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ABSTRACT. We propose the notion of actions of multigroup on multiset
via count function of multiset with elaborate illustrations. The concepts
of orbits and stabilizers in multigroup actions are introduced and some
related results are obtained. The analogous of orbit-stabilizer theorem and
class equation are established in multigroup actions on multiset.
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1. INTRODUCTION

The notion of multisets emerged as a result of violating a basic underlying
principle (i.e. principle of distinct element in a collection) in set theory. Multiset
is an unordered collection of elements in which elements can occur more than once.
The term multiset as Knuth [7] noted was first suggested by N.G. de Bruijn in a
private correspondence to him. In literature, variety of terms such as list, heap,
bunch, bag, sample, weighted set, occurrence set, etc are used in different contexts
but conveying the same meaning as multiset. See [17, 18, 21] for details.

In [11], the concept of multigroups via multisets was introduced as a generalization
of groups. Multigroup constitutes an application of multisets to the elementary
theory of groups. The notion is consistent with other non-classical groups in [1, 13,

, 10], etc.

Although other researchers in [3, 5, 10, 12, 14, 19, 20] earlier used the term
multigroup as an extension of group theory (with each of them having a divergent
view), the notion of multigroup in [11] is quite acceptable because it is in consonant

with the aforementioned non-classical groups and defined over multiset. A complete
survey on the concept of multigroups from various authors were reviewed in [9].
Further studies on the concept of multigroups via multisets and cuts of multigroups
have been studied. See [1, 2, (] for details.
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In this paper, we introduce the notion of actions of multigroup on multiset via
count function of multiset and obtain some related results. The analogous of orbit-
stabilizer theorem and class equation are established in multigroup actions.

This paper is organized as follows: In Section 2, some preliminary definitions
and results on multisets, multigroups and group actions are reviewed. Section 3
introduces the concept of actions in multigroup context and exemplify it. Meanwhile,
Section 4 contains the main results.

2. PRELIMINARIES

Definition 2.1 ([17]). Let X be a set. A multiset A is characterized by a count
function

Car: X — N,
such that for € Dom(A) implies A(x) = Ca(z) > 0, where C4(x) denoted the
number of times an object  occur in A. Whenever C4(z) = 0, implies « ¢ Dom(A).
The set of all multisets of X is denoted by MS(X).

Definition 2.2 ([18, 21]). Let A,B € MS(X). Then A is called a submultiset of
B written as A C B if C4(z) < Cp(z)Vx € X. Also, if A C B and A # B, then A
is called a proper submultiset of B and denoted as A C B. A multiset is called the
parent in relation to its submultiset.

Definition 2.3 ([11]). Let X be a group. A multiset A over X is called a multigroup
of X if it satisfies the following conditions:
(i) Ca(zy) = Calx) ACaly) Va,y € X,
(ii) Ca(z™t) > Ca(z) Yz € X.
It follows immediately from [11] that,
Ca(z™)=Calzx)Vr e X

since
Ca(z) = Ca((z™H)™") = Ca(a™).
Also,
Ca(z) <Cale)Vze X
because

Ca(e) = Ca(za™) > Ca(x) A Ca(x) = Ca(x),
where e is the identity element of X. We denote the set of all multigroups of X by
MG(X). Every multigroup is a multiset but the converse is not necessarily true.

Definition 2.4 ([0]). Let A € MG(X). A submultiset B of A is called a submulti-
group of A denoted by B C A if B form a multigroup. A submultigroup B of A is
a proper submultigroup denoted by B C A, if BC A and A # B.
Definition 2.5 ([11]). Let A € MG(X). Then the sets A, and A* are defined as
A, ={x € X | Cy(x) > 0}
and
A*={z € X | Cy(x) =Cale)},
where e is an identity element of X.
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A multigroup A is completely defined over X whenever A, = X. From [11], A,
and A* are subgroups of X.

Definition 2.6. Let A be a multigroup of a group X. Then the center of A is
defined as

C(A)={x € X | Ca([z,y]) = Cale)Vy € X }.

Definition 2.7. Let A € MG(X) and z,y € X. Then z and y are called conjugate
elements in A if for some z € X,

Calz) = Calzyz™").

Definition 2.8 ([11]). Let A € MG(X). Then A is said to be commutative if for
all z,y € X,

Ca(zy) = Ca(yx).

Definition 2.9. Let X be a group. For any submultigroup A of a multigroup G of
X, the submultiset yA of G for y € X defined by

Cya(z) = Ca(y '2)Vz € A,

is called the left comultiset of A. Similarly, the submultiset Ay of G for y € X
defined by

Cay(z) = Ca(zy ')Va € A,
is called the right comultiset of A.

Definition 2.10. Let X and Y be groups, A € MG(X) and B € MG(Y), respec-
tively. The direct product of A and B depicted by A x B is a function

Caxp: X XY >N
defined by
Caxp(z,y) =Calz) NCp(y)Vx € X,Vy €Y.

Definition 2.11 ([8]). Let G be a group and T be a set. An action of a group G
on a set T is a binary operation

o:GxT —T,

satisfying Ve,g1,90 € Gand t € T
(i) eot =t
(ii) g1o(g2ot) = (g9192) ot.

Theorem 2.12 ([3]). Let a group G act on a set T. Then got =t & t=g lot
Vge G andt,t' €T.

Theorem 2.13 ([8]). Let a group G act on a set T. Suppose that G(t) is the
stabilizer of t. Then for any g1,92 € G, g1 ot =go 0ot & gglgl € G(t).
017
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3. CONCEPT OF MULTIGROUP ACTIONS

Let X be a group and Y be a set such that X CY, A € MG(X) and B e MS(Y)
respectively. We assume that X = A,, Y = B, and the count of all elements in A
is equal to the count of the corresponding elements in B with the exception of the
identity of X in A.

Definition 3.1. Let X be a group and Y be a set. Suppose A € MG(X) and
B € MS(Y) respectively. Then the action of A on B is an operation ¢ that takes
the count of A x B to B denoted by Caxg(g,x) — Cp(gox) such that Ve,g,h € X
and Vx € Y, the following are satisfied;

(i) Cpleox) =Cp(xr) @ ecx=z€Y,

(ii) Cp(go (hox))=Cp((gh)ox) e go(hox)=(gh)ox €Y.
This action of A on B is a left action; the right action is similar.

Remark 3.2. Let X be a group and Y be a set. Suppose A € MG(X) and
B € MS(Y) respectively. If A acts on B, then A, acts on B,. In fact A acts on B
if and only if A, acts on B,.

The notion of multigroup actions is indeed, the extension of group actions on a set.
See [8] for details on group actions.

Remark 3.3. An action is trivial if Cp(g ¢ ) = Cp(x)¥g € X. An action is
faithful or effective if for every two distinct g, h € X there exists an x € Y such that
Cp(gox) # Cp(hox); or equivalently, if for each g # e in X there exists an z € Y
such that Cp(g < z) # Cp(x).

Example 3.4. Let X = {0,1,2,3} be a group of modulo 4 with respect to addition
and Y ={0,1,2,3,4} be a set. Suppose
A=1[0%1%2% 3%
and
B =[0%,13,22,3% 47]
be multigroup and multiset of X and Y respectively. It follows from Definition 3.1

that, A acts on B via the operation of X.

Example 3.5. Suppose B is a multiset over a set Y and consider A to be a multi-
group of X. Then A acts on B as follows. For each f € X and each z € Y, we
define

Cp(fox) = Cp(f(2)).
(i) For e € X, we have
Cp(eox) =Cg(e(x)) = Cp(x)

as desired.
(ii) Also, if f,g € X, then

Cp(folgom)) =Cp(flgox)) =Cp(f(9(x))) = Cp(f og(x)) = Cp((fg) o x)

as desired.
518
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Example 3.6. Let A and B be multigroup and multiset of X respectively such that
B = A. Then for g,z € X, every multigroup A of a group X acting on itself by
conjugation is defined by

Cplgox) = Cp(grg™") = Calgrg™).
Condition (i) holds since for e € X
Ca(eox) = Calexe ') = Ca(x)Vz € X.
And condition (ii) holds as follows. Suppose g, h,z € X. Then
Ca(go(hox)) = CA(9<> (hxh™1))
Calg(hzh™ ) D)
= Ca((gh)z(h™'g™")
= Cal(gh)z(gh)™)
= Cal(gh)ox)
as desired.

Note that if A is commutative, then the multigroup action is trivial, in other words
Ca(gox)=Cy(x) Vg,x € X.

From now henceforth, we simply write A and B as multigroup and multiset of X
and Y respectively except otherwise stated.

Proposition 3.7. Let A acts on B. Ifx €Y, g € X and Cg(y) = Cp(gox), then
Cp(r) = Cp(g~"oy). Again, Cp(gox) # Cp(goa’) if and only if Cp(x) # Cp(a').

Proof. Suppose Cg(y) = Cp(gox). Then we have
Cplg'oy) =Crlg~" o (gox)) = Cr((9™'g) oz) = Cp(a).

We show the proof of the second by contrapositive. Let Cg(g ¢ x) = Cp(g ¢ ').
Then Cp(g~t o (gox)) = Cr(z’), that is,

Cp((97'g) ox) = Cp(a’) = Cp(z) = Cp(2).
Conversely, suppose Cp(z) = Cp(z'). Then Cg(eox) = Cp(z’). Thus Cp((g~tg)o
z) = Cp(z'). So Cp(g~to(gox)) = Cp(a’). Hence Cp(gox) = Cp(goa’). O
4. ORBITS AND STABILIZERS IN MULTIGROUP ACTIONS

Definition 4.1. Let A and B be multigroup and multiset of a group X and a set
Y respectively. Suppose that A acts on B on the left and if we fix z € Y. Then the
set
Orba(z) = {yeY |Cg(y) =Cg(gox) for some g € X}
= {gox|Cp(gox)exist} CY
is called the orbit of = (under A).

Example 4.2. Using Example 3.4 and fixing 4 € Y, we have Orbs(4) = {1, 3} for

g=3.
519
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Remark 4.3. Let A acts on B. Then for x € Y, Orba(z) = B, for every element
in A. Consequently, |B.| = %|Orba(x)|. Again, two elements 2 and y in Y are
equivalent if and only if their orbits are the same, that is, Orb(x) = Orba(y).

Remark 4.4. The action of A on B is said to be transitive or A is said to act
transitively on B, if there is only one orbit, that is, for any two elements x and y in
Y, there exists a g € X such that Cp(gox) = Cp(y). The action of A on B is doubly
transitive if for any two pairs (z1,22), (y1,y2) of elements of B with zy # x5 and
Y1 7 Y2, there exists g € X such that Cg(gox1) = Cp(y1) and Cg(goxs) = Cp(y2).

Lemma 4.5. Let A acts on B. If x € Y, then © € Orba(z).
Proof. Let z € Y. Since Cp(z) = Cp(eox), x € Orba(x). O

Given an action, define a relation on B by x ~ y if and only if 3¢ € X such that
Cp(y) = Cp(goxz). We prove that this defines an equivalence relation on B.

Proposition 4.6. Let A acts on B. If a relation x ~ y in B is defined by
Cplgox) =Ch(y),

for some g € X and x,y € Y. Then ~ is an equivalence relation. Furthermore, the
equivalence class of any x € Y is an Orba(x).

Proof. Since A # @, e € X and A acts on B such that
Cp(eoz) = Cp(x),

x ~ x. Then ~ is reflexive.
Suppose x ~ 3. Then for g,g~ ' € X, we get

Cplgox)=Cp(y) & Cp(g~toy) = Cp(x).
Thus y ~ x, i.e., ~ is symmetric.
Now, suppose = ~ y and y ~ z. Then we have g, g; € X such that
Cp(gox)=Cp(y)
and
Cp(g10y) = Cp(2).
Thus we can find go = g1¢9 € X such that
Cp(z) =Cg(g1o(gox)) =Cp((g19) o x) = Cp(g2 o x).

So x ~ z, i.e., ~ is transitive. Hence ~ is an equivalence relation.
For any x € Y, the equivalence class of z is the set

{yeBly~at={yeB|Cs(y) =Cr(gox)} = Orba(z).
0

Remark 4.7. We infer that B, can be partitioned into disjoint equivalence classes
called orbits. Since B, can breaks up into a disjoint union of equivalence classes
under an equivalence relation, it implies that if A acts on B, then B, is a union of
disjoint orbits.

520
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Remark 4.8. Let A acts on itself by conjugation. Then the orbit of X, that is,
Orba(x) = {grg™" | Ca(grg™") exist for g € X}

is the conjugacy class of x.

Theorem 4.9. Let A acts on B (on the left). Then the (distinct) orbits of elements

in B under A partition B,.

Proof. To prove this, we need to show that

(i) every element of B is in some orbit,
(ii) if Orba(x) N Orba(y) # @, then Orbyg(x) = Orba(y) Vo, y € Y.

These prove that B, is covered by disjoint orbits. The proof of (i) holds since
x € Orby(x) and so every element is in some orbit.

Now we prove (ii). Suppose z € Orba(z)NOrba(y), that is, Orba(x) and Orba(y)
have a common element z. Then 3¢5, g2 € X such that

Cg(g10z) = CB(2); C(g20y) = Cp(2), ie.,

CB(gl <>37) = CB(Z) = CB(gg Oy).
We want to show that Orba(x) = Orba(y). For any point u € Orba(z), we have
Cp(u) = Cp(g o) for some g € X. Since Ca(x) = Cp(g; " ¢ 2),
Cp(u) =Cplgo(9r' ©2)) = Crllggr')o2)
= Cs((9g1) o (9209))
= Cn((g91 '92) o y)-

Thus u € Orba(y). So Orba(x) C Orba(y).
Similarly, we have Orba(y) C Orba(z) by symmetry. Hence, the result follows.
O

Definition 4.10. Let A acts on B. An element g € X stabilizes x € Y if Cg(gox) =
Cp(z). That is, the stabilizer of x € Y, denoted by Staba(z), is defined by

Staba(z) ={ge€ X | Cg(goz) =Cp(x)} C X.

Remark 4.11. For every € Y with Cp(g ¢ x) = Cp(z), we say x is a fixed point
of g € X and g fixes z. More generally, for any submultiset " C B, we can consider
elements of A which fix T thus:

Fizg(T)={g€ X | Cr(gox) =Cr(x)Vx € Y}.

We note that Staba(z) and Fiza(T) are subsets of X. An action is said to be free
if

Staby(x) = {e}vVx € Y.
Example 4.12. Using Example 3.4 and fixing 4 € Y, we have Staba(4) = {0, 2}.

Proposition 4.13. Let A acts on B. Then Staba(g o x) = gStaba(z)g~! for any
€Y andg € X.
521
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Proof. For any x € Y and g € X, it follows that
h € Staba(g o x) Cp(ho(gox))=Cg(gox)
Cp((hg)ox) = Cp(gow)
Cp(g~" o (hg) o z) = Cp(2)
C((g~"hg) o) = Cp(x)
g 'hg € Staba(z)
h € gStaba(x)g™".
This completes the proof. O

Theorem 4.14. Let A acts on B and T C B. Then Staba(z) and Fixa(T) are
subgroups of a group X.

tos e 0O

Proof. If g,h € Staba(zx), then we need to prove that gh € Staba(x). In other
words, we need to show that

Cp((gh) o x) = Cp(x).
Using the fact that there is a multigroup action and since g and h stabilize x, we
have

Cp((gh)ox) =Cg(go (hox)) =Cg(gox) = Cp(z).
This proves that fact gh € Staba(x). Also, e € Staba(x), since
Cp(eox) = Cp(x).
Finally, we need to prove the existence of inverse. We investigate whether if g €
Staba(x), we can find g~ € Staba(x). That is, whether Cp(g o ) = Cp(x) can
yields Cp(g~! o z) = Cp(z). Now,
Cp(goz) =Cp(z) = Cp(g ' o(gox)) = Cp(gtox).
However,
Cplg" o (gox)) = Cpl(gg™") ox) = Cp(x).
Then Cp(g~!ox) = Cp(x). Thus g~ € Staba(z). So Staba(z) is a subgroup of

X. Similarly, Fiz4(T) is a subgroup of X. O
A
Remark 4.15. It follows that |StLbA(|x)|’ that is, [A. : Staba(z)] and

| Staba(x) |=| gStaba(z) |=| Staba(x)g | Vg € X.

While Stab(z) is a subgroup of X, it is almost never normal (except A, is abelian).
Theorem 4.16. Let A and B be multigroup and multiset respectively. If A acts on
B and T C B, then

Fixyg(T) = m Staby(x).

€Y

Proof. Suppose g € Fiz(T). Then Cr(gox) = Cr(x),Vz € Y. Thus g € Staba(x).
So g € ey Staba(x). Hence

Fiza(T) C () Staba(x).

€Y
522
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Also, suppose that g € (), oy Staba(z). Then g € Staba(x)Vx € Y. Thus

Cr(goz) =Cr(x)Ve €Y.
So g € FizxA(T). Hence
m Staba(x) C Fiza(T).
€Y
Therefore, the equality holds. 0

Proposition 4.17. Let X be a group. Suppose a multigroup A of X acts on itself
by conjugation such that Ca(gox) = Ca(gxg™'). Then the following statements are
equivalent:

(1) = € C(A),

(2) Staba(z) = X,

(3) Orba(x) = {z},

(4) | Orba(z) |= 1.
Proof. Let © € C(A). Then Ca(zg) = Ca(gx), Vg € X. Thus

Ca(z) = Ca(grg™') = Ca(gox), Vg€ X.

This proves that (1) implies (2) and (3). Likewise since © € Orb(x) always, (4)
and (3) are clearly equivalent.

Again, if (3) holds, then

Calgox) = Ca(x),
for all g. Thus
Calgrg™) = Ca(a),
for all g and clearly,
Ca(gz) = Ca(xg),Vg € X.

So (3) implies (1).

Finally, we need to prove that (2) implies (1). Suppose Staba(xz) = X. Then

Ca(gox)=Cy(x), Vge X

and the same logic holds as in (3) implies (1). This completes the proof. O

Theorem 4.18. Let A and B be finite multigroup and finite multiset of X and Y
respectively such that Cp(e) < Cp(y)Vy € Y. Suppose A acts on B (on the left).
Then for at least one x € Y distinct from all g € X,

| A |=| Orba(z) | . | Staba(x) | .

Proof. Recall that A, = {z € X | C4(x) > 0}. Clearly, A, = X meaning A, is a
group. Since Staba(z) is a subgroup of A, by Theorem 4.14, | Staba(x) | divides
| A, |. Thus,

| A, |= (number of cosets of Staba(z)). | Staba(x) |,
by Lagrange’s theorem. So, it is sufficient to prove that
number of cosets of Staba(x) =| Orba(x) | .

To show this, we prove there exists a bijection between these two sets. Define a
function
f i {left cosets of Staba(z)} — Orby(x)
523
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by

f(pStaba(z)) =pox,
for some p € X. For the sake of simplicity, we take H = Staba(x). Then f(pH) =
pox. In order to establish this bijection, we check for well-definedness, injection and

surjection.
Suppose that pH = gH, Vp,q € X. We show that

f(pH) =pox=qox = f(qH).

Since pH = gH, we know that p € ¢H so that p = gh for some h € H = Staby(z).
Note that

Cp(hox)=Cp(z), Vz €Y.
Then
Cp(pox)=Cpg((gh)ox) =Cg(go (hox)) =Cg(gox)
which proves that f is well-defined.
Next we show that f is injective. Suppose that
f(pH) = f(qH).
Then Cp(pox) = Cp(gox). Thus

Cp(x) =Cp((p~'p)ox) =Cr(p " o(pox)) =Cr(p " o(gox)) =Cp((p~"q) o).

So p~lq € Stabs(xr) = H, by definition. Hence p~'qH = H, ie., ¢gH = pH.
Therefore f is injective.

Finally, suppose that Cg(y) = Cp(g ¢ ), that is, y = gox € Orba(z). Then
f(gH) = gox =y and it implies that f is surjective. Thus the equality holds. So

| Ax |=| Orba(z) | . | Staba(x) | .
O
Theorem 4.18 is analogous to orbit-stabilizer theorem. In order to establish the

following analogous result (that is, class equation), we assume that A acts on B = A
by conjugation as in Example 3.6. That is, for g,z € X, we define
Cplgox) =Cp(grg™).
Theorem 4.19. Suppose that a multigroup A of a finite group X acts on itself by
conjugation. Then
| A* |:| C(A) ‘ +2m in disjoint nontrivial orbitsﬁ-
|Staba(x)]|

Proof. By Remark 4.3, we infer that
A, = U Orby(x).
z in disjoint orbits
An element z € X has trivial orbit (that is, Orba(z) = {z}) if and only if z € C'(4)
by Proposition 4.17. Then we know that A, is also the disjoint union, that is,

A, =C(A)U U Orba(z).
z in disjoint nontrivial orbits
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Since this is a disjoint union, we have

‘ A* |:| O(A) | +Eac in disjoint nontrivial orbits | O’I"bA(l‘) | .

Thus,

| A

[ A [=T CCA) [ 4Ea in disjint nontrivial orbits Ty 1= T

by Theorem 4.18. O

5. CONCLUSIONS

We have introduced the idea of multigroup actions on multiset via count function
of multiset. The notions of orbits and stabilizers in multigroup actions have been
introduced and some related results were obtained. The analogous of orbit-stabilizer
theorem and class equation were established in the context of multigroup actions.
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