y , the family (ej : Uj → W )J , obtained by
taking the pullback f and gj , for each j ∈ J , is again a final episink.

Definition 2.7 ([26]). Let X be a non-empty set. Then A is called a neutrosophic
crisp set (in short, NCS) in X if A has the form A = (A1, A2, A3),
where A1, A2, and A3 are subsets of X,

The neutrosophic crisp empty [resp., whole] set, denoted by φN [resp., XN ] is an
NCS in X defined by φN = (φ, φ,X) [resp., XN = (X,X, φ)]. We will denote the
set of all NCSs in X as NCS(X).

Definition 2.8 ([26]). Let A = (A1, A2, A3), B = (B1, B2, B3) ∈ NCS(X). Then
(i) A is said to be contained in B, denoted by A ⊂ B, if

A1 ⊂ B1, A2 ⊂ B2 and A3 ⊃ B3,
(ii) A is said to equal to B, denoted by A = B, if

A ⊂ B and B ⊂ A,
(iii) the complement of A, denoted by Ac, is an NCS in X defined as:

Ac = (A3, A
c
2, A1),

(iv) the intersection of A and B, denoted by A ∩B, is an NCS in X defined as:

A ∩B = (A1 ∩B1, A2 ∩B2, A3 ∪B3),

(v) the union of A and B, denoted by A ∪B, is an NCS in X defined as:

A ∪B = (A1 ∪B1, A2 ∪B2, A3 ∩B3).
551
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Let (Aj)j∈J ⊂ NCS(X), where Aj = (Aj,1, Aj,2, Aj,3). Then
(vi) the intersection of (Aj)j∈J , denoted by

⋂
j∈J Aj (simply,

⋂
Aj), is an NCS

in X defined as: ⋂
Aj = (

⋂
Aj,1,

⋂
Aj,2,

⋃
Aj,3),

(vii) the the union of (Aj)j∈J , denoted by
⋃

j∈J Aj (simply,
⋃
Aj), is an NCS in

X defined as: ⋃
Aj = (

⋃
Aj,1,

⋃
Aj,2,

⋂
Aj,3).

3. Intuitionistic sets

Definition 3.1 ([9, 27]). Let X be a non-empty set. Then A is called an intuition-
istic set (in short, IS) of X, if it is an object having the form

A = (AT , AF ),

such that AT ∩ AF = φ, where AT [resp. AF ] is called the set of members [resp.
nonmembers] of A.

In fact, AT [resp. AF ] is a subset of X agreeing or approving [resp. refusing or
opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic crisp empty set [resp. the intuitionistic crisp whole set] of X,
denoted by φI [resp. XI ], is defined by φI = (φ,X) [resp. XI = (X,φ)].

In general, AT ∪AF 6= X.
We will denote the set of all ISs of X as IS(X).

For each ordinary subset A of X, we can identify A as the pair (A, φ). Then we can
consider an IS of X as the generalization of an ordinary subset of X. Furthermore, it
is clear that A = (χAT

, χAF
) [resp. A = (AT , AT , AF )] is an intuitionistic fuzzy set

[resp. an neutrosophic crisp set] in X, for each A ∈ IS(X). Thus we can consider
an intuitionistic fuzzy set [resp. a neutrosophic crisp set] in X as the generalization
of an IS of X.

Example 3.2. Let X = {a, b, c, d, e, f}, AT = {a, c, f} and AF = {b, d}. Then
A = (AT , AF ) is an IS of X.

Definition 3.3 ([9]). Let A,B ∈ IS(X) and let (Aj)j∈J ⊂ IS(X).
(i) We say that A is contained in B, denoted by A ⊂ B, if AT ⊂ BT and AF ⊃ BF .
(ii) We say that A equals to B, denoted by A = B, if A ⊂ B and B ⊂ A.
(iii) The complement of A denoted by Ac, is an IS of X defined as:

Ac = (AF , AT ).

(iv) The union of A and B, denoted by A ∪B, is an IS of X defined as:

(A ∪B)T = AT ∪BT , (A ∪B)F = AF ∩BF .

(v) The union of (Aj)j∈J , denoted by
⋃

j∈J Aj (in short,
⋃
Aj), is an IS of X

defined as:
(
⋃
j∈J

Aj)T =
⋃
j∈J

(Aj)T , (
⋃
j∈J

Aj)F =
⋂
j∈J

(Aj)F .

(vi) The intersection of A and B, denoted by A ∩B, is an IS of X defined as:

(A ∩B)T = AT ∩BT , (A ∩B)F = AF ∪BF .
552
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(vii) The intersection of (Aj)j∈J , denoted by
⋂

j∈J Aj (in short,
⋂
Aj), is an IS

of X defined as:

(
⋂
j∈J

Aj)T =
⋂
j∈J

(Aj)T , (
⋂
j∈J

Aj)F =
⋃
j∈J

(Aj)F .

(viii) A−B = A ∩Bc.
(xi) [ ]A = (AT , A

c
T ), < > A = (Ac

F , AF ).

Example 3.4. Let A be the IS of X Example 3.2. Then Ac = (AF , AT ). Thus

(A ∪Ac)T = AT ∪Ac
T = {a, c, f} ∪ {b, d} = {a, b, c, d, f} 6= X

and
(A ∪Ac)F = AF ∩Ac

F = {b, d} ∩ {a, c, f} = φ.
On the other hand,

(A ∩Ac)T = AT ∩Ac
T = {a, c, f} ∩ {b, d} = φ

and
(A ∩Ac)F = AF ∪Ac

F = {b, d} ∪ {a, c, f} = {a, b, c, d, f} 6= X.

So A ∪Ac 6= XI and A ∩Ac 6= φI .

The followings are the immediate results of Definition 3.1.

Proposition 3.5. Let A,B,C ∈ IS(X). Then
(1) φI ⊂ A ⊂ XI ,
(2)([9], Corollary 2.7) if A ⊂ B and B ⊂ C, then A ⊂ C,
(3) A ∩B ⊂ A and A ∩B ⊂ B,
(4) A ⊂ A ∪B and B ⊂ A ∪B,
(5) A ⊂ B if and only if A ∩B = A,
(6) A ⊂ B if and only if A ∪B = B.

Also the followings are the immediate results of Definition 3.1 and Example 3.4.

Proposition 3.6. (See [9], Corollary 2.7) Let A,B,C ∈ IS(X). Then
(1) (Idempotent laws): A ∪A = A, A ∩A = A,
(2) (Commutative laws): A ∪B = B ∪A, A ∩B = B ∩A,
(3) (Associative laws): A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C,
(4) (Distributive laws): A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),
(5) (Absorption laws): A ∪ (A ∩B) = A, A ∩ (A ∪B) = A,
(6) (DeMorgan’s laws): (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc,
(7) (Ac)c = A,
(8) (8a) A ∪ φI = A, A ∩ φI = φI ,

(8b) A ∪XI = XI , A ∩XI = A,
(8c) Xc

I = φI , φcI = XI ,
(8d) in general, A ∪Ac 6= XI , A ∩Ac 6= φI .

The followings are the immediate results of Definition 3.1.

Proposition 3.7. Let A ∈ IS(X) and let (Aj)j∈J ⊂ IS(X). Then
(1)([9], Corollary 2.7) (

⋂
Aj)

c =
⋃
Ac

j , (
⋃
Aj)

c =
⋂
Ac

j ,
(2) A ∩ (

⋃
Aj) =

⋃
(A ∩Aj), A ∪ (

⋂
Aj) =

⋂
(A ∪Aj).
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Definition 3.8 ([9]). Let f : X → Y be a mapping, and let A ∈ IS(X) and
B ∈ IS(Y ). Then

(i) the image of A under f , denoted by f(A), is an IS in Y defined as:

f(A) = (f(A)T , f(A)F ),

where f(A)T = f(AT ) and f(A)F = (f(Ac
F ))c.

(ii) the preimage of B, denoted by f−1(B), is an IS in X defined as:

f−1(B) = (f−1(B)T , f
−1(B)T ),

where f−1(B)T = f−1(BT ) and f−1(B)F = f−1(BF ).

Result 3.9 ([9]). Let f : X → Y be a mapping and let A,B,C ∈ IS(X), (Aj)j∈J ⊂
IS(X) and D,E, F ∈ IS(Y ), (Dk)k∈K ⊂ IS(Y ). Then the followings hold:

(1) if B ⊂ C, then f(B) ⊂ f(C) and if E ⊂ F , then f−1(E) ⊂ f−1(F ).
(2) A ⊂ f−1f(A)) and if f is injective, then A = f−1f(A)),
(3) f(f−1(D)) ⊂ D and if f is surjective, then f(f−1(D)) = D,
(4) f−1(

⋃
Dk) =

⋃
f−1(Dk), f−1(

⋂
Dk) =

⋂
f−1(Dk),

(5) f(
⋃
Aj) =

⋃
f(Aj), f(

⋂
Aj) ⊂

⋂
f(Aj),

(6) f(A) = φI if and only if A = φI and hence f(φI) = φI , in particular if f is
surjective, then f(XI) = YI ,

(7) f−1(YI) = YI , f−1(φI) = φI .

Definition 3.10 ([9]). Let X be a non-empty set and let p ∈ X be fixed. Then
(i) the intuitionistic set ({p}, {p}c) is called an intuitionistic point (in short IP)

in X and denoted by pI ,
(ii) the intuitionistic set (φ, {p}c) is called an intuitionistic vanishing point (in

short IVP) in X and denoted by pIV .
We will denoet the set of all IPs [resp. IVPs] in X as IP (X) [resp. IV P (X)].

Definition 3.11 ([9]). Let X be a non-empty set, let p ∈ X and let A ∈ IS(X).
Then

(i) pI is said to be contained in X, denoted by pI ∈ A, if p ∈ AT ,
(ii) pIV is said to be contained in X, denoted by pIV ∈ A, if p /∈ AT .

Result 3.12 ([9], Proposition 3.5). Let A,B ∈ IS(X). Then
(1) A ⊂ B if and only if pI ∈ B, for each pI ∈ A if and only if pIV ∈ B, for each

pIV ∈ A,
(2) A = B if and only if pI ∈ A⇐⇒ pI ∈ B, for each pI ∈ IP (X)

pIV ∈ A⇐⇒ pIV ∈ B, for each pIV ∈ IV P (X).

Result 3.13 ([9], Proposition 3.4). Let (Aj)j∈J ⊂ IS(X) and let p ∈ X.
(1) pI ∈

⋂
Aj if and only if pI ∈ Aj, for each j ∈ J .

(1
′
) pIV ∈

⋂
Aj if and only if pIV ∈ Aj, for each j ∈ J .

(2) pI ∈
⋃
Aj if and only if there exists j ∈ J such that pI ∈ Aj.

(2
′
) pIV ∈

⋃
Aj if and only if there exists j ∈ J such that pIV ∈ Aj.

From Definitions 3.3 and 3.10, it follows that [ ]A =
⋃

pI∈A pI but in general,

A 6=
⋃

pI∈A pI , for each A ∈ IS(X).
554
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Example 3.14. In Example 3.2, consider the IS A = ({a, c, f}, {b, d}) in X. Then
clearly, aI , cI , fI ∈ A. Thus

aI ∪ cI ∪ fI = ({a} ∪ {c} ∪ {f}, {b, c, d, e, f} ∩ {a, b, d, e, f} ∩ {a, b, c, d, e})
= ({a, c, f}, {b, c, d, e}).

So [ ]A =
⋃

pI∈A pI but A 6=
⋃

pI∈A pI .

Result 3.15 ([9], Proposition 3.6). Let A ∈ IS(X). Then A = AI ∪AIV ,
where AI =

⋃
pI∈A pI and AIV =

⋃
pIV ∈A pIV .

In fact, AI = [ ]A and AIV = (φ,AF ).

Definition 3.16 ([9]). Let f : X → Y be a mapping and let p ∈ X. Then
(i) the image of pI under f , denoted by f(pI), is an IP in Y defined as follows:

f(pI) = ({q}, {q}c) = qI ,

where q = f(p),
(ii) the image of pIV under f , denoted by f(pIV ), is an IVP in Y defined as

follows:

f(pIV ) = (φ, {q}c) = qIV ,

where q = f(p).

Definition 3.17 ([7]). Let X,Y be non-empty sets and let A ∈ IS(X), B ∈ IS(Y ).
Then the Cartesian product of A and B, denoted by A×B, is an IS in X×Y defined
as:

A×B = ((A×B)T , (A×B)F ),

where (A×B)T = AT ×BT and (A×B)F = (Ac
F ×Bc

F )c.

Definition 3.18 ([7]). Let X,Y be non-empty sets, let (p, q) ∈ X × Y and let
A ∈ IS(X), B ∈ IS(Y ). Then

(i) (p, q)I ∈ A×B, if (p, q) ∈ (A×B)T = AT ×BT ,
(ii) (p, q)IV ∈ A×B, if (p, q) /∈ (A×B)F = (Ac

F ×Bc
F )c, i.e., (p, q) ∈ Ac

F ×Bc
F .

4. Properties of ISet

Definition 4.1. A pair (X,A) is called an intuitionistic space (in short, ISp), if
A ∈ IS(X).

Definition 4.2. Let (X,AX), (Y,AY ) be two ISps and let f : X → Y be a mapping.
Then f : (X,AX)→ (Y,AY ) is called a morphism, if AX ⊂ f−1(AY ), equivalently,

pI ∈ f−1(AY ),∀pI ∈ AX , i.e.,

p ∈ f−1(AY,T ) = f−1(AY )T ,∀p ∈ AX,T .

In particular, f : (X,AX)→ (Y,AY ) is called an epimorphism [resp., a monomor-
phism and an isomorphism], if it is surjective [resp., injective and bijective].

The following is an immediate result of Definitions 4.2.

Proposition 4.3. For each ISp (X,AX), the identity mapping id : (X,AX) →
(X,AX) is a morphism.

555
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Proposition 4.4. Let (X,AX), (Y,AY ), (Z,AZ) be ISps and let f : X → Y ,
g : Y → Z be mappings. If f : (X,AX) → (Y,AY ) and f : (Y,AY ) → (Z,AZ) are
morphisms, then g ◦ f : (X,AX)→ (Z,AZ) is a morphism.

Proof. By the hypotheses, AX ⊂ f−1(AY ) and AY ⊂ g−1(AZ). Then by Result 3.9
(1), f−1(AY ) ⊂ f−1(g−1(AZ)) = (g ◦ f)−1(AZ,T ). Thus AX,T ⊂ (g ◦ f)−1(AZ,T ).
So g ◦ f is a morphism. �

From Propositions 4.3 and 4.4, we can form the concrete category ISet consisting
of ISs and morphisms between them. Every ISet-morphism will be called a ISet-
mapping.

Theorem 4.5. The category ISet is topological over Set.

Proof. Let X be any set and let ((Xj , Aj))j∈J be any families of ISps indexed by a
class J . Suppose (fj : X → (Xj , Aj))J is a source of ordinary mappings. We define
the IS AX of X by

AX =
⋂
f−1j (Aj).

Then clearly, AX,T =
⋂
f−1j (Aj,T ), AX,F =

⋃
f−1j (Aj,F ) and AX,T ∩ AX,F = φ.

Thus (X,AX) is an ISp. Furthermore, AX ⊂ f−1j (Aj), for each j ∈ J . So each

fj : (X,AX)→ (Xj , Aj) is an ISet-mapping.
Now let (Y,AY ) be any ISp and suppose g : Y → X is an ordinary mapping,

for which fj ◦ g : (Y,AY ) → (Xj , Aj) is a ISet-mapping for each j ∈ J . Then by

Definition 4.2, AY ⊂ (fj ◦g)−1(Aj) = g−1(f−1j (Aj)), for each j ∈ J . Thus by Result

3.9 (4),

AY ⊂ g−1(
⋂
f−1j (Aj)) = g−1(AX).

So AY ⊂ g−1(AX). Hence g : (Y,AY ) → (X,AX) is an ISet-mapping. Therefore
(fj : (X,AX)→ (Xj , Aj)J is an initial source in ISet. This completes the proof. �

Example 4.6. (1) Let X be a set, let (Y,AY ) be an ISp and let f : X → Y be
an ordinary mapping. Then clearly, there exists a unique IS AX of X for which
f : (X,AX)→ (Y,AY ) is an ISet-mapping. In fact, AX = f−1(AY ).

In this case, AX is called the inverse image under f of the ICS structure AY .
(2) Let ((Xj , Aj))j∈J be any family of ISps and let X = Πj∈JXj . For each j ∈ J ,

let prj : X → Xj be the ordinary projection. Then there exists a unique IS AX in
X for which prj : (X,AX → (Xj , Aj) is an ISet-mapping for each j ∈ J .

In this case, AX is called the product of (Aj)j∈J , denoted by AX = ΠAj and
(ΠXj ,ΠAj) is called the product ISp of ((Xj , Aj))j∈J .

In fact, AX =
⋂

j∈J pr
−1
j (Aj).

In particular, if J = {1, 2}, then A1 × A2 = (A1,T × A2,T , A1,F × A2,F ), where
A1 = (A1,T , A1,F ) ∈ ICS(X1) and A2 = (A2,T , A2,F ) ∈ ICS(X2).

The following is obvious from Result 2.2. But we show directly it.

Corollary 4.7. The category ISet is cotopological over Set.

Proof. Let X be any set and let ((Xj , Aj))J be any family of ISps indexed by a class
J . Suppose (fj : Xj → X)J is a sink of ordinary mappings. We define AX as

AX =
⋃
fj(Aj).
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Then clearly, AX,T =
⋃
fj(Aj,T ), AX,F =

⋂
fj(Aj,F ) and AX,T

⋂
AX,F = φ. Thus

AX ∈ IS(X) and each fj : (Xj , Aj)→ (X,AX) is an ISet-mapping.
Now for each ISp (Y,AY ), let g : X → Y be an ordinary mapping for which each

g ◦ fj : (Xj , Aj)→ (Y,AY ) is an ISet-mapping. Then clearly for each j ∈ J ,

Aj ⊂ (g ◦ fj)−1(AY ) = f−1j (g−1(AY )).

Thus
⋃
Aj ⊂

⋃
f−1j (g−1(AY )). So fj(

⋃
Aj) ⊂ fj(

⋃
f−1j (g−1(AY ))). By Result 3.9

(5) and the definition of AX ,

fj(
⋃
Aj) =

⋃
fj(Aj) = AX

and

fj(
⋃
f−1j (g−1(AY ))) =

⋃
(fj ◦ f−1j )(g−1(AY )) = g−1(AY ).

Hence AX ⊂ g−1(AY ). Therefore g : (X,AX)→ (Y,AY ) is an ISet-mapping.
This completes the proof. �

Theorem 4.8. Final episinks in ISet are preserved by pullbacks.

Proof. Let (gj : (Xj , Aj) → (Y,AY ))J be any final episink in ISet and let f :
(W,AW )→ (Y,AY ) be any ISet-mapping. For each j ∈ J , let

Uj = {(w, xj) ∈W ×Xj : f(w) = gj(xj)}.

For each j ∈ J , we define the IS AUj
= (AUj,T

, AUj,F
) of Uj by:

AUj,T
= AW,T ×Aj,T , AUj,F

= (Ac
W,F ×Ac

j,F )c.

For each j ∈ J , let ej : Uj → W and pj : Uj → Xj be ordinary projections of Uj .
Then clearly,

AUj,T
⊂ e−1j (AW,T ), AUj,F

⊃ e−1j (AW,F )

and

AUj,T
⊂ p−1j (Aj,T ), AUj,F

⊃ p−1j (Aj,F ).

Thus AUj ⊂ e−1j (AW ) and AUj ⊂ p−1j (Aj). So ej : (Uj , AUj ) → (W,AW ) and

pj : (Uj , AUj
) → (Xj , Aj) are ISet-mappings. Moreover, gh ◦ ph = f ◦ ej , for each

j ∈ J , i.e., the diagram is a pullback square in ISet:
pj(Uj , AUj ) (Xj , Aj)-

ej gj

(W,AW )

? ?

f

- (Y,AY ).

Now in order to prove that (ej)J is an episink in ISet, i.e., each ej is surjective,
let wI ∈ W . Since (gj)J is an episink, there exists j ∈ J such that gj(xj) = f(w)
for some xj,I ∈ Xj . Thus (w, xj)I ∈ Uj and wI = ej(w, xj)I . So (ej)J is an episink
in ISet.
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Finally, let us show that (ej)J is final in ISet. Let A∗W be the final structure in
W w.r.t. (ej)J and let wI ∈ AW . Since f : (W,AW )→ (Y,AY ) is an ISet-mapping,
w ∈ AW,T ∩ f−1(AY,T ). Then w ∈ AW,T and f(w) ∈ AY,T . Since (gj)J is final,

w ∈ AW,T , xj ∈
⋃
J

⋃
x
′
j∈g
−1
j (f(w))

Aj,T .

So (w, xj) ∈ AUj,T
. Since A∗W is the final structure in W w.r.t. (ej)J , wI ∈ A∗W ,

i.e., AW ⊂ A∗W . On the other hand, since (ej : (Uj , AUj
)→ (W,AW ))J is final, 1W :

(W,A∗W ) → (W,AW ) is an ISet-mapping and thus A∗W ⊂ AW . Hence A∗W = AW .
Therefore (ej)J is final. This completes the proof. �

For any singleton set {a}, ({a}, φ) = {a}I and (φ, {a}) = φI are ISs of {a}. Then
IS of {a} is not unique. Thus by Definition 2.6, Corollary 4.7 and Theorem 4.8, we
have the following result.

Theorem 4.9. The category ISet satisfies all the conditions of a topological universe
over Set except the terminal separator property.

Theorem 4.10. The category ISet is Cartesian closed over Set.

Proof. It is clear that ISet has products by Theorem 4.5. Then it is sufficient to
see that ISet has exponential objects.

For any ISps X = (X,AX) and Y = (Y,AY ), let Y X be the set of all ordinary
mappings from X to Y . We define the IS AY X = (AY X ,T , AY X ,F ) in Y X by: for

each f ∈ Y X and each x ∈ X,

fI ∈ AY X if and only if f(xI) ∈ AY , i.e., f ∈ AY X ,T if and only if f(x) ∈ AY,T .

In fact,

AY X ,T = {f ∈ Y X : f(x) ∈ AY,T for each x ∈ X}.
Furthermore, AY X ,T ∩AY X ,F = φ. Then clearly, (Y X , AY X ) is an ISp.

Let YX = (Y X , AY X ) and let fI ∈ IP (Y X). Then by the definition of AY X ,

AY X ,T ⊂ f−1(AY,T ) and AY X ,F ⊃ f−1(AY,F ).

We define eX,Y : X × Y X → Y by eX,Y (x, f) = f(x), for each (x, f) ∈ X × Y X .
Let (x, f)I ∈ AX ×AY X . Then by Definition 3.18 and the definition of eX,Y ,

(x, f) ∈ AX,T ×AY X ,T and eX,Y (x, f)I = f(xI).

Thus by the definition of AY X ,

(x, f) ∈ f−1(AY,T )× f−1(AY,T ).

So (x, f) ∈ e−1X,Y (AY,T ). Hence AX×AY X ⊂ e−1X,Y (AY ). Therefore eX,Y : X×YX →
Y is an ISet-mapping.

For any Z = (Z,AZ) ∈ ISet, let h : X× Z→ Y be an ISet-mapping.
We define h̄ : Z → Y X by for each z ∈ Z and each x ∈ X,

[h̄(z)](x) = h(x, z).

Let (x, z)I ∈ AX ×AZ . Since h : X× Z→ Y is an ISet-mapping,

AX ×AZ ⊂ h−1(AY ).
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Then by Definitions 3.18 and 4.2, (x, z) ∈ h−1(AY,T ). Thus h((x, z)) ∈ AY,T . By the
definition of h̄, [h̄(z)](x) ∈ AY,T . So by the definition of AY X ,

[h̄(z1)](AZ,T ) ⊂ AY X ,T .

Hence AZ ⊂ h̄−1(AY X ). Therefore h̄ : Z → YX is an ISet-mapping. Furthermore,
h̄ is the unique ISet-mapping such that eX,Y ◦ (1X × h̄) = h. This completes the
proof. �

5. The relationships between ISet and NCSet

Definition 5.1 ([18]). The concrete category NCSet is defined as:
(i) an object is (X,A) called a neutrosophic crisp space, where X is any non-empty

set and A ∈ NCS(X),
(ii) a morphism f : (X,AX) → (Y,AY ) is a mapping satisfying AX ⊂ f−1(AY ),

equivalently,
AX,1 ⊂ f−1(AY,1), AX,2 ⊂ f−1(AY,2) and AX,3 ⊃ f−1(AY,3),

where AX = (AX,1, AX,2, AX,3) and AY = (AY,1, AY,2, AY,3).
In this case, the morphism f is called a NCSet-mapping.

We will define newly a neutrosophic crisp space as following.

Definition 5.2. (X,A) is called a ∗neutrosophic crisp space, if A ∈ NCS(X) such
that

A1 ⊂ Ac
3 ⊂ A2.

In this case, we will denote the set of all ∗neutrosophic crisp spaces as ∗NCS(X).

Remark 5.3. We can easily see that the class ∗NCS(X) and NCSet-mappings
forms a concrete category (will be denoted by ∗NCSet). Furthermore, we can
easily prove that the category ∗NCSet satisfies the all properties corresponding to
NCSet (See Section 4 in [18]). In this case, a morphism in ∗NCSet will be called
a ∗NCSet-mapping.

Lemma 5.4. Define G : ∗NCSet→ ISet as follows:
G(X, (A1, A2, A3)) = (X, (A1, A3)) and G(f) = f.

for each (X, (A1, A2, A3)) ∈ ∗NCSet. Then G is a functor.

Proof. Since (X, (A1, A2, A3) ∈ ∗NCSet, A1 ⊂ Ac
3 ⊂ A2. Then A1 ∩ Ac

3 = φ. Thus
G(X, (T, I, F )) = (X, (T, F )) ∈ ISet, for each (X, (T, I, F )) ∈ ∗NCSet.

Let (X, (AX,1, AX,2, AX,3)), (Y, (AY,1, AY,2, AY,3)) ∈ NCSet∗ and let
f : (X, (AX,1, AX,2, AX,3))→ (Y, (AY,1, AY,2, AY,3)) be an ∗NCSet-mapping. Then
AX,1 ⊂ f−1(AY,1), AX,2 ⊂ f−1(AY,2), AX,3 ⊃ f−1(AY,3). Thus G(f) = f is an
ISet-mapping. So G : ∗NCSet→ ISet is a functor. �

Lemma 5.5. Define F : ISet→ ∗NCSet by: for each (X, (T, F )) ∈ ISet,
F (X, (T, F )) = (X, (T, F c, F )) and F (f) = f .

Then F is a functor.

Proof. Let (X, (T, F )) ∈ ISet. Then T ∩ F = φ. Thus T ⊂ F c. So F (X, (T, F )) =
(X, (T, F c, F )) ∈ ∗NCSet.
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Let (X, (AX,T , AX,F )), (Y, (AY,T , AY,F )) ∈ ISet and let f : (X, (AX,T , AX,F ))→
(Y, (AY,T , AY,F )) be an ISet-mapping. Consider the mapping

F (f) = f : F (X, (AX,T , AX,F ))→ F (Y, (AY,T , AY,F )),

where

F (X, (AX,T , AX,F )) = (X, (AX,T , A
c
X,F , AX,F ))

and

F (Y, (AY,T , AY,F )) = (Y, (AY,T , A
c
Y,F , AY,F )).

Since f : (X, (AX,T , AX,F ))→ (Y, (AY,T , AY,F )) is an ISet-mapping,
AX,T ⊂ f−1(AY,T ) and AX,F ⊃ f−1(AY,F ).

Then Ac
X,F ⊂ f−1(Ac

Y,F ). Thus

F (f) = f : (X, (AX,T , A
c
X,F , AX,F )) → (Y, (AY,T , A

c
Y,F , AY,F )) is an ∗NCSet-

mapping. Hence F is a functor. �

Theorem 5.6. The functor F : ISet → ∗NCSet is a left adjoint of the functor
G : ∗NCSet→ ISet.

Proof. For each (X, (T, F )) ∈ ISet, 1X : (X, (T, F ))→ GF (X, (T, F )) = (X, (T, F ))
is an ISet-mapping. Let (Y, (AY,1, AY,2, AY,3)) ∈ ∗NCSet and let f : (X, (T, F ))→
G(AY,1, AY,2, AY,3)) = (Y, (AY,1, AY,3)) be an ISet-mapping. We will show that
f : F (X, (T, F )) = (X, (T, F c, F ))→ (Y, (AY,1, AY,2, AY,3)) is an ∗NCSet-mapping.
Since f : (X, (T, F ))→ (Y, (AY,1, AY,3)) is an ISet-mapping,

T ⊂ f−1(AY,1) and F ⊃ f−1(AY,3).
Since (Y, (AY,1, AY,2, AY,3)) ∈ ∗NCSet, AY,1 ⊂ Ac

Y,3 ⊂ AY,2. Since F ⊃ f−1(AY,3),

F c ⊂ f−1(Ac
Y,3). Then F c ⊂ f−1(AY,2). Thus f : F (X, (T, F )) = (X, (T, F c, F ))→

(Y, (AY,1, AY,2, AY,3)) is an ∗NCSet-mapping. Hence 1X is a G-universal mapping
for (X, (T, F )) ∈ ISet. This completes the proof. �

For each (X, (T, F )) ∈ ISet, F (X, (T, F )) = (X, (T, F c, F )) is called a neutro-
sophic crisp space induced by (X, (T, F )). Let us denote the category of all in-
duced neutrosophic crisp spaces and ∗NCSet-mappings as ∗NCSet∗. Then clearly,
∗NCSet∗ is a full subcategory of ∗NCSet.

Theorem 5.7. Two categories ISet and ∗NCSet∗ are isomorphism.

Proof. From Lemma 5.6, it is clear that F : ISet → ∗NCSet is a functor. Con-
sider the restriction G : ∗NCSet∗ → ISet of the functor G in Lemma 5.4. Let
(X, (T, F )) ∈ ISet. Then by Lemma 5.6, F1(X, (T, F )) = (X, (T, F c, F )). Thus
GF (X, (T, F )) = G1(X, (T, F c, F )) = (X, (T, F )). So G ◦ F = 1ISet.

Now let (X, (AX,1, AX,2, AX,3)) ∈ ∗NCSet∗. Then by definition of ∗NCSet∗,
there exists (X, (T, F c, F )) such that

F (X, (T, F )) = (X, (T, F c, F )) = (X, (AX,1, AX,2, AX,3)).

Thus by Lemma 5.4,

G(X, (AX,1, AX,2, AX,3)) = G(X, (T, F c, F ))

= (X, (T, F )).
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So

FG(X, (AX,1, AX,2, AX,3)) = F (X, (T, F ))

= (X, (AX,1, AX,2, AX,3)).

Hence F ◦G = 1∗NCSet∗ . Therefore F : ISet→ ∗NCSet∗ is an isomorphism. This
completes the proof. �

6. Conclusions

By forming the category ISet consisting of intuitionistic crisp sets and morphisms
between them, we prove that final episinks in ISet are preserved by pullbacks(See
Theorem 4.8) and the category ISet is Cartesian closed over Set (See Theorem 4.10).
Furthermore, we show that two categories ISet and ∗NCSet∗ are isomorphism (See
Theorem 5.7). In the future, we think that the category ISet can be studied in
another view-point.
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