
Annals of Fuzzy Mathematics and Informatics

Volume 14, No. 5, (November 2017), pp. 445–461

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

On L−generalized filters and nets

G. A. Kamel

@FMI

@ F M I

@ F M I

@ F M I

@ F M I

@ F M I
@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I

Reprinted from the
Annals of Fuzzy Mathematics and Informatics

Vol. 14, No. 5, November 2017



Annals of Fuzzy Mathematics and Informatics

Volume 14, No. 5, (November 2017), pp. 445–461

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

On L−generalized filters and nets

G. A. Kamel

Received 13 March 2017; Revised 20 April 2017; Accepted 5 May 2017

Abstract. In this paper, we consider the L−generalized filters and
L−generalized nets on the non empty universal set X to be a natural
generalization of the crisp generalized filters and the crisp generalized nets
respectively. In each the crisp and L−generalized cases, the extended and
restricted filters (nets) will be obtained respectively. The construction
of convergence to limit points of the crisp generalized and L−generalized
filters (nets) will be studied respectively. We also show that any crisp
generalized net on the set X associates a unique L−generalized net on X,
and in general the converse is not true. In addition to that we also show
that for any given L−generalized filter there exists the L−generalized net,
and the vice-versa is true. Finally, the relations between the convergence
of the L−generalized filters and the L−generalized nets will be outlined.
Moreover, to support these concepts and relations, the construction of some
examples in all sections of paper will be studied.
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1. Introduction

Zadeh in his famous paper [23] introduced the concept of a fuzzy set A of the
non-empty universal set X as a mapping A : X −→ [0, 1]. Chang in [4] had first tried
to fuzzify the concept of a topology on a non-empty set X as a subfamily of [0, 1]X ,
satisfying the same axioms of ordinary topology. Then Goguen in [10] replaced
the real interval [0, 1] with an arbitrary complete infinitely distributive lattice L,
and introduced the concept of L−topology. After that Höhle in [11] introduced
the concept of an L−fuzzy topology as a mapping τ : 2X −→ L, before replacing
its name with a fuzzifying topology, which was introduced by Ying Mingsheng in
[22]. Then Alexander Šostak in [21] introduced the concept of L−fuzzy topology
as a mapping τ : LX −→ L with considering L = [0, 1] in the same time which
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Tomasz Kubiak in [13, 14], introduced the concept of (L,M)−fuzzy topology as a
mapping τ : LX −→ M , where L and M being complete lattices. Then in [20],
Ramadan introduced the concept of smooth topological space as a mapping τ :
[0, 1]X −→ [0, 1]. Á Császár in [6] introduced the concept of generalized topology on
the set X as a subfamily τ of 2X , containing φ and closed under arbitrary union.
Many of concepts in mathematics are defined or characterized in terms of a limit.
In topological spaces the mathematicians introduced the limit concept in a most
general way for filters and nets. The definition and properties of filters can be
found in [1, 2, 5]. Filters in topological spaces help in studying many properties,
as the closure of a set A can be characterized by using convergent filters containing
A, and the continuity of a function on topological spaces can be characterized using
convergent filters. Lowen in [15] introduced the notions of prefilter and fuzzy uniform
space as extensions of filter and uniform space. In [7, 8, 9, 12, 19], the notion of a
fuzzy filter is introduced and studied for lattice I = [0, 1]. The concepts of fuzzy nets
and fuzzification of filters were studied by Muthukumari in [16] and [17], respectively.

After Á. Császár in [6], introduced the concept of generalized topology on the set X,
the need for studying the limit concept in generalized topology was studied in [18]
by introducing generalized filters and in [3] by introducing generalized nets. The
aim of this paper is to consider the L−generalized filters and the L−generalized
nets on the non empty universal set X to be a natural generalization of the crisp
generalized filters and the crisp generalized nets respectively. Moreover, in each
the crisp and L−generalized cases, the extended and restricted generalized filters
(nets) will be obtained. Also, the construction of convergence to limit points of
the crisp generalized and L−generalized filters (nets) will be studied. We also show
that any crisp generalized net on the set X associates a unique L−generalized net
on X, and in general the converse is not true. Then, we show that for any given
L−generalized filter there exists the L−generalized net, and the vice-versa is true.
And then, the relations between the convergence of the L−generalized filters and
the L−generalized nets will be outlined.

This paper is organized as follows. In section 2, some basic concepts and notions
which will be used throughout this paper are listed. In section 3, some basic notions
of ordinary generalized filters are recalled and the definition of their convergence are
presented. In section 4, some basic notions of an L− generalized filters are introduced
and the definition of their convergence are also presented. In section 5, some basic
notions of an L− generalized nets are introduced and the relations between the
convergence of crisp generalized nets and L−generalized nets are studied. Finally,
in section 6, the relations between the convergence of L−generalized filters and
L−generalized nets are studied.

2. Preliminaries

Let X be a given non-empty universal set, and let L be a given lattice. Then the
family LX is the set of all L−fuzzy subsets of X. Moreover, the family 2X is the
set of all ordinary subsets of X. Denote the smallest element of L by 0L and the
greatest element of L by 1L. Also denote the smallest L−fuzzy subset in LX by 0X
and the greatest L−fuzzy subset in LX by 1X .

The support of any elementA in LX is defined as supp(A) = {x ∈ X : A(x) 6= 0L}.
446
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The fuzzy point p(x0, r) in X, where x0 ∈ X, r ∈ L− {0L} is defined as:

p(x0, r)(x) =

{
r, x = x0,
0L, x 6= x0

The fuzzy point p(x0, r) is contained in A, denoted by A ∈ LX , if A(x0) ≥ r.

Definition 2.1 ([18]). Let X be a non-empty universal set. Then we call F ⊆ 2X

a generalized filter on X, if it satisfies the following conditions:
(i) φ /∈ F,
(ii) ∀A ∈ F, A ⊆ B ⇒ B ∈ F.
A generalized filter on X is called a filter on X, if ∀A,B ∈ F, A ∩B ∈ F.

Definition 2.2 ([18]). Let X be a non-empty universal set. Then we call B ⊂ 2X

a generalized filter base of the generalized filter F on X, if φ /∈ B and for all B ∈ F :
∃A ∈ B, A ⊆ B.

It is clear that any non-empty subfamily B ⊆ 2X such that φ /∈ B generated a
generalized filter FB =< B >= {B ⊆ X : ∃A ∈ B, A ⊆ B}.

Definition 2.3 ([6]). Let X be a non-empty universal set. Then we call τ ⊆ 2X a
generalized topology on X, if it satisfies the following conditions:

(i) φ ∈ τ,
(ii) ∀ Ai ⊆ X, i ∈ ∆, if Ai ∈ τ, then

⋃
i∈∆Ai ∈ τ.

Definition 2.4 ([6]). Let (X, τ) be a generalized topological space and let x ∈ X.
Then the neighbourhood generalized filter of x, denoted by Nx, is defined by:

Nx =< {B ⊆ X : B ∈ τ, x ∈ B} > .

Definition 2.5 ([18]). The generalized filter F in the generalized topological space
(X, τ) converges to a point x ∈ X, if Nx ⊆ F and we write F→ x.

A generalized filter base B converges to x, if < B >→ x.

Definition 2.6 ([3]). Let D be a partially ordered set under the relation ≤ and let
X be a non-empty set. Then any mapping A : D −→ X is called a generalized net
or a crisp generalized net on the set X.

If D is a directed set under the relation ≤, then A : D −→ X is called a net or a
crisp net on the set X.

Definition 2.7 ([3]). Let (X, τ) be a generalized topological space. Then the gen-
eralized crisp net A : D −→ X on X converges to x0 ∈ X, if for each neighbouhood
U of x0 in (X, τ), there exists λ0 ∈ D such that A(λ) ∈ U, for all λ ≥ λ0.

Let X,Y be two non-empty ordinary sets, where Y ⊆ X and L be a complete
and completely distributive lattice.

Definition 2.8. For every U ∈ LX , the restriction U↓Y of U on LY is defined by:

U↓Y (x) = U(x); x ∈ Y

Definition 2.9. For every A ∈ LY the extension A↑X of A on LX is defined by:

A↑X (x) =

{
A (x) , x ∈ Y,
0L, x ∈ X − Y.
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One can show that for every φ 6= Y ⊆ X, every fuzzy point p(y0, r) in Y is a
fuzzy point in X, since p(y0, r)↑X = p(y0, r). Moreover, every fuzzy point p(x0, r)
in X is a fuzzy point in Y if x0 ∈ Y , since

p(x0, r)↓Y =

{
p(x0, r), x0 ∈ Y,
0Y , x0 ∈ X − Y.

Proposition 2.10. Let V,U ∈ LX , A,B ∈ LY and φ 6= Y ⊆ X, then we have the
following operations:

(1) V ≤ U ⇒ V↓Y ≤ U↓Y , A ≤ B ⇒ A↑X ≤ B↑X ,
(2) (0X)↓Y = 0Y , (1X)↓Y = 1Y , (0Y )↑X = 0X and (1Y )↑X = χY , where χY is

the characteristic function of the set Y ,
(3) U↓Y ∧ V↓Y = (U ∧ V )↓Y , U↓Y ∨ V↓Y = (U ∨ V )↓Y ,
(4) A↑X ∧B↑X = (A ∧B)↑X , A↑X ∨B↑X = (A ∨B)↑X ,
(5) (V↓Y )↑X ≤ V, (A↑X)↓Y = A,
(6) (V↓Y ) = 0Y if and only if supp(V ) ∩ Y = φ.

The generalization of (3) and (4) of the above proposition is true, since if

{Ui : i ∈ ∆} ⊆ LX , {Ai : i ∈ ∆} ⊆ LY , then
(3)’

∨
i∈∆((Ui)↓Y ) = (

∨
i∈∆ Ui)↓Y ,

∧
i∈∆((Ui)↓Y ) = (

∧
i∈∆ Ui)↓Y ,

(4)’
∨
i∈∆((Ai)↑X) = (

∨
i∈∆Ai)↑X ,

∧
i∈∆((Ai)↑X) = (

∧
i∈∆Ai)↑X .

From now to on in this article, in some times, we use the lattice of the form

P ∗([0, 1]) = {M ⊂ [0, 1] : 0 ∈M}.
The algebraic structure (P ∗([0, 1]),∪,∩,′ ) forms a complemented, completely dis-

tributive and complete lattice with 0P∗([0,1)) = {0} being the smallest element and
1P∗([0,1]) = [0, 1] being the greatest element.

The complementary operation is defined by:

′ : P ∗(L) −→ P ∗(L),

where M ′ = ([0, 1]−M)
⋃
{0}.

3. Ordinary generalized filters

It is known that for every topological space (X, τ), and Y ⊆ X, there exists a
generalized subspace (Y, τY ), where τY is defined by: τY = {A ∩ Y : A ∈ τ}.

Now, one can show that there exists another generalized topological subspace
(Y, τ↓Y ), weaker than (Y, τY ), and is defined by:

τ↓Y = {Y,A ⊆ Y : A ∈ τ}.
Conversely, for every generalized topological space (Y, ω), Y ⊆ X, there exists a

super generalized space (X,ω↑X), and ω↑X is defined by:

ω↑X = {A ⊆ X : A ∩ Y ∈ ω}.

Theorem 3.1. Let X,Y be given two non-empty ordinary sets, where Y ⊂ X. Then
(1) every generalized filter F on the set X restricted the generalized filter

F↓Y = {Y,A ⊆ Y : A ∈ F} on the set Y ,
(2) every generalized filter G on the set Y extended the generalized filter

G↑X =< G > on the set X.
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Proof. (1) It is clear that φ /∈ F↓Y . If A ⊆ B ⊆ Y and A ∈ F↓Y , then A ∈ F. and
B ∈ F. Thus B ∈ F↓Y .

(2) The proof is clear, since G is a generalized filter. �

Theorem 3.2. Let (X, τ) and (Y, ω) be two generalized topological spaces, and let
Y ⊆ X. Then

(1) every neighbourhood generalized filter Nx in the space (X, τ), restricted a
neighbourhood generalized filter (Nx)↓Y = {Y,A ⊆ Y : A ∈ Nx} in the space (Y, τ↓Y ),
whenever x ∈ Y,

(2) every generalized neighbourhood filter Ny in the space (Y, ω), extended a neigh-
bourhood generalized filter (Ny)↑X = {B ⊆ X : B ∩ Y ∈ Ny} in the space (X,ω↑X).

Proof. (1) Let B ⊆ Y,B ∈ (Nx)↓Y . Then there exists C ∈ τ↓Y such that x ∈ C ⊆ B.
It is follows that C ∈ Nx and B ∈ Nx. Thus, B ∈ {Y,A ⊆ Y : A ∈ Nx}, and
(Nx)↓Y ⊆ {Y,A ⊆ Y : A ∈ Nx}.

Now, let B ⊆ Y,B ∈ {Y,A ⊆ Y : A ∈ Nx}. Then B ∈ Nx and there exists
O ∈ τsuchthatx ∈ O ⊆ B. Since O ⊆ Y , O ∈ τ↓Y and B ∈ (Nx)↓Y . Thus,
{Y,A ⊆ Y : A ∈ Nx} ⊆ (Nx)↓Y . So the proof of (1) is obtained.

(2) Let A ⊆ X,A ∈ (Ny)↑X . Then there exists H ∈ ω↑X such that y ∈ H ⊆ A. It
is follows that y ∈ H ∩ Y ⊆ A ∩ Y . Thus A ∩ Y ∈ Ny. So

(Ny)↑X ⊆ {B ⊆ X : B ∩ Y ∈ Ny}.

Now, let A ( X and A ∈ {B ⊆ X : B ∩ Y ∈ Ny}. Then A ∩ Y ∈ Ny. Thus there
exists K ∈ ω, y ∈ K ⊆ A ∩ Y . Since K ⊆ Y , K ∈ ω↑X . So K ∈ (Ny)↑X . Hence,
A ∈ (Ny)↑X and {B ⊆ X : B ∩ Y ∈ Ny} ⊆ (Ny)↑X . Therefore the proof of (2) is
obtained. �

Theorem 3.3. Let F and G be the two ordinary generalized filters on two the gen-
eralized topological spaces (X, τ) and (Y, ω), respectively, and let φ 6= Y ⊆ X. Then

(1) F→ x in (X, τ)⇒ F↓Y → x in (Y, τ↓Y ), where x ∈ Y,
(2) G→ y in (Y, ω)⇒ G↑X → y in (X,ω↑X).

Proof. (1) Let F→ x in (X, τ) and let N ∈ (Nx)↓Y . Then there exists O ∈ τ↓Y and
x ∈ O ⊆ N . Thus O ∈ τ and O ∈ Nx ⊆ F. So O ∈ F↓Y and thus N ∈ F↓Y , which
implies that (Nx)↓Y ⊆ F↓Y . Hence F↓Y → x.

(2) Let G → y in (Y, ω) and let M ∈ (Ny)↑X . Then there exists H ∈ ω↑X and
y ∈ H ⊆ M . Thus y ∈ H ∩ Y ⊆ M ∩ Y . So M ∩ Y ∈ Ny and thus M ∩ Y ∈ G,
which implies that M ∈ G↑X and (Ny)↑X ⊆ G↑X . Hence G↑X → y in (X,ω↑X). �

4. L−generalized filters

Definition 4.1. Let X be a non-empt universal set. Then we call a non-zero
function F : 2X −→ L an L−generalized filter on X, if

(i) F(φ) = 0L,
(ii) ∀A,B ⊆ X,A ⊆ B ⇒ F(B) ≥ F(A).

An L−generalized filter F is called L−filter, if ∀A,B ⊆ X,F(A∩B) ≥ F(A)∧F(B).
In general, an L−generalized filter may not be an L−filter as the following exam-

ple.
449
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Example 4.2. Let the set X = {a, b, c} and define a function F : 2X −→ P ∗([0, 1])
by:

F(A) =

{
[0, 1]; A ∈ {X, {b}, {a, c}, {b, c}, {a, b}},
{0}; A ∈ {φ, {c}, {a}}.

Then F is a P ∗([0, 1])−generalised filter, but not a P ∗([0, 1])−filter, since
F({a, c} ∩ {b, c}) = F({c} = {0} and F({a, c}) ∩ F({b, c}) = [0, 1].

Definition 4.3. . Let X be a non-empty universal set. Then we call a non-zero
function σ : 2X −→ L an L−generalized topology on X, if

(i) σ(φ) = 1L,
(ii) ∀Ai ⊆ X,σ(

⋃
i∈∆Ai) ≥

∧
i∈∆ σ(Ai).

An L−generalized topology σ is called an L−topology or an L−fuzzifying topol-
ogy on X, if

∀A,B ⊆ X,σ(A ∩B) ≥ σ(A) ∧ σ(B).

Definition 4.4. Let (X,σ) be an L−generalized topological space and let x ∈ X.
Then the neighbourhood L−generalized filter Nx : 2X −→ L is defined by: for all
A ⊆ X,

Nx(A) =

{ ∨
B σ(B); x ∈ B ⊂ A,

0L; x /∈ A.

Definition 4.5. The L−generalized filter F in the L−generalized topological space
(X,σ) converges to a point x ∈ X, if Nx(A) ≤ F(A), for all A ⊆ X and we write
F→ x. If F does not converge to a point x ∈ X, then we write F 9 x.

Example 4.6. Let the set X = {a, b, c} and define the P ∗([0, 1])−generalized topol-
ogy σ : 2X −→ P ∗([0, 1]) as follows: for each A ∈ 2X ,

σ(A) =

{
[0, 1]; A ∈ {X,φ, {a}, {a, b}},
{0}; otherwise.

Also, define the P ∗([0, 1])−generalized filter F : 2X −→ P ∗([0, 1]): for each A ∈ 2X ,

F(A) =

{
[0, 1]; A ∈ {X, {a, b}, {a, c}},
{0}; otherwise.

Then,

Na(A) =

{
[0, 1]; A ∈ {X, {a}, {a, b}, {a, c}},
{0}; otherwise,

Nb(A) =

{
[0, 1]; A ∈ {X, {a, b}},
{0}; otherwise,

Nc(A) =

{
[0, 1]; A = X,
{0}; otherwise.

Thus, F→ b, F→ c and F 9 a.

Remark 4.7. The above example shows that in general the limit of an L−generalized
filter need not be unique.

The following example shows that the limit of an L−generalized filter may be
unique.
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Example 4.8. Let the set X = {a, b}, and define the P ∗([0, 1])−generalized topol-
ogy

σ : 2X −→ P ∗([0, 1]);σ(A) = [0, 1], for all A ⊆ X.

Also, define the P ∗([0, 1])−generalized filter F : 2X −→ P ∗([0, 1]):

F(A) =

{
[0, 1]; A ∈ {X, {a}},
{0}; A ∈ {φ, {b}},

Then,

Na(A) =

{
[0, 1]; A ∈ {X, {a}},
{0}; A ∈ {φ, {b}}.

Nb(A) =

{
[0, 1]; A ∈ {X, {b}},
{0}; A ∈ {φ, {a}}.

Thus, F→ a and F 9 b.

Theorem 4.9. Let X,Y be given non-empty ordinary sets, where Y ⊆ X. Then
(1) every an L−generalized topology σ : 2X −→ L on the set X restricted an

L−generalized topology σ↓Y on the set Y , defined by: for every A ⊆ Y,

σ↓Y (A) = σ(A),

(2) every an L−generalized topology ` : 2Y −→ L on the set Y extended an
L−generalized topology `↑X on the set X, defined by: for every V ⊆ X,

`↑X(V ) = `(V ∩ Y ).

Proof. (1) σ↓Y (φ) = σ(φ) = 1L, and for all Ai ⊆ Y, i ∈ ∆, then

σ↓Y (
⋃
i∈∆

Ai) = σ(
⋃
i∈∆

Ai) ≥
∧
i∈∆

σ(Ai) =
∧
i∈∆

σ↓Y (Ai).

(2) `↑X(φ) = `(φ) = 1L, and for all Bi ⊆ X, i ∈ ∆, then

`↑X(
⋃
i∈∆

Bi) = `((
⋃
i∈∆

Bi) ∩ Y ) = `(
⋃
i∈∆

(Bi ∩ Y ) ≥
∧
i∈∆

`(Bi ∩ Y ) =
∧
i∈∆

`↑X(Bi).

�

The proof of the following theorem is obtained easily.

Theorem 4.10. Let X,Y be given ordinary sets, where Y ⊂ X. Then
(1) every L−generalized filter F on the set X restricted an L−generalized filter

F↓Y on the set Y , defined by: for all A ⊆ Y,

F↓Y (A) = F(A),

(2) every L−generalized filter H on the set Y extended an L−generalized filter
H↑X on the set X, defined by: for all B ⊆ X,

H↑X(B) = H(B ∩ Y ).
451
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Theorem 4.11. Let (X,σ) and (Y, `) be two L−generalized topological spaces, where
Y ⊆ X. Then

(1) every neighbourhood L−generalized filter Nx in (X,σ) restricted the neigh-
bourhood L−generalized filter (Nx)↓Y in (Y, σ↓Y ), where x ∈ Y , defined by: for all
A ⊆ Y ,

(Nx)↓Y (A) = Nx(A),

(2) every neighbourhood L−generalized filter Ny in (Y, `) extended the neighbour-
hood L−generalized filter (Ny)↑X in (X, `↑X), where y ∈ X, defined by: for all
B ⊆ X,

(Ny)↑X(B) ≤ Ny(B ∩ Y ).

Proof. (1) Let A ⊆ Y, x ∈ A. Then

(Nx)↓Y (A) =
∨

x∈V⊆A

σ↓Y (V ) =
∨

x∈V⊆A

σ(V ) = Nx(A).

Moreover, if A ⊂ Y, x /∈ A, then (Nx)↓Y (A) = Nx(A) = 0L.
Thus, (Nx)↓Y (A) = Nx(A), for all A ⊆ Y.

(2) Let B ⊆ X, y ∈ B. Then
(Ny)↑X(B) =

∨
y∈U⊆B `↑X(U)

=
∨
y∈U⊆B `(U ∩ Y )

≤
∨
y∈(U∩Y )⊆(B∩Y ) `(U ∩ Y )

≤
∨
y∈K⊆(B∩Y ) `(K) = Ny(B ∩ Y ).

Moreover, if B ⊂ X, y /∈ B, then (Ny)↑X(B) = Ny(B ∩ Y ) = 0L.
Thus, (Ny)↑X(B) ≤ Ny(B ∩ Y ), for all B ⊆ X. �

Theorem 4.12. Let F,H be two L−generalized filters on two L−generalized topo-
logical spaces (X,σ) and (Y, `), respectively and let Y ⊆ X. Then

(1) F→ x in (X,σ)⇒ F↓Y → x in (Y, σ↓Y ), where x ∈ Y ,
(2) H → y in (Y, `)⇒ H↑X → y in (X, `↑X).

Proof. (1) Let F → x in (X,σ). Then Nx(B) ≤ F(B), for all B ⊆ X. Let A ⊆ Y .
Then

(Nx)↓Y (A) = Nx(A) ≤ F(A) = F↓Y (A).

Thus, F↓Y → x in (Y,=↓Y ).
(2) Let H → y in (Y, `). Then Ny(A) ≤ H(A), for all A ⊆ Y . Let B ⊆ X. Then

(Ny)↑X(B) ≤ Ny(B ∩ Y ) ≤ H(B ∩ Y ) = H↑X(B).

Thus, H↑X → y in (X, `↑X). �

Definition 4.13. The mapping S : 2X −→ L is called an L−generalized filter base
for an L−generalized filter F on the set X, if it satisfies the following conditions:

(i) S(φ) = 0L,
(ii) F(A) =

∨
B⊆A S(B), for all A ⊆ X.

The above definition shows that any mapping S : 2X −→ L, where S(φ) = 0L is
an L−generalized filter base for the L−generalized filter FS on the set X, which is
defined by:

FS(A) =
∨
B⊆A

S(B).
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Definition 4.14. An L−generalized filter F on an L−generalized topological space
(X,σ) converges to a point x ∈ X at level α ∈ L− {0L}, if α ≤ Nx(A) ≤ F(A), for
all A ⊆ X such that Nx(A) > 0L.

It is clear that an L−generalized filter F converges to x at level γ, whenever, F
converges to x at level α, for all α ≥ γ, γ ∈ L− {0L}.

Example 4.15. Let the set X = {a, b, c}, and define the P ∗([0, 1])−generalized
topology σ : 2X −→ P ∗([0, 1]) as follows: for each A ∈ 2X ,

σ(A) =

 [0, 1] ; A ∈ {X,φ},
[0, 0.3] ; A ∈ {{a}, {b}, {a, b}},
{0}; otherwise.

Also, define the P ∗([0, 1])−generalized filter F : 2X −→ P ∗([0, 1]) as follows: for
each A ∈ 2X ,

F(A) =


[0, 1] ; A = X,
[0, 0.6] ; A ∈ {{a}, {a, b}, {a, c}},
[0, 0.4] ; A ∈ {{b}, {c}, {b, c}},
{0}; A = φ.

Then,

Na(A) =

 [0, 1] ; A = X,
[0, 0.3] ; A ∈ {{a}, {a, b}, {a, c}},
{0}; otherwise,

Nb(A) =

 [0, 1] ; A = X,
[0, 0.3] ; A ∈ {{b}, {a, b}, {a, c}},
{0}; otherwise,

Nc(A) =

{
[0, 1] ; A = X,
{0}; otherwise.

Thus, F converges to a, b at level [0, 0.3] and converges to c at level [0, 1].

Theorem 4.16. Let σ,F be L−generalized topology and L−generalized filter on the
non-empty set X, respectively and let α ∈ L− {0L}. Then

(1) σα = {A ∈ 2X : σ(A) ≥ α} is the generalized topology on X,
(2) Fα = {A ∈ 2X : F(A) ≥ α} is the generalized filter on X.

Corollary 4.17. Let Nx be a neighbourhood L−generalized filter in an L−generalized
topological space (X,σ). Then (Nx)α = {A ∈ 2X : Nx(A) ≥ α} is the neighbourhood
generalized filter in the generalized topological space (X,σα).

Theorem 4.18. Let F be an L−generalized filter in an L−generalized topological
space (X,σ). Then F→ x at level α in (X,σ) if and only if Fα → x in (X,σα).

Proof. Let F→ x in (X,σ). Then α ≤ Nx(A) ≤ F(A), for all A ⊆ X.
Now, Let A ∈ (Nx)α. Then Nx(A) ≥ α implies that α ≤ F(A). Thus, A ∈ Fα and

(Nx)α ⊆ Fα, which implies that Fα → x in (X,σα).
Conversely, let Fα → x in (X,σα). Then (Nx)α ⊆ Fα. Thus, α ≤ Nx(B) ≤ F(B),

for all B ⊆ X. So, F→ x at level α in (X,σ). �
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Definition 4.19. Let (X,σ) be an L−generalized topological space and let φ 6=
A ⊆ X. Then the closure A of the set A is defined as follows:

x ∈ A if and only if B ∩A 6= φ, for all B ⊆ X with Nx(B) = 1L.

It is clear that x /∈ A, if there exists B ⊂ X such that B∩A = φ with Nx(B) = 1L.
Moreover, for all non-empty two sets A,B ⊆ X, one can show that A ⊆ A and A ⊆ B
if A ⊆ B.

Definition 4.20. A ⊆ X in the L−generalized topological space (X,σ) is called
closed set, if A = A.

Definition 4.21. A ⊆ X in the L−generalized topological space (X,σ) is called
open set, if AC is closed.

Theorem 4.22. Let (X,σ) be an L−generalized topological space and let φ 6= A ⊆
X. then x ∈ A if and only if there exists an L−generalized filter F on the set X such
that F→ x with F(A ∩B) = 1L, for all B ⊆ X and Nx(B) = 1L.

Proof. Let x ∈ A. then B ∩ A 6= φ, for all B ⊆ X with Nx(B) = 1L. Define the
mapping S : 2X −→ L as follows: for each H ∈ 2X ,

S(H) =

{
1L; ifH = A ∩G,Nx(G) = 1L,
Nx(H); otherwise.

Since S(φ) = Nx(φ) = 0L, S generates an L−generalized filter F on the set X, which
is defined by:

F(K) =
∨
H⊆K

S(H).

If Nx(G) = 1L, for some G ⊆ X, then G ∩ A 6= φ. Thus S(G ∩ A) = 1L, implies
that F(G ∩A) = 1L. So F(G) = 1L.

If Nx(G) 6= 1L, for some G ⊂ X, and G 6= φ, then the definition of S implies that
F(G) ≥ S(G) = Nx(G). Thus, F(G) ≥ Nx(G), for all G ⊂ X. So, F→ x.

Conversely, let F be an L−generalized filter on the set X such that F → x with
F(A ∩B) = 1L, for all B ⊆ X and Nx(B) = 1L. Let G ⊆ X such that Nx(G) = 1L.
Then F(A ∩G) = 1L. Thus G ∩A 6= φ. So x ∈ A. �

Corollary 4.23. The nonempty set A is open in the L−generalized topological space
(X,σ), if Nx(A) = 1L, for all x ∈ A.

Proof. Since Nx(A) = 1L, for all x ∈ A and A ∩ AC = φ, from the above theorem,

x /∈ AC , for all x /∈ AC which implies that AC ⊆ AC . Then AC = AC . Thus, AC is
a closed set in (X,σ). So, A is an open set in (X,σ). �

Corollary 4.24. The nonempty set A is closed in the L−generalized topological
space (X,σ) if and only if for all x ∈ A, if there exists an L−generalized filter F on
the set X, F→ x with F(G ∩A) = 1L and Nx(G) = 1L, for all G ⊆ X, then x ∈ A.

Theorem 4.25. The nonempty set A is open in the L−generalized topological space
(X,σ) if and only if F(A) = 1L, for each an L−generalized filter F on the set X with
F→ x, x ∈ A.

454



G. A. Kamel /Ann. Fuzzy Math. Inform. 14 (2017), No. 5, 445–461

Proof. Let A be an open in the L−generalized topological space (X,σ) and let F be

an L−generalized filter on the set X with F → x0, x0 ∈ A. Then, x0 /∈ AC = AC ,
which implies that B ∩ AC = φ with Nx0(B) = 1L, for some B ⊂ X. Thus F(B) =
1L, B ⊆ A, which implies that F(A) = 1L.

Conversely, let F(A) = 1L, for each an L−generalized filter F on the set X with
F → x. Then x ∈ A. Since Nx is an L−generalized filter and Nx → x, x ∈ X,
Nx(A) = 1L, for each x ∈ A. Thus, Corollary 4.23 shows that A is open set in
(X,σ). �

Corollary 4.26. Let A be the non-empty set in the L−generalized topological space
(X,σ). Then Nx(A) = 1L, for all x ∈ A, if A is an open set.

5. L−gineralized nets

Definition 5.1. Let D be a partially ordered set under the relation ≤ and let X
be a non-empty set. Then any non zero mapping B : D × X −→ L is called an
L−generalized net on the set X.

If D is a directed set under the relation ≤, then B : D × X −→ L is called an
L−net on the set X.

Theorem 5.2. Any crisp generalized net on the set X associates a unique L−generalized
net on X.

Proof. Let A : D −→ X be a crisp generalized net on the set X. Define the
L−generalized net B : D ×X −→ L to be associated with A and is defined by:

B(λ, x) =

{
1L; A(λ) = x,
0L; A(λ) 6= x.

Now, we show that B is the unique L−generalized net on X associated with A.
Let A1,A2 be two crisp generalized nets on X such that A1 6= A2. Then there

exists λ0 ∈ D such that A1(λ0) 6= A2(λ0), which implies that there exist two associ-
ated L−generalized nets B1,B2 with A1,A2, respectively and B1(λ0, x) 6= B2(λ0, x).
Thus, B1 6= B2, which implies that B is the unique associated L−generalized net
with A. �

In general, an L−generalized net on the set X need not associate the crisp gen-
eralized net on X (See the following example).

Example 5.3. Let D = 3N,X = R, where N,R are two sets of all natural and real
numbers respectively. Define the L−generalized net B : 3N ×R −→ [0, 1] , which is
defined by:

B(3n, x) =

 1; x = 3n,
1
3 ; x = n,
0; otherise.

Then, it is impossible to fined a crisp generalized net on R, which is associated with
B.

The following theorem shows the condition to find the crisp generalized net which
is uniquely associated with any given an L−generalized net on the set X.
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Theorem 5.4. Any L−generalized net B : D × X −→ L on the set X associates
the unique crisp net A : D −→ X on X, if the following condition is true:
for each λ ∈ D, there exists a unique element x ∈ X such that

B(λ, y) =

{
1L; y = x,
0L; y 6= x.

Proof. Define the crisp generalized net A : D −→ X on X as follows:
A(λ) = x, whenever B(λ, x) = 1L. Then, A is uniquely associated with B. �

Definition 5.5. Let (X,σ) be an L−generalized topological space. Then the
L−generalized net B on the set X converges to the element x0 ∈ X at level
α ∈ L − {0L}, if for each U ⊆ X,Nx(U) ≥ α, there exists λ0 ∈ D such that if
B(λ, x) ≥ α, for all λ ∈ D,λ ≥ λ0, then x ∈ U.

Example 5.6. Let Z,R be two sets of all integer and real numbers and let U be
the usual topology on R. Define the [0, 1]−generalized topology σ on R as follows:

σ(A) =

{
1; A ∈ U ,
0; otherise.

Then the neighbourhood [0, 1]−generalized filter at 0 ∈ R is defined by:

Nx(A) =

{
1; A ∈ ]ε,−ε[, ∀ε > 0,
0; otherise.

Moreover, define the [0, 1]−generalized net B : Z ×R −→ [0, 1] on R as follows:

B(n, x) =


2
3 ; n ≤ o,

1; x = 1
n , n > 0,

0; x 6= 1
n , n > 0.

Let A ⊆ X, Nx(A) ≥ 1
2 and let n0 ∈ Z, n0 >

1
ε > 0, n ≥ n0 and B(n, x) ≥ 1

2 .

Then A =]ε,−ε[, n > 1
ε > 0 and B(n, x) = 1, which implies that ε > 1

n , x = 1
n . Thus,

x ∈]ε,−ε[= A, and so B converges to 0 at level 1
2 .

For any topological space (X, τ), there exists the L−generalized topological space
(X, τg), where

τg(A) =

{
1L; A ∈ τ,
0L; otherwise.

Moreover, for any neighbourhood system Nx in (X, τ),

(Nx)g(A) =

{
1L; A ∈ Nx,
0L; otherwise

is the neighbourhood L−generalized system in (X, τg).

Theorem 5.7. Let A : D −→ X be a crisp generalized net on X in a generalized
topological space (X, τ) and let B : D×X −→ L be an L−generalized net associated
with A on X. Then A converges to x0 ∈ X in (X, τ) if and only if B converges to
x0 at level α ∈ L− {0L} in (X, τg).
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Proof. Let A converge to x0 ∈ X in (X, τ) and let G ⊆ X, (Nx0)g(G) ≥ α, α ∈
L − {0L}. Then (Nx)g(G) = 1L and G ∈ Nx. Since A converges to x0, there exists
λ0 ∈ D such that A(λ) ∈ G, for each λ ≥ λ0. Let B(λ, x) ≥ α, for each λ ≥ λ0. Then
the definition of B implies that B(λ, x) = 1L, x = A(λ) ∈ G. Thus, B converges to
x0 at level α ∈ L− {0L} in (X, τg).

Conversely, let B converges to x0 at level α ∈ L − {0L} in (X, τg) and let H ⊆
X,H ∈ Nx. Then (Nx)g(H) = 1L ≥ α. Thus there exists λ0 ∈ D such that if
B(λ, x) ≥ α, for each λ ≥ λ0, then x ∈ H. So, B(λ, x) = 1L, x = A(λ) ∈ H, for each
λ ≥ λ0. Hence A converges to x0 in (X, τ). �

Let X,Y be two non-empty ordinary sets, where Y ⊂ X. Then
(1) every an L−generalized net B : D × X −→ L on the set X restricted an

L−generalized net B↓Y : D × Y −→ L on the set Y , which is defined by:

B↓Y (λ, y) = B(λ, y), for all λ ∈ D, y ∈ Y,
(2) every an L−generalized net C : D × Y −→ L on the set Y extended an

L−generalized net C↑X : D ×X −→ L on the set X, which is defined by:

C↑X(λ, x) =

{
C(λ, x); x ∈ Y,
oL; x /∈ Y.

.

Theorem 5.8. Let B, C be two L−generalized nets on the two L−generalized topo-
logical spaces (X,σ) and (Y, `), respectively and let φ 6= Y ⊆ X. Then

(1) B converges to x0 ∈ X at level α ∈ L−{0L} in (X,σ), implies B↓Y converges
to x0 at level α ∈ L− {0L} in (Y, σ↓Y ), where x0 ∈ Y ,

(1) C converges to y0 ∈ Y at level α ∈ L− {0L} in (Y, `), implies C↑X converges
to y0 at level α ∈ L− {0L} in (X, `↑X).

Proof. (1) Let B converges to x0 ∈ X at level α ∈ L − {0L} in (X,σ) and let
H ⊆ Y, (Nx0

)↓Y (H) ≥ α. Since (Nx0
)↓Y (H) = Nx0

(H), Nx0
(H) ≥ α, where Nx0

is
the negibourhood L−generalized filter system in (X,σ). Then there exists λ0 ∈ D
such that if B(λ, x) ≥ α, for all λ ∈ D,λ ≥ λ0, then x ∈ H. Thus B↓Y converges to
x0 at level α ∈ L− {0L} in (Y, σ↓Y ).

(2) Let C converges to y0 ∈ Y at level α ∈ L − {0L} in (Y, `) and let G ⊆
X, (Ny0)↑X(G) ≥ α. Since (Ny0)↑X(G) ≤ Ny0(G ∩ Y ), Ny0(G ∩ Y ) ≥ α, where Ny0

is the negibourhood L−generalized filter system in (Y, `). Then there exists λ0 ∈ D
such that if: C(λ, y) ≥ α, for all λ ∈ D,λ ≥ λ0, then y ∈ G ∩ Y ⊆ G. Thus C↑X
converges to y0 at level α ∈ L− {0L} in (X, `↑X). �

6. Relation between L−gineralized filters and L−gineralized nets

Definition 6.1. Let B : D ×X −→ L be an L−generalized net on the set X and
let λ0 ∈ D, α ∈ L− {0L}. Then the subfamily T (λ0, α) of X, which is defined as:

T (λ0, α) = {x ∈ X : B(λ, x) ≥ α, for all λ ∈ D,λ ≥ λ0}
is called a tail of B.
Remark 6.2. Since any given an L−generalized net B is a non-zero mapping, there
exists at least one tail, which is non-empty set. Moreover, in general, it may happen
that there exists a tail of B, which is empty set as the following example.
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Example 6.3. Let Z,R be two sets of all integer and real numbers. Define the
L−generalized net B : Z ×R −→ [0, 1] , which is defined by:

B(n, x) =


0; x < 0, n < 0,

1
2 ; x = 0, n = 0

2
3 ; x > 0, n > 0.

Then B is the L−generalized net on R, and T (λ, 1) = φ, for all n ∈ Z.

Theorem 6.4. Every an L−generalized net B on the set X, having the family of all
non empty tails induces an L−generalized filter FB on X.

Proof. Let Γ = {T (λ, α) : λ ∈ D,α ∈ L} be the family of all non-empty tails of the
given generalized net B on X. Define the non zero mapping S : 2X −→ L by:

S(A) =

{
1L; A ∈ ΓorA = X,
0L; A /∈ Γ.

It is clear that S(φ) = 0L. Then it generates an L−generalized filter FB on X and
it is defined by:

FB(B) =
∨
A⊆B

S(A).

�

Example 6.5. Let X = {r, s, t}, D ⊂ 2X , where D = {{r}, {s}, {t}, {r, s}, {s, t}}.
Then D is a partially ordered set with respect to the inclusion relation ⊆ . Let
L = {0, 1} and define the {0, 1}−generalized net B : D × X −→ {0, 1} on X, as
follows:

B(λ, x) =

{
1; (λ, x) ∈ {({r}, r), ({s}, s), ({t}, t), ({r, s}, s), ({s, t}, s)},
0; otherwise.

Thus,

T ({r}, 1) = {r, s}, T ({s}, 1) = {s}, T ({t}, 1) = {t, s}, T ({r, s}, 1) = {s}, T ({s, t}, 1) = {s}.
So,

S(A) =

{
1; A ∈ {X, {s}, {s, t}, {r, s}},
0; otherwise.

It is clear that S is the {0, 1}−generalized filter. Hence the {0, 1}−generalized filter
induced by the {0, 1}−generalized net B is FB = S.

Theorem 6.6. Let (X,σ) be an L−generalized topological space and let FB be an
induced L−generalized filter of an L−generalized net B on X. Then B converges to
x0 ∈ X at level α ∈ L − {0L} in (X,σ) if and only if FB converges to x0 ∈ X at
level α ∈ L− {0L} in (X,σ).

Proof. Let B converges to x0 ∈ X at level α ∈ L − {0L} in (X,σ). Then for each
H ⊆ X,Nx0

(H) ≥ α and there exists λ0 ∈ D such that if B(λ, x) ≥ α, for each
λ ∈ D, λ ≥ λ0, then x ∈ H. Thus the definition of the tail of the net B shows that
T (λ0, α) ⊂ H, which implies that FB(H) = 1L. So, α ≤ Nx0(H) ≤ FB(H), for each
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H ⊂ X such that Nx0(H) > 0L. Hence FB converges to x0 ∈ X at level α ∈ L−{0L}
in (X,σ).

Conversely, let FB converges to x0 ∈ X at level α ∈ L− {0L} in (X,σ). Then
α ≤ Nx0

(H) ≤ FB(H), for each H ⊆ X such that Nx0
(H) > 0L. Let G ⊆

X,Nx0
(G) ≥ α. Then FB(G) ≥ α, which implies that FB(G) = 1L. Thus the def-

inition of the induced L−generalized filter FB shows that φ 6= T (λ0, α) ⊆ G, for
some λ0 ∈ D and α ∈ L− {0L}. So, for each λ ≥ λ0,B(λ, x) ≥ α, it is follows that
x ∈ T (λ0, α) ⊆ G. Hence, B converges to x0 ∈ X at the level α ∈ L− {0L}. �

Theorem 6.7. Every an L−generalized filter F on the set X, induces an L−generalized
net BF on X.

Proof. Let F be an L−generalized filter on the set X. Define the set

D = {(x,B) ∈ X × 2X : x ∈ B,F(B) = 1L}
and define the relation ≥ on the set D as: (x1, B1) ≥ (x2, B2), if B1 ⊆ B2. Then,
the set D is a partially ordered set under the relation ≥ . Define the mapping
BF : D × 2X −→ L, to be an induced L−generalized net of an L−generalized filter
F and is defined by:

BF((x,B), y) =

{
1L; x = y,
0L; x 6= y.

�

Example 6.8. Let X = {r, s, t}, L = P ∗ ([0, 1]) . Define the L−generalized filter
F : 2X −→ P ∗([0, 1] on X, as follows:

F(A) =

{
[0, 1] ; A ∈ {{r, s}, {r, t}, X} ,
{0}; otherwise.

Moreover, the partially ordered set D ⊆ X × 2X is defined as follows:

D = {(r, {r, s}), (r, {r, t}), (r,X), (s, {r, s}), (s,X), (t, {r, t}), (t,X)} .
Define the family Υ ⊂ D ×X, where

Υ = {((r, {r, s}), r), ((r, {r, t}), r), ((r,X), r), ((s, {r, s}), s),
((s,X), s), ((t, {r, t}), t), ((t,X), t)}.

Then, the induced L−generalized net BF : D×X −→ P ∗ ([0, 1]) of the L−generalized
filter F is defined by:

BF(H) =

{
[0, 1] ; H ∈ Υ,
{0}; otherwise.

Theorem 6.9. Let (X,σ) be an L−generalized topological space and let
BF : D × X −→ L be an induced L−generalized net of an L−generalized filter
F : 2X −→ L on X. then F converges to x0 ∈ X at level α ∈ L − {0L} in (X,σ) if
and only if BF converges to x0 ∈ X at level α ∈ L− {0L} in (X,σ).

Proof. Let F converge to x0 ∈ X at level α ∈ L− {0L} in (X,σ). Then for each
G ⊆ X,Nx0(G) ≥ α. Thus x0 ∈ G,α ≤ Nx0(G) ≤ F(G).

Now, let (y,H) ∈ D, (y,H) ≥ (x0, G). Then H ⊆ G, y ∈ H and F(H) = 1L,
which implies that F(G) = 1L and (x0, G) ∈ D. Let BF((y,H), x) ≥ α. Then
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y ∈ H ⊆ G,BF((y,H), x) = 1L. Thus, x = y ∈ G, . So BF converges to x0 ∈ X at
the level α ∈ L− {0L} in (X,σ).

Conversely, let BF converges to x0 ∈ X at the level α ∈ L − {0L} in (X,σ) and
let U ⊆ X,Nx0

(U) ≥ α. Then there exists (z,K) ∈ D such that if BF((t, U), x) ≥ α,
for each (t,M) ∈ D, (t,M) ≥ (z,K), then x ∈ U. Thus, from the definition of
the induced L−generalized net BF of the L−generalized filter F, it is follows that
BF((t, U), x) = 1L and x = t ∈ U, which implies that t ∈ U, for each t ∈ M. So
M ⊆ U. Since (t,M) ∈ D, F(M) = 1L. Hence, F(U) = 1L. Therefore, α ≤ Nx0(U) ≤
F(U), for all U ⊆ X such that Nx0

(U) > 0L, and so F converges to x0 ∈ X at the
level α ∈ L− {0L} in (X,σ). �

7. Conclusion

From the above discussions, we can advocate that the L−generalized filters and
the L−generalized nets on the non empty universal set X are the natural gener-
alization of the crisp generalized filters and the crisp generalized nets respectively.
Moreover, the convergence of the L−generalized filters and the L−generalized nets
are the natural generalization of the convergence of the crisp generalized filters and
the crisp generalized net respectively.
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[14] T. Kubiak and A. Šostak, A fuzzification of the category of M-valued L-topological spaces,
Applied General Topology 5 (2004) 137–154.

[15] R. Lowen, Convergence in Fuzzy Topological Spaces, General Topology and its Applications
10 (1979) 147–160.

[16] M. Muthukumari, A. Nagarajan and M. Murugalingam, Fuzzy Nets, Int. Journal of Math.
Analysis 8 (35) (2014) 1715–1721

[17] M. Muthukumari, A. Nagarajan and M. Murugalingam, Fuzzification of Filters, Mathematical

Sciences International Research Journal 3 (2) (2014) 669–671.

460



G. A. Kamel /Ann. Fuzzy Math. Inform. 14 (2017), No. 5, 445–461

[18] M. Muthukumari, A. Nagarajan and M. Murugalingam, Generalized filters, International
Mathematical Forum 9 (36) (2014) 1751–1756.

[19] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and
Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980) 571–599.

[20] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992) 371–375.
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