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Abstract. In this paper, we establish some fixed point theorems for
ϕ-contraction in Menger probabilistic generalized metric spaces by intro-
ducing a new type of gauge function. With this introduced guage function,
we discuss several important lemmas to prove our main results. An exam-
ple is given in the support of obtained results.
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1. Introduction

In 1942, the concept of probabilistic metric space was initiated by Menger [13].
Probabilistic metric space (briefly, PM-space) is a generalization of metric space in
which distance between two points x and y, d(x, y) is assigned by a distribution
function Fx,y. Since then, many researchers extensively developed and expanded the
study of PM-spaces in their pioneering works e.g., [2, 10, 18, 19, 20, 21, 22, 23, 25].

To prove existence and uniqueness of fixed point theorems in PM-spaces, contrac-
tion is one of the basic tools. Sehgal and Bharucha-Reid [20] introduced probabilistic
k-contraction and proved probabilistic version of classical Banach fixed point princi-
ple. After that Ciric [5] generalizes the k-contraction and introduced the concept of
ϕ-contraction in PM-space. In spite of the fact that probabilistic ϕ-contractions are
a natural generalization of probabilistic k-contractions, the techniques used to prove
the existence and uniqueness of fixed point results for probabilistic k-contractions
are no longer usable for probabilistic ϕ-contractions. In 2010, Ciric [5] presented
a fixed point theorem for probabilistic ϕ-contractions. Soon after the publication
of Ciric’s paper, Jachymski [11] found a counterexample to the key lemma in [5],
and established a modified version of Ciric’s ϕ-function. Recently, Fang [9] further
weakened the conditions on ϕ-function.
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In 2006, Mustafa and Sims[16] introduced the notion of a generalized metric
space. After that many authors obtained several fixed point theorems for mappings
satisfying different contractive conditions in generalized metric spaces (see, [7, 14,
15, 17]). In 2014, Zhou et al.[26] introduced the concept of a generalized probabilistic
metric space (briefly, a PGM-space). After that Zhu et al.[27] obtained some fixed
point theorems in PGM-spaces. For some very recent results in PGM-spaces, we
refer [1, 3, 4, 6, 8, 12, 24].

The purpose of this work is to introduce a new class of ϕ-function and to establish
several important results with the help of this function. We prove the existence and
uniqueness of a fixed point for ϕ-contraction in Menger PGM-space. Finally an
example is given to illustrate our main results.

2. Preliminaries

Throughout this paper, let R = (−∞,+∞), R+ = [0,+∞) and N be the set of
all natural numbers.

Definition 2.1 ([13]). A mapping F : R→ [0, 1] is called a distribution function if
it is non-decreasing and left-continuous with inf

t∈R
F (t) = 0 and sup

t∈R
F (t) = 1.

Definition 2.2 ([18]). A continuous t-norm T is a binary operation on [0, 1] which
satisfies the following conditions:

(T-1) T is associative and commutative,
(T-2) T is continuous,
(T-3) T (a, 1) = a, for all a ∈ [0, 1] ,
(T-4) T (a, b) ≤ T (c, d), whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Definition 2.3 ([13]). A Menger PM-space is a triplet (X,F, T ), where X is a non-
empty set, T is a t-norm and F : X×X → D+ be a mapping satisfying the following
conditions (for x, y ∈ X, we denote F (x, y) by Fx,y):

(PM-1) Fx,y (t) = H (t) , for all x, y ∈ X and t > 0 if and only x = y,
(PM-2) Fx,y (t) = Fy,x (t) , for all x, y ∈ X and t > 0,
(PM-3) Fx,y (s+ t) ≥ T (Fx,z(s), Fz,y (t)) , for all x, y, z ∈ X and s, t > 0.

Definition 2.4 ([26]). The triplet (X,G, T ) is called Menger probabilistic gener-
alized metric space (briefly, a Menger PGM-space) if X is a non-empty set, T is a
continuous t-norm and G : X ×X ×X → D+ be a mapping satisfying the following
conditions:

(PGM-1) Gx,y,z(t) = 1, for all x, y, z ∈ X and t > 0 if and only if x = y = z,
(PGM-2) Gx,x,y(t) ≥ Gx,y,z(t), for all x, y ∈ X with z 6= y and t > 0,
(PGM-3) Gx,y,z(t) = Gp(x,y,z)(t), where p is a permutation function,
(PGM-4) Gx,y,z(t+s) ≥ T (Gx,a,a (s) , Ga,y,z(t)), for all x, y, z, a ∈ X and s, t > 0.

Example 2.5 ([26]). Let (X,F, T ) be a PM-space. Define a function G : X ×X ×
X → D+ by Gx,y,z(t) = min {Fx,y(t), Fy,z(t), Fx,z(t)} , for all x, y, z ∈ X and t > 0.
Then (X,G, T ) is a PGM-space.

Example 2.6. Let (X, d) be a metric space. If we define

Gx,y,z (t) =

(
t

1 + t

)d(x,y)+d(y,z)+d(z,x)
394
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and we choose t-norm as product t-norm defined by

Tp (a, b) = a.b,∀a, b ∈ [0, 1] .

Then (X,G, Tp) is a Menger PGM-space. In fact, Gx,y,z (0) = 0. Also, sup
t>0

Gx,y,z (t) =

1, and Gx,y,z (t) is non-decreasing and continuous in t. Therefore, Gx,y,z (t) is a dis-
tribution function. By the definition of Gx,y,z (t) , it is obvious that (PGM-1) and
(PGM-3) in Definition 2.5 hold.

Next we will show that (PGM-2) and (PGM-4) also hold. Since d (x, y) ≤
d (x, z) + d (z, y) , ∀x, y, z ∈ X, with y 6= z, we have that

d (x, y) + d (x, y) ≤ d (x, y) + d (x, z) + d (z, y) .

Then (
t

1 + t

)d(x,y)+d(x,y)
≥
(

t

1 + t

)d(x,y)+d(y,z)+d(z,x)
.

Thus, Gx,x,y (t) ≥ Gx,y,z (t) , for all x, y, z ∈ X with y 6= z, and t > 0. By the
definition of Gx,y,z (t) , we get

Gx,y,z (t+ s) =

(
t+ s

1 + t+ s

)d(x,y)+d(y,z)+d(z,x)
.

Since, t
1+t is strictly increasing on [0, 1), we have(

t+ s

1 + t+ s

)d(x,y)+d(y,z)+d(z,x)
≥
(

t+ s

1 + t+ s

)d(x,a)+d(a,y)+d(y,z,)+d(z,a)+d(a,x)
=

(
t+ s

1 + t+ s

)d(x,a)+d(a,x)(
t+ s

1 + t+ s

)d(a,y)+d(y,z)+d(z,a)
≥
(

t

1 + t

)d(x,a)+d(x,a)(
s

1 + s

)d(a,y)+d(y,z)+d(z,a)
= TP

((
t

1 + t

)d(x,a)+d(x,a)
,

(
s

1 + s

)d(a,y)+d(y,z)+d(z,a))
.

This implies that Gx,y,z (t+ s) ≥ TP (Gx,a,a (t) , Ga,y,z (s)) . So, (X,G, TP ) is a
Menger PGM-space.

Definition 2.7 ([26]). Let (X,G, T ) be a Menger PGM-space.
(i) A sequence (xn) in (X,G, T ) is said to be convergent to a point x ∈ X, written

as xn → x, if given ε > 0, λ > 0 we can find Nε,λ ∈ N such that for all n ≥ Nε,λ,
Gx,xn,xn

(ε) ≥ 1− λ holds.
(ii) A sequence (xn) in (X,G, T ) is called a Cauchy sequence, if for any given

ε > 0 and λ ∈ (0, 1] there exists Nε,λ ∈ N such that Gxn,xm,xl
(ε) ≥ 1− λ, whenever

m,n, l ≥ Nε,λ.
(iii) A Menger PGM-space (X,G, T ) is said to be complete, if every Cauchy

sequence (xn) in X is convergent to some point x ∈ X.

Definition 2.8 ([1]). Let (X,G, T ) be a Menger PGM-space with a continuous t-
norm T . A mapping f : X → X is said to be a probabilistic ϕ-contraction, if there

395
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exists a function ϕ ∈ Φ such that Gfx,fy,fz (ϕ (t)) ≥ Gx,y,z (t) , for all x, y, z ∈ X
and t > 0.

Definition 2.9 ([10]). A t-norm T is said to be of H-type, if the family {T p}p∈N of
its iterates defined for each t ∈ (0, 1) by T 0(t) = 1, Tm(t) = T (t, Tm−1(t)) for all
m ∈ N is equi continuous at t = 1.

Definition 2.10. We define the class of a function Φ as follows: Φ contains all
functions ϕ : R+ → R+ such that for each t > 0 there exists r > t such that
ϕ (r) ≤ t. An example of this type of function is ϕ : [0,∞)→ [0,∞) defined as:

ϕ (t) =


0 if t = 0
t
4n if 1

4n ≤ t <
1

4n−1

kt if t ≥ 1,where 0 < k < 1.

3. Major Section

Lemma 3.1. Suppose that the sequence
{
Gxn,xn+1,xn+1

(tm)
}

is non-decreasing in
both the variables m and n, i.e., Gxn,xn+1,xn+1 (tm) ≥ Gxn−1,xn,xn (tm) and
Gxn,xn+1,xn+1 (tm+1) ≥ Gxn,xn+1,xn+1 (tm), for each m,n ∈ N. Then

lim
n→∞

(
lim
m→∞

Gxn,xn+1,xn+1 (tm)
)

= lim
m→∞

(
lim
n→∞

Gxn,xn+1,xn+1 (tm)
)
.

Proof. Denote an = lim
m→∞

Gxn,xn+1,xn+1
(tm) and bm = lim

n→∞
Gxn,xn+1,xn+1

(tm) .

Then the existence and finiteness of both the limits can be obtained by monotonicity
and boundedness of distribution functions, respectively.

Since Gxn,xn+1,xn+1
(tm) ≥ Gxn−1,xn,xn

(tm) , we have

bm = lim
n→∞

Gxn,xn+1,xn+1
(tm) ≥ lim

n→∞
Gxn−1,xn,xn

(tm) = bm−1,

i.e., the sequence {bm} is non-decreasing.
Similarly, we can show that the sequence {an} is non-decreasing.
Put a = lim

n→∞
an and b = lim

m→∞
bm. Now,

Gxn,xn+1,xn+1
(tm) ≤ bm

⇒ lim
m→∞

Gxn,xn+1,xn+1
(tm) ≤ lim

m→∞
bm

⇒ an ≤ b
⇒ lim

n→∞
an ≤ lim

n→∞
b

⇒ a ≤ b.
Similarly, Gxn,xn+1,xn+1

(tm) ≤ an
⇒ lim

n→∞
Gxn,xn+1,xn+1

(tm) ≤ lim
n→∞

an

⇒ bm ≤ a
⇒ lim

m→∞
bm ≤ lim

n→∞
a

⇒ b ≤ a.
Then, a = b, i.e,

lim
n→∞

(
lim
m→∞

Gxn,xn+1,xn+1 (tm)
)

= lim
m→∞

(
lim
n→∞

Gxn,xn+1,xn+1 (tm)
)
.

�
396
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Lemma 3.2. Let (X,G, T ) be a Menger PGM-space with a t-norm T . Let {xn} be a
sequence in (X,G, T ). If there exists a function ϕ ∈ Φ such that Gxn,xn+1,xn+1 (ϕ (t)) ≥
Gxn−1,xn,xn

(t) , for all n ∈ N and t > 0, then lim
n→∞

Gxn,xn+1,xn+1
(t) = 1.

Proof. Let t0 > 0 be arbitrary. Since ϕ ∈ Φ, there exists t1 > t0 such that ϕ (t1) ≤
t0. Now, since Gxn,xn+1,xn+1

(ϕ (t)) ≥ Gxn−1,xn,xn
(t) , by the monotonic increasing

property of distribution function, we have

Gxn,xn+1,xn+1
(t1) ≥ Gxn,xn+1,xn+1

(t0)

≥ Gxn,xn+1,xn+1
(ϕ (t1))

≥ Gxn−1,xn,xn (t1)

≥ Gxn−1,xn,xn (t0) .

Then, the sequence
{
Gxn,xn+1,xn+1 (t0)

}
is monotonically increasing in n and being

bounded above is convergent.
Let lim

n→∞
Gxn,xn+1,xn+1

(t0) = l. We shall show that l = 1. On contrary, suppose

l < 1. Then lim
n→∞

Gxn,xn+1,xn+1
(t1) = l (by the above inequality). Thus by squeeze

lemma,

lim
n→∞

Gxn,xn+1,xn+1
(t) = l < 1, ∀ t ∈ [t0, t1] .

Let t̄ = supA, where

(3.1) A =
{
t : lim

n→∞
Gxn,xn+1,xn+1

(t) = l
}
.

If t̄ is finite, then there exists a monotonically increasing sequence {tm} such
that for all m ∈ N, lim

n→∞
Gxn,xn+1,xn+1

(tm) = l and tm → t̄ as m → ∞. Since

Gxn,xn+1,xn+1 is left continuous,

Gxn,xn+1,xn+1 (t̄) = lim
m→∞

Gxn,xn+1,xn+1 (tm) .

Thus, by using Lemma 3.1 and lim
n→∞

Gxn,xn+1,xn+1
(tm) = l, we have

lim
n→∞

Gxn,xn+1,xn+1
(t̄) = lim

n→∞

(
lim
m→∞

Gxn,xn+1,xn+1
(tm)

)
= lim
m→∞

(
lim
n→∞

Gxn,xn+1,xn+1
(tm)

)
= l.

So, lim
n→∞

Gxn,xn+1,xn+1
(t̄) = l. Hence proceeding as above, there exists t̄1 such that

lim
n→∞

Gxn,xn+1,xn+1
(t̄1) = l and t̄1 > t̄, which is a contradiction with Equation (3.1).

Therefore, for all t > t0,

(3.2) lim
n→∞

Gxn,xn+1,xn+1 (t) = l.

Since Gx,y,y (t) → 1 as t → ∞, there exists s > t0 such that Gxk,xk+1,xk+1
(s) > l,

for given k.
Now, since

{
Gxn,xn+1,xn+1

(t0)
}

is monotonically increasing in n, and, as t0 > 0

is arbitrary, we have that
{
Gxn,xn+1,xn+1 (t)

}
is monotonically increasing in n for

all t > 0. Then, the sequence
{
Gxn,xn+1,xn+1

(s)
}

is monotonically increasing in n,
we have that Gxn,xn+1,xn+1

(s) > l. But this is a contradiction as l < 1. Thus,
397
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lim
n→∞

Gxn,xn+1,xn+1 (t) = 1, for all t > t0. Since t0 > 0 is arbitrary, we conclude that

lim
n→∞

Gxn,xn+1,xn+1 (t) = 1, for all t > 0. �

Lemma 3.3. Let (X,G, T ) be a Menger PGM-space with a t-norm T of H-type.
Let {xn} be a sequence in (X,G, T ). If there exists a function ϕ ∈ Φ such that

(3.3) Gxn,xn+1,xn+1
(ϕ (t)) ≥ Gxn−1,xn,xn

(t) ,

for all n ∈ N and t > 0 then {xn} is a Cauchy sequence in X.

Proof. Let β > 0 be arbitrary. Since ϕ ∈ Φ, for each t1 such that 0 < t1 < β there
exists r1 > t1 such that ϕ(r1) ≤ t1.

Now, if ϕ(r1) < t1, then we take t = t1 and r = r1.
If ϕ(r1) = t1, then choose t as min{r1, β} > t > t1 and r = r1. Thus in each case,

we have β > t > ϕ(r) and r > t.
Let n ≥ 1 be given. Then for each t choosen in this way, we prove by induction

that for any k ∈ N,

(3.4) Gxn,xn+k,xn+k
(t) ≥ T k−1

(
Gxn,xn+1,xn+1

(t− ϕ(r))
)

For k = 1, from Equation (3.4), we have

Gxn,xn+1,xn+1
(t) ≥ T 0

(
Gxn,xn+1,xn+1

(t− ϕ(r))
)

= Gxn,xn+1,xn+1
(t− ϕ(r)) .

Thus (4) holds for k = 1.
Assume that (4) holds for some k. Since T is monotone, from (PGM-4) and (3),

we have
Gxn,xn+k+1,xn+k+1

(t) = Gxn,xn+k+1,xn+k+1
(t− ϕ(r) + ϕ(r))

≥ T
(
Gxn,xn+1,xn+1

(t− ϕ(r)) , Gxn+1,xn+k+1,xn+k+1
(ϕ(r))

)
≥ T

(
Gxn,xn+1,xn+1

(t− ϕ(r)) , Gxn,xn+k,xn+k
(r)
)

≥ T
(
Gxn,xn+1,xn+1

(t− ϕ(r)) , Gxn,xn+k,xn+k
(t)
)

= T k
(
Gxn,xn+1,xn+1

(t− ϕ(r))
)
,

which completes the induction steps. Then (4) holds, for all k ∈ N and for any t < β.
To prove {xn} is Cauchy sequence, we need to prove that lim

m,n,l→∞
Gxn,xm,xl

(t) = 1,

for all t > 0. To this end, we first prove that lim
m,n→∞

Gxn,xm,xm
(t) = 1, for all t > 0.

Now, let 0 < ε < 1. Since {Tn(t)} is equicontinuous at t = 1 and Tn(1) = 1, there
exists δ > 0 such that

(3.5) Tn(s) > 1− ε, forall s ∈ (1− δ, 1] and n ≥ 1.

From Lemma 3.2, it follows that lim
n→∞

Gxn,xn+1,xn+1
(t− ϕ(r)) = 1. Thus, there exists

n0 ∈ N such that Gxn,xn+1,xn+1 (t− ϕ(r)) > 1 − δ, for all n ≥ n0. So, by (3.4) and
(3.5), we have Gxn,xn+k,xn+k

(t) > 1− ε, for all k ≥ 0. Hence,

(3.6) lim
n,m→∞

Gxn,xm,xm (t) = 1,

for any 0 < t < β.
398
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Now, by PGM-4 in Definition 2.5, we have, for all t < β,

Gxn,xm,xl
(t) ≥ T

(
Gxn,xm,xm

(
t

2

)
, Gxm,xm,xl

(
t

2

))
= T

(
Gxn,xm,xm

(
t

2

)
, Gxl,xm,xm

(
t

2

))
.

Taking limit m,n, l→∞ in this inequality and using the continuity of T, we get

(3.7) lim
m,n,l→∞

Gxn,xm,xl
(t) ≥ T

(
lim

m,n→∞
Gxn,xm,xm

(
t

2

)
, lim
m,l→∞

Gxl,xm,xm

(
t

2

))
.

From Equation (3.6), for all t < β, we have

lim
n,m→∞

Gxn,xm,xm

(
t

2

)
= 1,

lim
l,m→∞

Gxl,xm,xm

(
t

2

)
= 1.

Using these two limits in inequality (3.7), we get

lim
m,n,l→∞

Gxn,xm,xl
(t) ≥ T (1, 1) = 1,

That is, lim
m,n,l→∞

Gxn,xm,xl
(t) = 1, for all 0 < t < β. Since, β > 0 is arbitrary, we

have lim
m,n,l→∞

Gxn,xm,xl
(t) = 1, for all 0 < t.

Hence {xn} is Cauchy sequence. �

Lemma 3.4. Let (X,G, T ) be a Menger PGM-space and x, y ∈ X. If there exists a
function ϕ ∈ Φ such that

(3.8) Gx,y,y (ϕ (t)) ≥ Gx,y,y (t) ,

for all t > 0, then x = y.

Proof. In order to prove x = y, we only need to prove that Gx,y,y (t) = 1, for all
t > 0. On contrary, assume that ∃ t0 ∈ R+ such that Gx,y,y (t0) < 1. Since ϕ ∈ Φ,
∃ t1 > t0 such that ϕ (t1) ≤ t0. Then Equation (3.8) and the monotonicity of Gx,y,y
give

(3.9) Gx,y,y (t0) ≥ Gx,y,y (ϕ (t1)) ≥ Gx,y,y (t1) ≥ Gx,y,y (t0) .

If the inequality holds in Equation (3.9), then we have a contradiction. Thus we
assume that equality holds. Then the set A = {s : Gx,y,y (s) = Gx,y,y (t0) ; s > t0}
is non-empty, by the above inequality.

Let s̄ =supA be finite. Then there exists a monotonically increasing sequence
{sn} with sn ∈ A, for all n ∈ N, such that sn → s̄. Since Gx,y,y is left continuous,
it follows that

Gx,y,y (s̄) = lim
n→∞

Gx,y,y (sn) = Gx,y,y (t0) .

This implies that s̄ ∈ A. Again treating s̄ in the same way as t0, we obtain either
Gx,y,y (s̄) > Gx,y,y (s̄), which is a contradiction, or there exists s̄1 > s̄ such that
Gx,y,y (s̄1) = Gx,y,y (s̄) = Gx,y,y (t0) , which is a contradiction with s̄ = supA. Thus
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s̄ is not finite, i.e, lim
n→∞

Gx,y,y (sn) = Gx,y,y (s̄) = Gx,y,y (t0) < 1, which is again a

contradiction as s̄ is not finite. So, Gx,y,y (t) = 1, for all t > 0, i.e., x = y. �

Theorem 3.5. Let (X,G, T ) be a complete Menger space with a t-norm T of H-type.
If f : X → X is a probabilistic ϕ-contraction, i.e., Gfx,fy,fy (ϕ (t)) ≥ Gx,y,y (t) , ∀
x, y ∈ X and t > 0, where ϕ ∈ Φ, then f has a unique fixed point x ∈ X.

Proof. We define the sequence {xn} as follows: Let x0 ∈ X and xn = fxn−1, for all
n ∈ N. Then by the given contraction condition,

Gxn,xn+1,xn+1
(ϕ (t)) = Gfxn−1,fxn,fxn

(ϕ (t))

≥ Gxn−1,xn,xn (t) ,

for all n ∈ N and t > 0. Thus by Lemma 3.3, we conclude that {xn} is a Cauchy
sequence in(X,G, T ) and X is complete. So we have that xn → x ∈ X. Since ϕ ∈ Φ,
for each t > 0, there exists r > t such that ϕ (r) ≤ t. Now

Gfxn,fx,fx (t) ≥ Gfxn,fx,fx (ϕ (r))

≥ Gxn,x,x (r)

≥ Gxn,x,x (t) .

Taking limit n → ∞ in this inequality and keeping in mind that xn → x for each
t > 0, we get

(3.10) lim
n→∞

Gfxn,fx,fx (t) = 1.

Now, using (PM-3) and the continuity of T , we get

Gx∗,fx∗,fx∗ (t) ≥ T
(
Gx,xn+1,xn+1

(
t

2

)
, Gxn+1,fx,fx

(
t

2

))
= T

(
Gx,xn+1,xn+1

(
t

2

)
, Gfxn,fx,fx

(
t

2

))
.

Taking limit n→∞ in this inequality and using Equation (3.10) and the continuity
of T, we get

Gx,fx,fx (t) ≥ T (1, 1) = 1.

This implies that Gx,fx,fx (t) = 1, for all t > 0. Thus fx = x which proves that x is
a fixed point of f .

To show the uniqueness of fixed point of f, we suppose that y is another fixed
point of f then by contractivity condition, we have

Gx,y,y (ϕ (t)) = Gfx,fy,fy (ϕ (t)) ≥ Gx,y,y (t) ,

for all t > 0. So by Lemma 3.4, we get x = y. �

Corollary 3.6. Let (X,G, T ) be a complete Menger PGM-space with a t-norm T
of H-type. Let f0, f1 : X → X be two mappings such that Gf0x,f0y,f0y (ϕ (t)) ≥
Gx,y,y (t) and Gf1x,f1y,f1y (ϕ (t)) ≥ Gx,y,y (t) hold for all x, y ∈ X and t > 0, where
ϕ ∈ Φ. If f0f1 = f1f0 then there exists a unique common fixed point of f0 and f1.
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Proof. Let f = f0f1. Since ϕ ∈ Φ, for each t > 0, there exists r > t such that
ϕ (r) ≤ t.

Gfx,fy,fy (ϕ (t)) = G(f0f1)x,(f0f1)y,(f0f1)y (ϕ (t))

= Gf0(f1x),f0(f1y),f0(f1y) (ϕ (t))

≥ Gf1x,f1y,f1y (t)

≥ Gf1x,f1y,f1y (ϕ (r))

≥ Gx,y,y (r)

≥ Gx,y,y (t) .

This implies that f is a probabilistic ϕ-contraction. Then by the Theorem 3.5, we
conclude that f has a unique fixed point x∗ in X. Since f0f1 = f1f0, we have

f (f0z) = f0f1 (f0z) = f0 (f1f0z) = f0z

and

f (f1z) = f1f0 (f1z) = f1 (f0f1z) = f1z.

This gives that f0z and f1z are also fixed points of f. By the uniqueness of fixed
point of f , we have f0z = f1z = z, i.e., z is a common fixed point of f0 and f1. It
is clear that z is a unique common fixed point of f0 and f1. �

Theorem 3.7. Let (X,G, T ) be a complete Menger PGM-space with a t-norm T of
H-type. Let f : X → X be a mapping satisfying

(3.11) Gfx,fy,fz (ϕ (t)) ≥ 1

3
(Gx,fx,fx(t) +Gy,fy,fy(t) +Gz,fz,fz(t)) ,

for all x, y, z ∈ X, where ϕ ∈ Φ. Then, for any x0 ∈ X the sequence {fn (x0)}
converges to a unique fixed point of f.

Proof. Take an arbitrary point x0 ∈ X. Construct a sequence {xn} by xn+1 =
fn (x0) for all n ≥ 0. Since ϕ ∈ Φ, for each t > 0 there exists r > t such that
ϕ (r) ≤ t. Then

Gxn,xn+1,xn+1 (t) ≥ Gxn,xn+1,xn+1 (ϕ (r))

= Gfxn−1,fxn,fxn
(ϕ (r))

≥ 1

3

(
Gxn−1,fxn−1,fxn−1

(t) + 2Gxn,fxn,fxn
(r)
)

≥ 1

3

(
Gxn−1,fxn−1,fxn−1(t) + 2Gxn,fxn,fxn (t)

)
=

1

3

(
Gxn−1,xn,xn(t) + 2Gxn,xn+1,xn+1 (t)

)
,

That is, for all t > 0,

(3.12) Gxn,xn+1,xn+1 (t) ≥ Gxn−1,xn,xn (t) .
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Now, we prove that f is a ϕ-contraction. For this, we have

Gxn,xn+1,xn+1
(ϕ (t)) = Gfxn−1,fxn,fxn

(ϕ (t))

≥ 1

3

(
Gxn−1,fxn−1,fxn−1

(t) + 2Gxn,fxn,fxn
(t)
)

=
1

3

(
Gxn−1,xn,xn

(t) + 2Gxn,fxn,fxn
(t)
)

≥ 1

3

(
Gxn−1,xn,xn

(t) + 2Gfxn−1,fxn,fxn
(ϕ (r))

)
≥ 1

3

(
Gxn−1,xn,xn

(t) +
2

3

(
Gxn−1,fxn−1,fxn−1

(r) + 2Gxn,fxn,fxn
(r)
))

=
1

3

(
Gxn−1,xn,xn(t) +

2

3
Gxn−1,xn,xn(r) +

4

3
Gxn,xn+1,xn+1(r)

)
≥ 1

3

(
Gxn−1,xn,xn

(t) +
2

3
Gxn−1,xn,xn

(t) +
4

3
Gxn,xn+1,xn+1

(t)

)
=

1

3

(
5

3
Gxn−1,xn,xn

(t) +
4

3
Gxn,xn+1,xn+1

(t)

)
≥ 1

3

(
5

3
Gxn−1,xn,xn(t) +

4

3
Gxn−1,xn,xn(t)

)
= Gxn−1,xn,xn

(t).

Here, first and third inequalities are due to Equation (3.11), second and fourth are
due to the monotonic increasing property of distribution function while the last one
is due to Equation (3.12). Thus, f is ϕ-contraction, and Lemma 3.3 shows that
{xn} is Cauchy sequence. Since X is complete Menger PGM-space, there exists a
point x ∈ X such that xn → x as n → ∞. Now, since ϕ (r) ≤ t and Gfxn,fx,fx is
monotonically increasing, from Equation (3.11), we have

Gfxn,fx,fx(t) ≥ Gfxn,fx,fx(ϕ (r)) ≥ 1

3
(Gxn,fxn,fxn(r) + 2Gx,fx,fx(r)) .

Letting limit n→∞ in this inequality, we get

Gx,fx,fx(t) ≥ 1

3
(Gx,x,x(r) + 2Gx,fx,fx(r)) ≥ 1

3
(Gx,x,x(t) + 2Gx,fx,fx(t)) ,

which gives Gx,fx,fx(t) ≥ Gx,x,x(t) = 1, for all t > 0. So, we have proved that
fx = x.

To show the uniqueness of the fixed point of f, we suppose that y is another fixed
point of f. Then, for all t > 0

Gx,y,y (t) ≥ Gx,y,y (ϕ (r))

= Gfx,fy,fy (ϕ (r))

≥ 1

3
(Gx,fx,fx (r) + 2Gy,fy,fy (r))

≥ 1

3
(Gx,fx,fx (t) + 2Gy,fy,fy (t))

= 1.
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Here, first and third inequality is due to the monotonic increasing property of dis-
tribution function and the second one is due to the Equation(3.11). This shows that
x = y. Thus, f has a unique fixed point. �

Example 3.8. Let X = [0,∞) and T (a, b) = min(a, b), for all a, b ∈ X. Define a
function G : X3 × [0,∞)→ [0,∞) by:

Gx,y,z (t) =
t

t+ (|x− y|+ |y − z|+ |z − x|)
.

Then (X,G, T ) is a complete Menger PGM-space. Define f : X → X by f (x) = x
4 ,

for each x ∈ X and ϕ : [0,∞)→ [0,∞) by:

ϕ (t) =


0 if t = 0
1
4n if 1

4n ≤ t <
1

4n−1

kt if t ≥ 1,where 1
4 ≤ k < 1.

.

Obviously, ϕ ∈ Φ.
Now, we want to show that f is ϕ-contraction.
Case 1: Suppose 1

4n ≤ t <
1

4n−1 . Since 1
4n−1 > t, we have 1

4n > t
4 , i.e., ϕ(t) ≥ t

4 .

Case 2: Suppose t ≥ 1. Since k ≥ 1
4 , we have kt ≥ t

4 , i.e., ϕ(t) ≥ t
4 . Then, we

have ϕ(t) ≥ t
4 , for each t > 0. Since the function t

t+1 is strictly increasing on [0,∞) ,
we have

Gfx,fy,fz (ϕ (t)) =
ϕ (t)

ϕ (t) + (|fx− fy|+ |fy − fz|+ |fz − fx|)

=
ϕ (t)

ϕ (t) + 1
4 (|x− y|+ |y − z|+ |z − x|)

≥
t
4

t
4 + 1

4 (|x− y|+ |y − z|+ |z − x|)

=
t

t+ (|x− y|+ |y − z|+ |z − x|)
= Gx,y,z (t) .

Thus, from the Theorem 3.5 f has unique fixed point. In fact, the fixed point is
x = 0.
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