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Abstract. In this paper, we shall define k-pseudo similarity (right
k-pseudo similar or left k-pseudo similar) for intuitionistic fuzzy matrices
and prove that, for a pair of intuitionistic fuzzy matrices A,B ∈ (IF )n ,
if A is said to be right (left) k-pseudo similar to B then As is said to be
right (left) k-pseudo similar to Bs for any integer s ≥ 1, but the converse
is not true which is illustrated by an example. Also prove that, A is said
to be right (left) k-pseudo similar to B if and only if BT is said to be left
(right) k-pseudo similar to AT . We exhibit that the k-pseudo similarity on
A and B preserve k-regularity of the intuitionistic fuzzy matrices A and
B. As a special case, for k = 1 it reduces to pseudo similar intuitionistic
fuzzy matrices [3].
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1. Introduction

We deal with the fuzzy matrices that is the matrices over the fuzzy algebra with
support [0, 1] under the max-min operations {+, .} defined as a+b = max {a, b} and
a.b = min {a, b} for all a, b ∈ {F : F = [0, 1]} . Let Fmn the set of all m × n fuzzy
matrices over the fuzzy algebra F . A matrix A ∈ Fm×n is said to be regular if there
exists X such that AXA = A; X is called a generalized (g−) inverse of A and is
denoted by A−. A development of theory of fuzzy matrices analogous to that of
Boolean matrices is made by Kim and Roush [5]. Atanassov has introduced and
developed the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets
[1]. A study on regularity and various g-inverse of intuitionistic fuzzy matrices over
intuitionistic fuzzy algebra are discussed in [10]. Basic properties of intuitionistic
fuzzy matrices as a generalization of the results on fuzzy matrices have been derived
by Pal and Khan [4]. Meenakshi and Gandhimathi have studied on regularity of
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intuitionistic fuzzy matrices [8]. In [11], some properties on both idempotent in-
tuitionistic fuzzy matrices and idempotent intuitionistic fuzzy matrices of T-type
are discussed. In [12], a problem of reducing intuitionistic fuzzy matrices is exam-
ined and some useful properties are obtained with respect to nilpotent intuitionistic
fuzzy matrices. In [6], some properties of a transitive fuzzy matrix are examined and
the canonical form of the transitive fuzzy matrix is given using the properties also
obtained a canonical form of the transitive intuitionistic fuzzy matrix. In [13], szpil-
rajn’s theorem on ordering is generalized to intuitionistic fuzzy orderings. In [14],
Riyaz Ahmad Padder and Murugadas have introduced the max-max operations on
intuitionistic fuzzy matrices to study the conditions for convergence of intuitionistic
fuzzy matrices. In [2], Cho has discussed the consistency of fuzzy matrix equations.
Recently, Meenakshi and Jenita have introduced the concept of k-regular fuzzy ma-
trix as a generalization of regular fuzzy matrix [9]. Further to learn about fuzzy
matrix theory and applications one may refer [7]. In this paper, we have introduced
the concept of k-pseudo similar intuitionistic fuzzy matrices(IFM) as a generalization
of pseudo similar intuitionistic fuzzy matrices [3].

2. Preliminaries

In this paper, we are concerned with fuzzy matrices, that is matrices over a fuzzy
algebra FM(FN) with support [0, 1], under maxmin(minmax) operations and the
usual ordering of real numbers. Let (IF )m×n be the set of all intuitionistic fuzzy
matrices of order m×n, FMm×n be the set of all fuzzy matrices of order m×n, under

the maxmin composition and FNm×n be the set of all fuzzy matrices of order m× n,
under the minmax composition.

If A = (aij) ∈ (IF )m×n, then A = (〈aijµ, aijϑ〉), where aijµ and aijϑ are the
membership values and non membership values of aij in A respectively with respect
to the fuzzy sets µ and ϑ, maintaining the condition 0 ≤ aijµ + aijϑ ≤ 1.

We shall follow the matrix operations on intuitionistic fuzzy matrices as defined
in [8].

For A,B ∈ (IF )m×n,
A+B = (〈max {aijµ, bijµ} ,min {aijϑ, bijϑ}〉),

AB =

(〈
max
k

min {aikµ, bkjµ} ,min
k

max {aikϑ, bkjϑ}
〉)

.

Let us define the order relation on (IF )m×n as:
A ≤ B ⇔ aijµ ≤ bijµ and aijϑ ≥ bijϑ, for all i and j.
In this work, we shall represent A ∈ (IF )m×n as Cartesian product of fuzzy

matrices.
For A = (aij) ∈ (IF )m×n. Let A = (aij) = (〈aijµ, aijϑ〉) ∈ (IF )m×n. We define

Aµ = (aijµ) ∈ FMm×n as the membership part of A and Aϑ = (aijϑ) ∈ FNm×n as the
non-membership part of A. Thus A is written as the Cartesian product Aµ and Aϑ,
A =< Aµ, Aϑ > with Aµ ∈ FMm×n, Aϑ ∈ FNm×n.

Definition 2.1 ([8]). For A,B ∈ (IF )m×n, if A =< Aµ, Aϑ > and B =< Bµ, Bϑ >,
then A+B =< Aµ +Bµ, Aϑ +Bϑ > .

Definition 2.2 ([8]). For A ∈ (IF )m×p, B ∈ (IF )p×n if A =< Aµ, Aϑ > and
B =< Bµ, Bϑ >, then
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(i) AB =< AµBµ, AϑBϑ >, where AµBµ is the max min product in FMm×n and

AϑBϑ is the min max product in FNm×n,

(ii) AT =< ATµ , A
T
ϑ > .

Definition 2.3 ([8]). A matrix A ∈ (IF )n is said to be invertible, if there exists
X ∈ (IF )n such that AX = XA = In =< IMn , INn >, where In is the identity matrix
in (IF )n.

Definition 2.4 ([8]). A square intuitionistic fuzzy matrix is called intuitionistic
fuzzy permutation matrix, if every row and column contains exactly one < 1, 0 >
and all the other entries are < 0, 1 >. Let Pn be the set of all n × n permutation
matrices in (IF )n.

Definition 2.5 ([4]). An A ∈ (IF )m×n is said to be regular, if there exists X ∈
(IF )m×n satisfying AXA = A. In this case, X is called a generalized inverses
(g-inverse) of A and is denoted by A.

Let A {1} be the set of all g-inverses of A.

Definition 2.6 ([3]). A ∈ (IF )m and B ∈ (IF )n are said to be pseudo similar,
denoted by A ∼= B, if there exist X ∈ (IF )mn and Y ∈ (IF )nm such that

A = XBY,B = Y AX and XYX = X.

Lemma 2.7 ([3]). Let A ∈ (IF )m and B ∈ (IF )n. Then the following are equiva-
lent:

(1) A ∼= B,
(2) there exist X ∈ (IF )mn, Y ∈ (IF )nm such that A = XBY,B = Y AX,XY X =

X and Y XY = Y,
(3) There exist X ∈ (IF )mn, Y ∈ (IF )nm such that A = XBY,B = ZAX,XY X =

X = XZX.

Theorem 2.8 ([8]). Let A ∈ (IF )m×n be of the form A = 〈Aµ, Aϑ〉. Then A is
regular ⇔ Aµ is regular in FMm×n under max-min composition and Aϑ is regular in

FNm×n under min-max composition. Aµ = (aijµ) ∈ FMm×n as the membership part of

A and Aϑ = (aijϑ) ∈ FNm×n as the non-membership part of A.

3. k-Pseudo Similar Intuitionistic Fuzzy Matrices

Definition 3.1. A matrix A ∈ (IF )n, is said be right k-regular, if there exists a
matrix X ∈ (IF )n such that AkXA = Ak, for some positive integer k.

In this case, X is called a right k-g-inverse of A.
Let Ar

{
1k
}

=
{
X/AkXA = Ak

}
.

Definition 3.2. A matrix A ∈ (IF )n, is said be left k-regular, if there exists a
matrix Y ∈ (IF )n such that AY Ak = Ak, for some positive integer k.

In this case, Y is called a left k-g-inverse of A.
Let A`

{
1k
}

=
{
Y/AY Ak = Ak

}
.

In general, right k-regular is different from left k-regular. Then a right k-g-inverse
need not be a left k-g-inverse (refer to Example 3.4). Thus forth we call a right k-
regular (or) left k-regular IFM as a k-regular IFM.
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Example 3.3. Let us consider A =

[
〈0.3, 0〉 〈0, 1〉
〈0.5, 0〉 〈0.2, 0〉

]
∈ (IF )2, where Aµ =[

0.3 0
0.5 0.2

]
∈ FM2 and Aϑ =

[
0 1
0 0

]
∈ FN2 . Since each row of Aµ cannot be

expressed as linear combination of the other row, by Definition 2.5 of (5) , the rows
are linearly independent. Then by Definition 2.6 of (2) ,they form a standard basis
for the row space of Aµ.

For both permutation matrices P1 =

[
1 0
0 1

]
and P2 =

[
0 1
1 0

]
, AµP1Aµ =[

0.3 0
0.3 0.2

]
6= Aµ and AµP2Aµ =

[
0.3 0.2
0.5 0.2

]
6= Aµ. Thus Aµ is not regular by

step 3 in Algorithm 1 of (2) . Namely, Aµ is regular iff AµPAµ = Aµ, for some
permutation matrix P. Since Aϑ is idempotent, Aϑ itself is a g-inverse of Aϑ, Aϑ is
regular under min max composition. So by Theorem 2.8, A is not regular.

For this A, A2 =

[
〈0.3, 0〉 〈0, 1〉
〈0.3, 0〉 〈0.2, 0〉

]
. For X =

[
〈1, 0〉 〈0, 1〉
〈0, 0〉 〈0.2, 0〉

]
, A2XA = A2 =

AXA2 holds. Hence A is 2-regular.

Example 3.4. Let A =

 〈1, 0〉 〈0.5, 0.5〉 〈0, 0〉
〈0, 0〉 〈0, 1〉 〈0.5, 0.5〉

〈0.5, 0.5〉 〈0, 0〉 〈0, 0〉

 . Then Aµ is not regu-

lar (See [9]). Thus by Theorem 2.8, A is not regular.

For thisA, A2 =

 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉
〈0.5, 0〉 〈0, 0.5〉 〈0, 0〉
〈0.5, 0〉 〈0.5, 0〉 〈0, 0〉

 , A3 =

 〈1, 0〉 〈0.5, 0〉 〈0.5, 0〉
〈0.5, 0〉 〈0.5, 0〉 〈0, 0〉
〈0.5, 0〉 〈0.5, 0〉 〈0.5, 0〉

 .
For X =

 〈1, 0〉 〈0, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0, 1〉 〈0.5, 0〉
〈0.5, 0〉 〈0.5, 0.5〉 〈0.5, 0〉

 , A3XA = A3 6= AXA3 holds. So X

is a right 3-g inverse but X is not a 3-g inverse of A.

Theorem 3.5. Let A = 〈Aµ, Aϑ〉 ∈ (IF )n. Then A is right k-regular IFM ⇔
Aµ, Aϑ ∈ Fn are right k-regular.

Proof. Let A = 〈Aµ, Aϑ〉 ∈ (IF )n. Since A is right k-regular IFM, there exists
X ∈ (IF )n, such that AkXA = Ak.

LetX = 〈Xµ, Xϑ〉 ∈ (IF )n with Xµ, Xϑ ∈ Fn. Then by Definition 2.2, AkXA =

Ak. Thus 〈Aµ, Aϑ〉k 〈Xµ, Xϑ〉 〈Aµ, Aϑ〉 = 〈Aµ, Aϑ〉k,〈
Akµ, A

k
ϑ

〉
〈Xµ, Xϑ〉 〈Aµ, Aϑ〉 =

〈
Akµ, A

k
ϑ

〉
,〈

AkµXµAµ, A
k
ϑXϑAϑ

〉
=
〈
Akµ, A

k
ϑ

〉
,

AkµXµAµ = Akµ and AkϑXϑAϑ = Akϑ.
So Aµ, Aϑ ∈ Fn are right k-regular.

Conversely, suppose Aµ, Aϑ ∈ Fn are right k-regular. Then AkµXµAµ = Akµ and

AkϑXϑAϑ = Akϑ, for some Xµ, Xϑ ∈ Fn. Thus Xµ is a right k-g inverse of Aµ and Xϑ

is a right k-g inverse of Aϑ.
Now let us define the IFM Z = 〈V,W 〉, where V is a right k-g inverse of Aµ and

W is a right k-g inverse of Aϑ. We claim that Z is a right k-g inverse of A. Then by
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Definition 2.2,

AkZA = 〈Aµ, Aϑ〉k 〈V,W 〉 〈Aµ, Aϑ〉 =
〈
AkµV Aµ, A

k
ϑWAϑ

〉
=
〈
Akµ, A

k
ϑ

〉
= Ak.

Thus A is right k-regular IFM. So the proof is done. �

Theorem 3.6. Let A = 〈Aµ, Aϑ〉 ∈ (IF )n. Then A is left k-regular IFM⇔ Aµ, Aϑ ∈
Fn are left k-regular.

Proof. This can be proved along the same lines as that of Theorem 3.5.
�

Definition 3.7. A ∈ (IF )n is said to be right k-pseudo similar to B ∈ (IF )n,
denoted by A ∼=k

r B, if there exist X,Y ∈ (IF )n such that A = XBY,B =
Y AXk, XkY X = Xk and Y XY = Y.

Definition 3.8. A ∈ (IF )n is said to be left k-pseudo similar to B ∈ (IF )n, denoted
by A ∼=k

` B, if there exist X,Y ∈ (IF )n such that A = XkBY,B = Y AX,XY Xk =
Xk and Y XY = Y.

Remark 3.9. In particular for k=1, Definitions 3.7 and 3.8 are identical. Then
k-pseudo similar is reduced to Lemma 2.7. However, both right and left k-pseudo
similarity of intuitionistic fuzzy matrices are not symmetric as in the case of pseudo
similarity of intuitionistic fuzzy matrices.

Lemma 3.10. Let A,B ∈ (IF )n. If A ∼=k
r B, then we have the following:

(1) As = XBsY, for any integer s ≥ 1,
(2) BYX = Y XB = B,
(3) AXY = XY A = A,
(4) Bs = Y AsX, for any integer s ≥ 1.

Proof. Since A ∼=k
r B,A = XBY,B = Y AXk, XkY X = Xk and Y XY = Y.

(1) Since A = XBY , A2 = (XBY ) (XBY ) = X (BYX)BY . Thus

BYX =
(
Y AXk

)
Y X = Y A

(
XkY X

)
= Y AXk = B.

So, A2 = (XBY ) (XBY ) = X (BYX)BY = XBBY = XB2Y. Hence in general,
As = XBsY, for any integer s ≥ 1.

(2) Y XB = Y X
(
Y AXk

)
= (Y XY )AXk = Y AXk = B

and BYX =
(
Y AXk

)
Y X = Y A

(
XkY X

)
= Y AXk = B.

(3) AXY = (XBY )XY = XB (Y XY ) = XBY = A
and XY A = XY (XBY ) = X (Y XB)Y = XBY = A.

(4) Clearly, B = Y XB. Then Bs = Y XBs. Thus Bs = Y X (BsY X) =
Y (XBsY )X = Y AsX. �

Lemma 3.11. Let A,B ∈ (IF )n. If A ∼=k
` B. Then we have the following:

(1) Bs = Y AsX, for any integer s ≥ 1,
(2) AXY = XY A = A,
(3)) BYX = Y XB = B,
(4) As = XBsY, for any integer s ≥ 1.

Proof. This can be proved as that of Lemma 3.10 and then omitted. �
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Theorem 3.12. Let A,B ∈ (IF )n such that A ∼=k
r B. A is right(left) k-regular

⇔ B is right(left) k-regular.

Proof. Since A ∼=k
r B,A = XBY,B = Y AXk, XkY X = Xk and Y XY = Y. When

the positive integers k and s are same in Lemma 3.10, we have
Ak = XBkY,BY X = Y XB = B,AXY = XY A = A

and
Bk = Y AkX, for any integer k ≥ 1.

Let A be right k-regular, i.e., AkGA = Ak. Then G is a right k-g-inverse of A.
Choose U = Y GX. We claim that U is a right k-g-inverse of B. Then

BkUB =
(
Y AkX

)
(Y GX)B = Y

(
AkXY

)
G (XB)

= Y AkG (XBYX) = Y AkG (AX)
= Y

(
AkGA

)
X = Y AkX = Bk.

Conversely, assume that B is right k-regular, i.e., BkUB = Bk. Then U is a right
k-g-inverse of B. Choose G = XUY We prove that , G is a right k-g-inverse of A.
Then

AkGA =
(
XBkY

)
(XUY ) (XBY )

= X
(
BkY X

)
U (Y BX)Y

= XBkUBY = XBkY
= Ak.

On the other hand, A is left k-regular ⇔ B is left k-regular can be proved in the
same manner. Thus the proof is done. �

Theorem 3.13. Let A,B ∈ (IF )n such that A ∼=k
` B. Then A is right(left) k-

regular ⇔ B is right(left) k-regular.

Proof. This can be proved as that of Theorem 3.12 and then omitted. �

Remark 3.14. For k = 1, Theorems 3.12 and 3.13 reduces to the following.

Theorem 3.15 ([3]). Let A ∈ (IF )m and B ∈ (IF )n such that A ∼= B. Then A is
a regular matrix ⇔ B is a regular matrix.

Lemma 3.16. Let A,B ∈ (IF )n and suppose A ∼=k
r B. Then there exist X,Y ∈

(IF )n such that A = XBY,B = Y AXk and XY is k-potent.

Proof. Since A ∼=k
r B,A = XBY,B = Y AXk, XkY X = Xk and Y XY = Y. Then

(XY )
k

= (XY )
k−1

XY

= (XY )
k−2

XYXY

= (XY )
k−2

X (Y XY )

= (XY )
k−2

XY
= .......
= XY.

Thus the proof is done. �

Remark 3.17. The converse of the above Lemma need not be true. This is illus-
trated in the following.
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Example 3.18. Let us consider X =

[
〈0.3, 0.3〉 〈0, 1〉
〈0.5, 0.5〉 〈0.2, 0.2〉

]
and Y =

[
〈0, 1〉 〈0, 1〉
〈0.5, 0〉 〈0.5, 0〉

]
. For A =

[
〈0, 1〉 〈0, 1〉

〈0.2, 0.3〉 〈0.2, 0.3〉

]
and B =

[
〈0, 1〉 〈0, 1〉

〈0.2, 0.3〉 〈0.2, 0.3〉

]
, A = XBY,B = Y AX2 and (XY )

2
= XY. Then

XY is 2-potent, but X2Y X 6= X2 and Y XY 6= Y. Here A is not right 2-pseudo
similar to B.

Lemma 3.19. Let A,B ∈ (IF )n. If A ∼=k
` B, then there exist X,Y ∈ (IF )n such

that A = XkBY,B = Y AX and Y X is k-potent.

Proof. Since A ∼=k
` B, A = XkBY,B = Y AX,XY Xk = Xk and Y XY = Y. Thus

(Y X)
k

= (Y X)
k−1

Y X

= (Y X)
k−2

Y XY X

= (Y X)
k−2

(Y XY )X

= (Y X)
k−2

Y X
= .......
= Y X.

So the proof is done.
�

Theorem 3.20. Let A,B ∈ (IF )n. Then the following are equivalent:
(1) A ∼=k

r B,
(2) BT ∼=k

` A
T ,

(3) PAPT ∼=k
r PBP

T , for some permutation matrix P ∈ (IF )n.

Proof. (1) ⇔ (2) : This is direct by taking transpose on both sides and by using(
AT
)T

= A and (AX)
T

= XTAT .

(2) ⇔ (3) : Suppose A ∼=k
r B. Then A = XBY,B = Y AXk, XkY X = Xk and

Y XY = Y. Thus
Since A = XBY ,

PAPT = PXBY PT =
(
PXPT

) (
PBPT

) (
PY PT

)
. (3.1)

Since B = Y AXk,
PBPT = PY AXkPT =

(
PY PT

) (
PAPT

) (
PXkPT

)
=
(
PY PT

) (
PAPT

) (
PXPT

)k
. (3.2)

Since XkY X = Xk, PXkPT = PXkY XPT . Thus
PXkPT =

(
PXkPT

) (
PY PT

) (
PXPT

)
. (3.3)

On the other hand,
(
PXPT

)k
=
(
PXPT

)k (
PY PT

) (
PXPT

)
. Since Y = Y XY ,

PY PT = PY XY PT . Thus
PY PT =

(
PY PT

) (
PXPT

) (
PY PT

)
. (3.4)

So PAPT ∼=k
r PBP

T .
Conversely, suppose PAPT ∼=k

r PBP
T . Pre multiply by PT and post multiply

by P in Equations (3.1) to (3.4), we get A = XBY,B = Y AXk, XkY X = Xk and
Y XY = Y. Then A ∼=k

r B. Thus the proof is done. �

439



P. Jenita et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 5, 433–443

Example 3.21. The above Theorem 3.20 is illustrated in this example.

Let us consider A =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
, B =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.1, 0.5〉 〈0.1, 0.5〉

]
, X =[

〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.4〉 〈0.3, 0.5〉

]
and Y =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.1, 0.5〉 〈0.1, 0.5〉

]
. Here X 6= XYX.

For this X, X2 =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
.

Now A = XBY =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
,

B = Y AX2 =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.1, 0.5〉 〈0.1, 0.5〉

]
,

X2 = X2Y X =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
and

Y = Y XY =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.1, 0.5〉 〈0.1, 0.5〉

]
.

Then A ∼=k
r B.

For a given A and B,

AT =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
, BT =

[
〈0.5, 0.5〉 〈0.1, 0.5〉
〈0.5, 0.5〉 〈0.1, 0.5〉

]
,

XT =

[
〈0.5, 0.5〉 〈0.5, 0.4〉
〈0.5, 0.5〉 〈0.3, 0.5〉

]
, Y T =

[
〈0.5, 0.5〉 〈0.1, 0.5〉
〈0.5, 0.5〉 〈0.1, 0.5〉

]
and (

XT
)2

=

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
. For this XT , Y T ∈ (IF )2 ,

AT = Y TBTXT =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
,

BT =
(
XT
)2
ATY T =

[
〈0.5, 0.5〉 〈0.1, 0.5〉
〈0.5, 0.5〉 〈0.1, 0.5〉

]
,(

XT
)2

= XTY T
(
XT
)2

=

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
,

Y T = Y TXTY T =

[
〈0.5, 0.5〉 〈0.1, 0.5〉
〈0.5, 0.5〉 〈0.1, 0.5〉

]
.

Thus BT ∼=k
` A

T .

Consider a intuitionistic fuzzy permutation matrix P = 〈Pµ, Pϑ〉 =

[
〈1, 0〉 〈0, 1〉
〈0, 1〉 〈1, 0〉

]
.

For this P , PT =

[
〈1, 0〉 〈0, 1〉
〈0, 1〉 〈1, 0〉

]
. On the other hand,

PAPT = X
(
PBPT

)
Y =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
and

PBPT = Y
(
PAPT

)
X2 =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.1, 0.5〉 〈0.1, 0.5〉

]
.

So PAPT ∼=k
r PBP

T for some permutation matrix P ∈ (IF )n.

Theorem 3.22. Let A,B ∈ (IF )n. Then the following are equivalent:
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(1) A ∼=k
` B,

(2) BT ∼=k
r A

T ,
(3)) PAPT ∼=k

` PBP
T , for some permutation matrix P ∈ (IF )n.

Proof. Proof of the theorem is similar to Theorem 3.20 and hence omitted.
�

Theorem 3.23. Let A,B ∈ (IF )n. If A ∼=k
r B, then As ∼=k

r B
s, for any integer

s ≥ 1.

Proof. Suppose A ∼=k
r B. Then A = XBY,B = Y AXk, XkY X = Xk and Y XY =

Y.
Prove that, As ∼=k

r B
s. By Lemma 3.10(1), As = XBsY, for any integer s ≥ 1.

Next prove that, Bs = Y AsXk.
By Lemma 3.10(2), BYX = Y XB = B. Then

Bs = Y XBs = Y XBs−1B = Y XBs−1
(
Y AXk

)
= Y

(
XBs−1Y

)
AXk = Y

(
As−1

)
AXk

= Y AsXk. Thus As ∼=k
r B

s, for any integer s ≥ 1. So the proof is done. �

Remark 3.24. The converse of the above theorem need not be true. This is illus-
trated in the following.

Example 3.25. Let us consider X =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.4〉 〈0.3, 0.5〉

]
and Y =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.1, 0.5〉 〈0.1, 0.5〉

]
. For X2 =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.5〉 〈0.5, 0.5〉

]
,

XY X 6= X,X2Y X = X2 and Y XY = Y.

For A =

[
〈0.3, 0.5〉 〈0.5, 0.5〉
〈0.5, 0.4〉 〈0.5, 0.5〉

]
and B =

[
〈0.5, 0.5〉 〈0.5, 0.5〉
〈0.1, 0.5〉 〈0.1, 0.5〉

]
,

A2 = XB2Y and B2 = Y A2X2.
Then A2 is right 2-pseudo similar to B2. But A 6= XBY and B = Y AX2. Here A is
not right 2-pseudo similar to B.

Theorem 3.26. Let A,B ∈ (IF )n. If A ∼=k
` B, then As ∼=k

` B
s, for any integer

s ≥ 1.

Proof. This is similar to Theorem 3.23 and then omitted. �

Theorem 3.27. Let A,B,C ∈ (IF )n. If A ∼=k
r B and B ∼=k

r C, then A
∼=k
r C and if

there exist matrices X,Y, Z and L with Y ∈ X
{

1kr
}
, Z ∈ L

{
1kr
}
, X ∈ Y {1} , L ∈

Z {1} , and XL = LX satisfying any one of the following:
(1) LZY = Y ,
(2) ZY X = Z,
(3) XLZ = X,
(4) Y XL = L.

Proof. Since A ∼=k
r B,A = XBY,B = Y AXk, XkY X = Xk and Y XY = Y. Since

B ∼=k
r C,B = LCZ,C = ZBLk, LkZL = Lk and ZLZ = Z. Thern,
A = XBY = X (LCZ)Y = (XL)C (ZY ) .

and
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C = ZBLk = Z
(
Y AXk

)
Lk = (ZY )A

(
XkLk

)
= (ZY )A (XL)

k
.

To prove, A ∼=k
r C, it is enough to prove that ZY ∈ (XL)

{
1kr
}

and XL ∈ (ZY ) {1} .
Suppose (1) holds. Then

(XL)
k

(ZY ) (XL) = XkLk (ZY ) (XL) = XkLk−1 (LZY ) (XL)
= XkLk−1 (Y ) (XL) = Lk−1Xk (Y ) (XL)
= Lk−1

(
XkY X

)
L = Lk−1XkL

= (XL)
k

and
(ZY ) (XL) (ZY ) = ZY X (LZY ) = ZY XY = Z (Y XY ) = ZY.

Suppose (2) holds. Then

(XL)
k

(ZY ) (XL) = (XL)
k

(ZY X)L

= (XL)
k
ZY = XkLkZL

= XkLk = (XL)
k

and
(ZY ) (XL) (ZY ) = (ZY X)LZY = ZLZY = (ZLZ)Y = ZY.

Suppose (3) holds. Then

(XL)
k

(ZY ) (XL) = (XL)
k−1

(XL) (ZY ) (XL)

= (XL)
k−1

(XLZ) (Y XL)

= (XL)
k−1

XYXL = Lk−1Xk−1XYXL
= Lk−1XkY XL = Lk−1XkL
= (XL)

k

and
(ZY ) (XL) (ZY ) = ZY (XLZ)Y = ZY XY = Z (Y XY ) = ZY.

Suppose (4) holds. Then

(XL)
k

(ZY ) (XL) = (XL)
k
Z (Y XL)

= (XL)
k
ZL = XkLkZL = XkLk

= (XL)
k

and (ZY ) (XL) (ZY ) = Z (Y XL)ZY = ZLZY = (ZLZ)Y = ZY.
Thus the proof is done. �

Theorem 3.28. Let A,B,C ∈ (IF )n. If A ∼=k
` B and B ∼=k

` C, then A
∼=k
` C and if

there exist matrices X,Y, Z and L with Y ∈ X
{

1k`
}
, Z ∈ L

{
1k`
}
, X ∈ Y {1} , L ∈

Z {1} , and XL = LX satisfying any one of the following:
(1) LZY = Y ,
(2) ZY X = Z,
(3) XLZ = X,
(4) Y XL = L.

Proof. This is similar to that of Theorem 3.27 and then omitted.
�
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4. Conclusion

In this paper, the concept of k-regular intuitionistic fuzzy matrix as a generaliza-
tion of regular intuitionistic fuzzy matrix is introduced. k-pseudo similar intuition-
istic fuzzy matrix is defined and the properties are discussed.
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