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1. Introduction

The theory of differential calculus in linear topological spaces has important ap-
plications to general differential geometry, general dynamics and general continuous
group theory. The first definition of derivative of a function whose arguments and
values lie in linear topological spaces was proposed by Michal and Paxon (1936) [12].
After that various definitions were proposed by several authors [10, 4, 5, 6] etc. The
notion of differentiation was extended in fuzzy topological vector spaces by Ferraro
and Foster [2]. Molodtsov [13] initiated a novel concept of soft set theory and then
this concept is discussed and studied its applications by various authors [7, 8, 17]. In
recent years, some soft separation axioms in soft topological spaces are introduced
and studied [11, 3]. In 2015, the notion of vector soft topology is introduced and
separation properties of vector soft topology are studied [1]. As a continuation of
[1], in this paper we attempt to introduce the concept of soft differential in vector
soft topologies using soft continuous function and one of the soft separation axioms
that is soft T1. Here, we shall consider the soft topology of the range space of a soft
differentiable function is soft T1 and contains a balanced soft neighbourhood base
at the soft point corresponding to the null vector.
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2. Preliminaries

Definition 2.1 ([13]). Let X be a universal set, A be a set of parameters, P (X)
denote the power set of X and B ⊆ A. A pair (F,B) is called a soft set over X,
where F is a mapping given by F : B → P (X).
In [9] the soft sets are redefined as follows: Let B be the set of parameters and
B ⊆ A. Then for each soft set (F,B) over X a soft set (H,A) is constructed over

X, where ∀α ∈ A, H(α) =

{
F (α) if α ∈ B
φ if α ∈ A \B.

Thus the soft sets (F,B) and (H,A) are equivalent to each other and the usual
set operations of the soft sets (Fi, Bi), i ∈ ∆ is the same as those of the soft sets
(Hi, A), i ∈ ∆. For this reason, in this paper, we have considered our soft sets over
the same parameter set A.

Set theoretic operations are considered as in [7, 8, 13] considering the same pa-
rameter set A.

Unless otherwise stated, X will be assumed to be an initial universal set, A will
be taken to be a set of parameters and S(X,A) denote the set of all soft sets over
X.

Definition 2.2 ([15]). A soft point Exα ( soft element [15]) is a soft set (E,A) such
that E(α) is a singleton, say, {x} and E(β) = φ, ∀β ∈ A \ {α}. Exα is said to be in
(F,A), denoted by Exα∈̃(F,A), if x ∈ F (α). = denotes the set of all soft points of X.

Definition 2.3 ([15]). Let X and Y be two non-empty sets and f : X → Y be a
mapping. Then for (F,A) ∈ S(X,A) and (G,A) ∈, S(Y,A)

(i) f [(F,A)] = (f(F ), A), where [f(F )] (α) = f [F (α)] ,∀α ∈ A,
(ii) f−1 [(G,A)] = (f−1(G), A), where

[
f−1(G)

]
(α) = f−1 [G(α)] ,∀α ∈ A.

Definition 2.4 ([16]). Let τ be a collection of soft sets over X. Then τ is said to
be a soft topology on X, if

(i) (Φ̃, A), (X̃, A) ∈ τ , where Φ̃(α) = φ and X̃(α) = X, ∀α ∈ A,
(ii) the intersection of any two soft sets in τ belongs to τ ,

(iii) the union of any number of soft sets in τ belongs to τ .

The triplet (X,A, τ) is called a soft topological space over X.

Definition 2.5 ([15]). A soft topology τ on X is said to be an enriched soft topology,
if the condition (i) of Definition 2.4 is replaced by (i)′:

(i)′ (F,A) ∈ τ, for all pseudo constant soft set (F,A)(i. e. F (α) = X or φ,
∀α ∈ A). The triplet (X,A, τ) is called an enriched soft topological space.

Proposition 2.6 ([1]). Let for each α ∈ A, τα is a crisp topology on X. Then
τ∗ = {(G,A) ∈ S(X,A) : G(α) ∈ τα,∀α ∈ A} is an enriched soft topology on X.

Definition 2.7 ([15]). Let (X,A, τ) be a soft topological space. B ⊆ τ is said to be
an open base of τ , if each (F,A) ∈ τ can be expressed as the union of some members
of B.

Definition 2.8 ([14]). f : (X,A, τ) → (Y,A, ν) is said to be soft continuous, if for
any (G,A) ∈ ν, there is (F,A) ∈ τ such that f(F,A)⊆̃(G,A).
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Proposition 2.9 ([14]). f : (X,A, τ) → (Y,A, ν) is soft continuous if and only if

∀x ∈ X, α ∈ A and ∀(V,A) ∈ ν such that E
f(x)
α ∈̃(V,A), ∃(U,A) ∈ τ such that

Exα∈̃(U,A) and f [(U,A)]⊆̃(V,A).

Definition 2.10 ([14]). The soft topology on X1 × X2 induced by the open base
F = {(F,A)×̃(G,A) : (F,A) ∈ τ1, (G,A) ∈ τ2} is said to be the product soft
topology of τ1 and τ2. It is denoted by τ1×̃τ2 and (X1 ×X2, A, τ1×̃τ2) is said to be
the soft topological product of the soft topological spaces (X1, A, τ1) and (X2, A, τ2).

Proposition 2.11 ([14]). The projection mappings πi : (X1 ×X2, A, τ1×̃τ2)→
(Xi, A, τi), i = 1, 2 are soft continuous and soft open. Further for any soft topological
space (Y,A, ν), f : (Y,A, ν)→ (X1 ×X2, A, τ1×̃τ2) is soft continuous if and only if
πi ◦ f : (Y,A, ν)→ (Xi, A, τi), i = 1, 2 are soft continuous.

Definition 2.12 ([15]). (X,A, τ) is said to be soft T1, if for Exα, E
y
β ∈ = with Exα 6=

Eyβ , ∃(F,A), (G,A) ∈ τ such that Exα∈̃(F,A), Eyβ /̃∈(F,A) and Eyβ∈̃(G,A), Exα /̃∈(G,A).

Throughout the rest of the paper we use the notation V for the vector space
(V,+, ·) over the scalar field K, where K is the field of real or complex numbers, A
is the parameter set. Also, we use the notation xy instead of x · y.

Definition 2.13 ([1]). For (F,A), (G,A) ∈ S(V,A), k ∈ K, x ∈ V, (H,A) ∈
S(K,A),

(F,A) + (G,A) = (F +G,A),
k(F,A) = (kF,A),
x+ (F,A) = (x+ F,A)

and
(H,A) · (F,A) = (H · F,A)

are defined parameterwise as in [1].

Definition 2.14 ([1]). Let να be the usual topology on K, ∀α ∈ A. Then the soft
topology ν defined as in Proposition 2.5 is called the soft usual topology on K.

Definition 2.15. [1] Let V be a vector space over the scalar field K endowed with
the soft usual topology ν, A be the parameter set and τ be a soft topology on V .
Then τ is said to be a vector soft topology on V , if the mappings:

(i) f : (V × V,A, τ×̃τ)→ (V,A, τ), defined by f(x, y) = x+ y and
(ii) g : (K × V,A, ν×̃τ)→ (V,A, τ), defined by g(k, x) = kx

are soft continuous, ∀x, y ∈ V and ∀k ∈ K.

Definition 2.16 ([1]). Let (V,A, τ) be a vector soft topology. A balanced soft set
(F,A) (i.e. k(F,A)⊆̃(F,A) for all k ∈ K with | k |≤ 1) is said to be a balanced neigh-
bourhood of a soft point Exα if there exists (G,A) ∈ τ such that Exα∈̃(G,A)⊆̃(F,A).

Proposition 2.17 ([1]). Let (V,A, τ) be a soft topological space over V and the field
K is equipped with the soft usual topology ν. Then τ is a vector soft topology if and
only if

(1) ∀x, y ∈ V, ∀α ∈ A and ∀(W,A) ∈ τ with Ex+yα ∈̃(W,A), ∃(F,A), (G,A) ∈ τ
such that Exα∈̃(F,A), Eyα∈̃(G,A) and (F +G,A)⊆̃(W,A),

(2) ∀x ∈ V, ∀k ∈ K, ∀α ∈ A and ∀(W,A) ∈ τ with Ekxα ∈̃(W,A), ∃(G,A) ∈
ν, (F,A) ∈ τ such that Exα∈̃(F,A), Ekα∈̃(G,A) and (G · F,A)⊆̃(W,A).
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Definition 2.18 ([1]). A collection B of soft neighbourhoods of Exα is said to
be a soft neighbourhood base of Exα, if for any soft neighbourhood (F,A) of Exα,
∃(H,A) ∈ B such that (H,A)⊆̃(F,A).

Proposition 2.19 ([1]). Let (V,A, τ) be an enriched vector soft topology. Then ∃
a balanced soft neighbourhood base of the soft point Eθα in (V,A, τ).

Proposition 2.20. Let (V1, A, τ1) and (V2, A, τ2) be two vector soft topologies. Then
their product (V1 × V2, A, τ1×̃τ2) is also a vector soft topology.

Proof. (i) Let α ∈ A, E
(x1+y1,x2+y2)
α ∈̃(V1, A)×̃(V2, A) and let (F,A) be any soft

neighbourhood of E
(x1+y1,x2+y2)
α . Then (F,A)⊇̃(F1, A)×̃(F2, A), where (F1, A), (F2, A)

are soft neighbourhoods of E
(x1+y1)
α and E

(x2+y2)
α . Thus by Proposition 2.17, there

exist soft neighbourhoods (Gi, A) and (Hi, A) of Exi
α and Eyiα , respectively such

that (Gi, A) + (Hi, A)⊆̃(Fi, A), i = 1, 2. So, (G1, A)×̃(G2, A) and (H1, A)×̃(H2, A)

are soft neighbourhoods of E
(x1,x2)
α and E

(y1,y2)
α , respectively in (V1× V2, A, τ1×̃τ2).

Again,
[(G1, A) + (H1, A)] ×̃ [(G2, A) + (H2, A)]

=
[
(G1, A)×̃(G2, A)

]
+ [(H1, A)×̃ (H2, A)]

⊆̃(F1, A)×̃(F2, A) ⊆̃(F,A).
Clearly α ∈ A, x1, y1 ∈ V1, x2, y2 ∈ V2 are arbitrary. Hence this is true for all α ∈ A,
∀x1, y1 ∈ V1, ∀x2, y2 ∈ V2.

(ii) Let α ∈ A, k ∈ K, (x1, x2) ∈ V1 × V2, E(kx1,kx2)
α ∈̃(V1, A)×̃(V2, A) and let

(F,A) be any soft neighbourhood of E
(kx1,kx2)
α . Then (F,A)⊇̃(F1, A)×̃(F2, A), where

(Fi, A) is a soft neighbourhood of Ekxi
α , i = 1, 2. Thus by Proposition 2.17, there

exist soft neighbourhoods (G1, A) and (H1, A) of Ekα and Ex1
α , respectively such that

(G1 ·H1, A)⊆̃(F1, A). Similarly, there exist soft neighbourhoods (G2, A) and (H2, A)
of Ekα and of Ex2

α such that (G2 · H2, A)⊆̃(F2, A). Set (G,A) = (G1, A)∩̃(G2, A).
Then (G ·H1, A)⊆̃(F1, A) and (G ·H2, A)⊆̃(F2, A). Thus

(G · (H1 ×H2), A)⊆̃(G ·H1, A)×̃(G ·H2, A)⊆̃(F1, A)×̃(F2, A)⊆̃(F,A).

Since α ∈ A, k ∈ K x1, y1 ∈ V1 are arbitrary, this is true for all α ∈ A, k ∈ K and
∀x1, y1 ∈ V1. So, by Proposition 2.17, (V1×V2, A, τ1×̃τ2) is a vector soft topology. �

Definition 2.21 ([6]). A real valued function of a real variable t defined on some

neighbourhood of 0 is said to be o(t), if lim
t→0

o(t)
t = 0.

3. Soft tangent

Definition 3.1. Let (Vi, A, τi), i = 1, 2 be vector soft topologies and θ ∈ V1, θ′ ∈
V2 are null vectors. A function φ : (V1, A, τ1) → (V2, A, τ2) with φ(θ) = θ′ is

said to be a soft tangent to Eθα, if for any soft neighbourhood (G,A) of Eθ
′

α in
(V2, A, τ2), there exists a soft neighbourhood (F,A) of Eθα in (V1, A, τ1) such that
φ(t(F,A))⊆̃o(t)(G,A), for some function o(t).

Lemma 3.2. Let Eθα be a soft point in a vector soft topology (V,A, τ) and (F,A) be

any soft set containing Eθα. If there is a point a ∈ V such that Ekaα /̃∈(F,A), for all
non-zero scalar k ∈ K, then (F,A) is not a soft neighbourhood of Eθα.
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Proof. Suppose that (F,A) be a soft open neighbourhood of Eθα. Consider the
function g : (k, a) → ka and let Eaα be any soft point. For k = 0, the point
Ekaα ∈̃(F,A). Since g is soft continuous, there exist soft neighbourhood (G,A) and
(H,A) of E0

α and Eaα, respectively such that (G,A) · (H,A) = (G ·H,A) ⊆ (F,A).
Now G(α) = (−ε, ε), for some ε > 0. Then, Eδaα ∈̃(F,A), for some δ(6= 0) ∈ (−ε, ε).
Thus the result holds. �

Lemma 3.3. In a vector soft topology (V1, A, τ1), where τ1 is enriched, if (F,A) is
a soft neighbourhood of Eθα, then there is a soft neighbourhood (G,A) of Eθα such
that k(G,A)⊆̃(F,A), for each k ∈ K, | k |≤ 1.

Proof. Let (F,A) be a soft neighbourhood of Eθα. Since the scalar product is soft
continuous, there exists an ε > 0 and a soft neighbourhood (H,A) of Eθα such that
for ξ ∈ K, | ξ |< ε, ξH(α) ⊆ F (α). Let (J,A) be the soft set with J(α) = H(α)
and J(β) = φ, β(6= α) ∈ A. Then ξ(J,A)⊆̃(F,A). By hypothesis, | k |≤ 1. Thus
| kξ |< ε and kξ(J,A)⊆̃(F,A). Set ξ(J,A) = (G,A). So the result follows. �

Proposition 3.4. If the function φ : (V1, A, τ1)→ (V2, A, τ2) is soft tangent to Eθα,
where τ1, τ2 are enriched, then φ is soft continuous at Eθα.

Proof. By Lemma 3.3, for every soft neighbourhood (F,A) of Eθ
′

α , there exists a

soft neighbourhood (F ′, A) of Eθ
′

α such that o(t)(F ′, A)⊆̃(F,A), for | o(t) |≤ 1.
By Definition 3.1, for each (F ′, A) there exists a soft neighbourhood (G,A) of Eθα
in (V1, A, τ1) such that φ(t(G,A))⊆̃o(t) (F ′, A)⊆̃(F,A). Since t(G,A) is also a soft
neighbourhood of Eθα, φ is soft continuous at Eθα. �

Proposition 3.5. If the functions φ, ψ : (V1, A, τ1) → (V2, A, τ2) are soft tangents
to Eθα, then φ+ ψ is soft tangent to Eθα.

Proof. For every soft neighbourhood of (G,A) of Eθ
′

α , there exists a soft neighbour-

hood (G′, A) of Eθ
′

α in (V2, A, τ2) such that (G′, A) + (G′, A)⊆̃(G,A).
Then, o(t)(G′, A) + o(t)(G′, A)⊆̃o(t) (G,A). Since φ, ψ : (V1, A, τ1) → (V2, A, τ2) is

soft tangent to Eθα, for any soft neighbourhood (G′, A) of Eθ
′

α in (V2, A, τ2), there
exist soft neighbourhoods (F ′, A), (F ′′, A) of Eθα in (V1, A, τ1) such that

φ(t(F ′, A))⊆̃o(t)(G′, A) and ψ(t(F ′′, A))⊆̃o(t)(G′, A).
Let (F,A) = ((F ′, A)∩̃(F ′′, A). Then φ(t(F,A))⊆̃ o(t)(G′, A) and ψ(t(F,A))

⊆̃ o(t) (G′, A). Thus,
(φ+ ψ) (t(F,A)) = φ(t(F,A)) + ψ(t(F,A))

⊆̃ o(t)(G′, A) + o(t)(G′, A)
⊆̃ o(t) (G,A). �

Proposition 3.6. Let (V1, A, τ1), (V2, A, τ2) and (V3, A, τ3) be three vector soft
topologies. If φ : (V1, A, τ1)→ (V2, A, τ2) is soft tangent to Eθα and f : (V2, A, τ2)→
(V3, A, τ3) is linear soft continuous, then f ◦ φ is soft tangent to Eθα.

On the other hand, if f : (V1, A, τ1) → (V2, A, τ2) is linear soft continuous and
φ : (V2, A, τ2)→ (V3, A, τ3) is soft tangent to Eθα, then φ ◦ f is soft tangent to Eθα .

Proof. By the soft continuity of f , for every soft neighbourhood (F,A) of Eθ
′′

α in

(V3, A, τ3), there exists a soft neighbourhood (G,A) of Eθ
′

α in (V2, A, τ2) such that
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f(G,A)⊆̃(F,A). Since φ is a soft tangent to Eθα, for every such (G,A), there is a
soft neighbourhood (H,A) of Eθα such that φ(t(H,A))⊆̃o(t)(G,A). Then
f(φ(t(H,A)))⊆̃ f(o(t)(G,A)) = o(t)f(G,A) ⊆̃o(t)(F,A).

Thus f ◦ φ is soft tangent to Eθα.
The other part of the Proposition 3.6 proceeds in a similar way. �

4. Soft differentiation

Definition 4.1. Let (V1, A, τ1) and (V2, A, τ2) be two vector soft topologies of which

(V2, A, τ2) is soft T1 and contains a balanced neighbourhood base at Eθ
′

α , θ′ is the
null vector of V2. Then a soft continuous function f : (V1, A, τ2) → (V2, A, τ2) is

said to be soft differentiable at a soft point Exα∈̃(Ṽ1, A), if there exists a linear soft
continuous function u : (V1, A, τ1)→ (V2, A, τ2) such that we can write
f(Ex+yα ) = f(Exα) + u(Eyα) + φ(Eyα), y ∈ V1, where φ is a soft tangent to Eθα.

The mapping u is called the soft derivative of f at Exα and denoted by f ′(Exα).
Here the function u depends on x and α both.
Henceforth, we shall consider the soft topology of the range space of a soft differ-
entiable function is soft T1 and contains a balanced soft neighbourhood base at the
soft point corresponding to the null vector.

Example 4.2. Consider the vector space R over the field R and A be the parameter
set. Let τα be the usual topology on R for all α ∈ A and τ be the soft topology
on R as of Proposition 2.6. Then (R, A, τ) is an enriched vector soft topology.
Now for any r ∈ R, define the mapping Ur : R → R by Ur (x) = rx. Then
obviously, Ur : (R, A, τ) → (R, A, τ) is linear soft continuous mapping. Also, for

any Exα∈̃
(
R̃, A

)
, Ur (Ex+yα ) = E

r(x+y)
α = Erxα +Eryα +O (Eyα) , y ∈ R, where O, the

zero function (i.e. O(x) = 0 ∈ R,∀x ∈ R), is a soft tangent to E0
α. So, Ur is soft

differentiable at every soft point Exα∈̃
(
R̃, A

)
.

Proposition 4.3. The soft derivative of a function f : (V1, A, τ1) → (V2, A, τ2) at
a soft point Exα is unique.

Proof. Suppose if possible that the derivative of f at soft point Exα is not unique.
Then there exist two linear soft continuous functions u1, u2 such that

u1(Eyα) + φ(Eyα) = u2(Eyα) + ψ(Eyα), y ∈ V1,

where φ, ψ are each tangent to Eθα.
Let η : V1 → V2 such that η(y) = u1(y)−u2(y), y ∈ V1. Then clearly, η is a linear

function such that η(Eyα) = u1(Eyα) − u2(Eyα) = ψ(Eyα) − φ(Eyα), y ∈ V1. Thus by
Proposition 3.5, η is soft tangent to Eθα. By assumption, η is not zero. Let a ∈ V1
such that η(a) = r 6= θ′. Since (V2, A, τ2) is soft T1, for Erα∈̃(Ṽ2, A), there exists a

soft open set (G,A) such that Erα /̃∈(G,A), Eθ
′

α ∈̃(G,A).

If B is a balanced soft neighbourhood base of Eθ
′

α in (V2, A, τ2), then there is a

(H,A) ∈ B, Eθ
′

α ∈̃(H,A)⊆̃(G,A) with (εH,A)⊆̃(H,A), for all | ε |≤ 1.

If ξ = 1
ε , for ε 6= 0, then Eξrα /̃∈(H,A). Since η is soft tangent to Eθα, there

must be a soft neighbourhood (J,A) of Eθα such that η(t(J,A))⊆̃o(t)(H,A). Thus
532
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η(J,A)⊆̃ o(t)t (H,A), as η is linear. Put t
o(t) = ξ. Then

η(J,A)⊆̃1

ξ
(H,A) = (εH,A)⊆̃(H,A).

Thus Eξrα /̃∈η(J,A),i.e., Eξaα /̃∈(J,A). For | ξ |≤ 1, ξ 6= 0, as Erα /̃∈(H,A), Eξrα /̃∈ξ(H,A).

Since η(J,A)⊆̃ o(t)t (H,A), η(J,A)⊆̃ξ(H,A). So Eξrα /̃∈η(J,A) and thus Eξaα /̃∈(J,A).
Setting ξ = k, we get that there is a point a ∈ V1, such that for any k, k 6=
0, Eakα /̃∈(J,A). Hence by Lemma 3.2, (J,A) is not a soft neighbourhood of Eθα, a
contradiction. Therefore the soft derivative of f at soft point Exα is unique. �

Proposition 4.4. Let (V1, A, τ1), (V2, A, τ2) be vector soft topologies. Then any
soft continuous constant function f : (V1, A, τ1)→ (V2, A, τ2) is soft differentiable at

every soft point of (Ṽ1, A).

Proposition 4.5. The soft derivative of a linear soft continuous mapping u :
(V1, A, τ1)→ (V2, A, τ2) exists at every soft point Exα∈̃(Ṽ1, A).

Proposition 4.6. Let (W,A, ν) =
∏n
j=1(Wj , A, νj) be the product vector soft topol-

ogy of a finite family of vector soft topologies (Wj , A, νj), j = 1, 2, ..., n, and (V,A, τ)
be any vector soft topology. Then a soft continuous mapping f : (V,A, τ)→ (W,A, ν)

is soft differentiable at Exα∈̃(Ṽ , A) iff πj ◦ f is soft differentiable at Exα.

Proof. Let f be soft differentiable at Exα. Then

f(Ex+yα ) = f(Exα) + u(Eyα) + φ(Eyα), y ∈ V,

where φ is a soft tangent to Eθα.
By linearity of projection mapping πj , we can write for every j,

πj(f(Ex+yα ))− πj(f(Exα)) = πj(f
′(Exα)(Eyα)) + πj(φ(Eyα)), y ∈ V.

Since πj and f ′ both are linear and soft continuous, πj ◦ f ′ is linear and soft contin-
uous and by Proposition 3.6, πj ◦ φ is soft tangent to Eθα, j = 1, 2, .., n.

Conversely, let πj ◦ f be soft differentiable at Exα, for every j ∈ {1, 2, .., n}. Then,
for every j, we can write,

πj(f(Ex+yα ))− πj(f(Exα)) = uj(E
y
α) + φj(E

y
α),

where uj is a linear soft continuous mapping and φj is soft tangent to Eθα. Let (G,A)

be a soft neighbourhood of Eθ
′

α in (W,A, ν). By definition of soft product topology,

(G,A)⊇̃
∏n
j=1(Gj , A), where (Gj , A) are soft neighbourhoods of E

θ′j
α in (Wj , A, νj).

Now, for every (Gj , A), there exists a soft neighbourhood (Fj , A) of Eθα in (V,A, τ)

such that φj(t(Fj , A))⊆̃o(t).(Gj , A).

Setting (F,A) = ∩̃(Fj , A), we have φj(t(F,A)) ⊆̃o(t).(Gj , A), ∀j = 1, 2, .., n.

Again, o(t)(G,A)⊇̃o(t)
∏n
j=1(Gj , A) =

∏n
j=1o(t)(Gj , A).

Let φ =
∏n
j=1φj . Then

φ(t(F,A)) =
∏n

j=1
φj(t(F,A))⊆̃

∏n

j=1
o(t).(Gj , A)⊆̃o(t)(G,A).

Thus φ is soft tangent to Eθα.
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Define u =
∏n
j=1uj . This mapping is linear and soft continuous by linearity

and soft continuity of the functions uj . The uniqueness of f ′(Exα) follows by the
uniqueness of uj . �

Proposition 4.7. Let (V1, A, τ1), (V2, A, τ2), (V3, A, τ3) be three vector soft topolo-
gies, f : (V1, A, τ1)→ (V2, A, τ2) and g : (V2, A, τ2)→ (V3, A, τ3) be two soft contin-
uous mapping. Let x ∈ V1 and y = f(x). If f is soft differentiable at Exα and g is
soft differentiable at Eyα, then the composition h = g ◦ f is soft differentiable at Exα.

Proof. By hypothesis, f and g are soft differentiable. Then,

f(Ex+rα ) = f(Exα) + f ′(Exα)(Erα) + φ(Erα), r ∈ V1
and

g(Ey+sα ) = g(Eyα) + g′(Eyα)(Esα) + ψ(Esα), s ∈ V2,
where φ, ψ are soft tangents to Eθα and Eθ

′

α , respectively.
Defining h = g ◦ f, we obtain, after substitution,

h(Ex+rα )− h(Exα)
= g′(Eyα)(f ′(Exα)(Erα)) + g′(Eyα)(φ(Erα)) + ψ(f ′(Exα)(Erα) + φ(Erα)), r ∈ V1.

By Proposition 3.6, g′(Eyα) ◦ φ is soft tangent to Eθα. Consider the mapping ψ ◦
(f ′(Exα) + φ). For every soft neighbourhood (G,A) of Eθ

′′

α in (V3, A, τ3), there is

a soft neighbourhood (F,A) in Eθ
′

α in (V2, A, τ2) such that ψ(t(F,A))⊆̃o(t)(G,A).

Given (F,A) in (V2, A, τ2), there exists a soft neighbourhood (F ′, A) of Eθ
′

α such that
(F ′, A) + (F ′, A)⊆̃(F,A). Without loss of generality, suppose that both (F,A) and
(F ′, A) are balanced. By soft continuity of f ′(Exα), there is a soft neighbourhood
(H,A) of Eθα in (V1, A, τ1) such that f ′(Exα)((H,A))⊆̃(F ′, A), which implies that
tf ′(Exα)((H,A)) ⊆̃t(F ′, A), i.e., f ′(Exα)(t(H,A))⊆̃t(F ′, A). For every (F ′, A), there
exists a soft neighbourhood (J,A) of Eθα in (V1, A, τ1), such that φ(t(J,A))⊆̃o(t)(F ′, A)

and for | o(t)t |≤ 1, o(t)(F ′, A)⊆̃t(F ′, A).

Setting (N,A) = (H,A)∩̃(J,A), we get f ′(Exα)(t(N,A)) + φ(t(N,A))⊆̃t(F,A) and
which implies that

ψ[f ′(Exα)(t(N,A)) + φ(t(N,A))]⊆̃ψ(t(F,A))⊆̃o(t)(G,A).

Then the mapping ψ ◦ (f ′(Exα) + φ) is soft tangent to Eθα. Thus we can write

h(Ex+rα )− h(Exα) = g′(Eyα) ◦ f ′(Exα)(Erα) + χ(Erα), r ∈ V1,
where g′(Eyα) ◦ f ′(Exα) is linear soft continuous and χ, the sum of two mappings
which are soft tangent to Eθα, is soft tangent to Eθα. So the result holds. �

Proposition 4.8. Let (V1, A, τ1), (V2, A, τ2) be two vector soft topologies and f, g :
(V1, A, τ1)→ (V2, A, τ2) be two soft continuous mappings. If f and g are soft differ-
entiable at Exα, so are f + g and kf, k ∈ K.

Proof. The mapping f + g is composition of x → (f(x), g(x)) from (V1, A, τ1) into
(V2×̃V2, A, τ2×̃τ2) and of (u, v)→ u+v from (V2×̃V2, A, τ2×̃τ2) into (V2, A, τ2). The
first is soft differentiable, by Proposition 4.6 and the second by the definition of
sum; the result follows from Proposition 4.7. For kf it is sufficient to note that
the mapping u → ku of (V2, A, τ2) into itself is soft differentiable, by Proposition
4.5. �
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Remark 4.9. In Definition 4.1, if we replace soft T1 by soft Tychonoff or soft T2,
then all the results in section 4 also hold.

5. Conclusion

There is a future scope of studying higher order soft differentiation in vector soft
topologies and other properties of soft differentiable functions.
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