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ABSTRACT. In this paper, we establish some fixed point theorems for
-contraction in Menger probabilistic generalized metric spaces by intro-
ducing a new type of gauge function. With this introduced guage function,
we discuss several important lemmas to prove our main results. An exam-
ple is given in the support of obtained results.
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1. INTRODUCTION

In 1942, the concept of probabilistic metric space was initiated by Menger [13].
Probabilistic metric space (briefly, PM-space) is a generalization of metric space in
which distance between two points x and y, d(x,y) is assigned by a distribution
function F; . Since then, many researchers extensively developed and expanded the
study of PM-spaces in their pioneering works e.g., [2, 10, 18, 19, 20, 21, 22, 23, 25].

To prove existence and uniqueness of fixed point theorems in PM-spaces, contrac-
tion is one of the basic tools. Sehgal and Bharucha-Reid [20] introduced probabilistic
k-contraction and proved probabilistic version of classical Banach fixed point princi-
ple. After that Ciric [5] generalizes the k-contraction and introduced the concept of
p-contraction in PM-space. In spite of the fact that probabilistic ¢-contractions are
a natural generalization of probabilistic k-contractions, the techniques used to prove
the existence and uniqueness of fixed point results for probabilistic k-contractions
are no longer usable for probabilistic @-contractions. In 2010, Ciric [5] presented
a fixed point theorem for probabilistic p-contractions. Soon after the publication
of Ciric’s paper, Jachymski [11] found a counterexample to the key lemma in [5],
and established a modified version of Ciric’s p-function. Recently, Fang [9] further
weakened the conditions on ¢-function.
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In 2006, Mustafa and Sims[l16] introduced the notion of a generalized metric
space. After that many authors obtained several fixed point theorems for mappings
satisfying different contractive conditions in generalized metric spaces (see, [7, 14,

, 17]). In 2014, Zhou et al.[26] introduced the concept of a generalized probabilistic
metric space (briefly, a PGM-space). After that Zhu et al.[27] obtained some fixed
point theorems in PGM-spaces. For some very recent results in PGM-spaces, we
refer [1, 3, 4, 6, 8, 12, 24].

The purpose of this work is to introduce a new class of p-function and to establish
several important results with the help of this function. We prove the existence and
uniqueness of a fixed point for @-contraction in Menger PGM-space. Finally an
example is given to illustrate our main results.

2. PRELIMINARIES

Throughout this paper, let R = (—o0, +00), R = [0,+00) and N be the set of
all natural numbers.

Definition 2.1 ([13]). A mapping F': R — [0, 1] is called a distribution function if
it is non-decreasing and left-continuous with gnﬂg F (t) =0 and supF (t) =
€ teR

Definition 2.2 ([18]). A continuous t-norm 7 is a binary operation on [0, 1] which
satisfies the following conditions:

(T-1) T is associative and commutative,

(T-2) T is continuous,

(T-3) T'(a,1) = a, for all a € [0,1],

(T-4) T (a,b) < T (¢,d), whenever a < ¢ and b < d, for each a,b,c,d € [0, 1].

Definition 2.3 ([13]). A Menger PM-space is a triplet (X, F, T), where X is a non-
empty set, T is a t-norm and F: X x X — DT be a mapping satisfying the following
conditions (for z,y € X, we denote F (z,y) by Fy ,):

(PM-1) F,, (t) = H (t), for all z,y € X and t > 0 if and only = =y,

(PM-2) Fpy(t) = Fy o (t), forall z,y € X and t > 0,

(PM-3) Fy(s+1t) > T (Fy.(s), F.y(t)), for all z,y,z € X and s,t > 0.
Definition 2.4 ([26]). The triplet (X,G,T) is called Menger probabilistic gener-
alized metric space (briefly, a Menger PGM-space) if X is a non-empty set, T is a
continuous t-norm and G : X x X x X — DT be a mapping satisfying the following
conditions:

(PGM-1) Gy y.(t) =1, forall z,y,z € X and ¢t > 0 if and only if z = y = 2,
(PGM-2) Gy o y(t) > zyz() for all z,y € X with z # y and ¢ > 0,
(PGM-3) Guy,2(t) = Gp(a,y,2)(t), where p is a permutation function,

»

(
(PGM-4) Gy -(t+5) > T(Gra,a(5),Gay,:(t)), forallz,y, z,a € X and s,t > 0.
}

4
Example 2.5 ([26]). Let (X, F,T) be a PM-space. Define a function G : X x X x
X — D" by Gy »(t) = min{F, ,(t), F, .(t), Fy .(t)}, for all z,y,z € X and ¢ > 0.
Then (X,G,T) is a PGM-space.
Example 2.6. Let (X, d) be a metric space. If we define
G 0= (

; >d<m,y>+d<y,z)+d<z,z>

1+¢
394
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and we choose t-norm as product t-norm defined by
T, (a,b) = a.b,Va,b € [0,1].
Then (X, G, T),) is a Menger PGM-space. In fact, G, , . (0) = 0. Also, supGy ., (t) =
>0
1, and Gy (t) is non-decreasing and continuous in ¢. Therefore, G, , . (t) is a dis-
tribution function. By the definition of G, . (t), it is obvious that (PGM-1) and
(PGM-3) in Definition 2.5 hold.

Next we will show that (PGM-2) and (PGM-4) also hold. Since d(z,y) <
d(z,z) +d(z,y), Vz,y,z € X, with y # z, we have that

d(z,y)+d(z,y) <d(x,y)+d(z,2z)+d(z,9).

Then
(z,y)+d(z,y) t d(z,y)+d(y,2)+d(z,z)
> — .
() ()
Thus, Gg 2.y (t) > Gay,- (1), for all z,y,2 € X with y # 2z, and t > 0. By the
definition of Gy 4 . (), we get

it s )d@yﬂd@@+ﬂz@

Gune 9= (775

Since is strictly increasing on [0, 1), we have

t
) m
( t+s >d(w,y)+d(y72)+d(z,$) ( t+s )d(w,a)+d(a7y)+d(yaz7)+d(z7a)+d(a,$)

1+t+s 1+t+s
B tis d(z,a)+d(a,z) t+s d(a,y)+d(y,2)+d(z,a)
S \1+t+s 14+t+s

¢ d(z,a)+d(z,a) s d(a,y)+d(y,z)+d(z,a)
> (2
> () (i)

" d(z,a)+d(z,a) s d(a,y)+d(y,z)+d(z,a)
= T A — .
P (1+t> ’(1+s>

This implies that Gu . (t+s) > Tp(Graa(t),Gay.=(s)). So, (X,G,Tp) is a
Menger PGM-space.

Definition 2.7 ([20]). Let (X,G,T) be a Menger PGM-space.

(i) A sequence (x,) in (X, G, T) is said to be convergent to a point x € X, written
as x, — z, if given € > 0, A > 0 we can find N, » € N such that for all n > N,
Gy 5,2, (€) > 1 — X holds.

(ii) A sequence (z,) in (X,G,T) is called a Cauchy sequence, if for any given
e > 0and A € (0,1] there exists N, » € N such that G, 5,, 2, (¢6) > 1 — A, whenever
m,n,l > N y.

(iii) A Menger PGM-space (X,G,T) is said to be complete, if every Cauchy
sequence (z,) in X is convergent to some point = € X.

Definition 2.8 ([1]). Let (X,G,T) be a Menger PGM-space with a continuous ¢-
norm 7. A mapping f : X — X is said to be a probabilistic ¢-contraction, if there
395
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exists a function ¢ € ® such that Gy fy 52 (@ (£)) > Gay,z (t), for all z,y,2 € X
and t > 0.

Definition 2.9 ([10]). A ¢-norm T is said to be of H-type, if the family {77} en of
its iterates defined for each t € (0,1) by TO(t) =1, T™(t) = T(t,T™ 1(t)) for all
m € N is equi continuous at ¢t = 1.

Definition 2.10. We define the class of a function ® as follows: @ contains all
functions ¢ : RT — RT such that for each ¢ > 0 there exists r > ¢ such that
¢ (r) < t. An example of this type of function is ¢ : [0,00) — [0, 00) defined as:

0 if t=0
p(t) =1 & if & <t< =

kt if t>1,where 0 <k < 1.

3. MAJOR SECTION

Lemma 3.1. Suppose that the sequence {Grn,rn+1,mn+1 (tm)} is non-decreasing in
both the variables m and n, i.e., Gg, w1 wner (tm) > Gep 1 22, (tm) and
Gwn,1n+1,l’n+1 (thrl) 2 Gwn,1n+1,l’n+1 (tm)7 for each m,n € N. Then

lim ( lim Gmn,xn+1,wn+1 (tm)) = lim (lim Gwn,wn+1,zn+1 (tm)) .

n—oo \m—oo m—0o0 \n—oo

Proof. Denote a, = lim Gy, o, y1,0011 (tm) and b, = i G (tm) -

Then the existence and finiteness of both the limits can be obtained by monotonicity
and boundedness of distribution functions, respectively.
Since Gz, 01,2041 (tm) = Ga, 12, (Em) , We have

b = 7}1_>H;onn,zn+1’wn+1 (tm) > nh_{r;OG:vnfl,wn,wn (tm) = bm—1,

i.e., the sequence {b,,} is non-decreasing.
Similarly, we can show that the sequence {a, } is non-decreasing.

Put ¢ = lim a, and b = lim b,,. Now,
n— o0 m— 00

GIn,zn,+17In,+1(tm) S bm

= m}gnoonman,an (tm) < w}gnoobm

=a, <b

= lima, < limb
n—oo n— o0

= a <b.

Similarly, Gwn,wnﬂ,znﬂ(tm) <ap

= n11_>H;OGIn7‘Tn+17$n+1 (tm) S nll)H;oa‘n
= b, <a
= lim b, < lim a
m—00 n— 00
= b<a.

Then, a = b, i.e,

tim (6 G sitns (b)) = Ui (1im Gy ()

n—oo m—r oo m—» 00 n—oo

396
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Lemma 3.2. Let (X,G,T) be a Menger PGM-space with a t-norm T'. Let {x,} be a
sequence in (X, G,T). If there exists a function ¢ € ® such that Gy, 2,1 204, (0 () =
Gy vwpan (1), for alln € N and t > 0, then lgm Gapnirsans, (1) = 1.

n—oo

Proof. Let ty > 0 be arbitrary. Since ¢ € ®, there exists t; > to such that ¢ (1) <
to. Now, since G, 21,2040 (0 (1) = Gap_y 22, (), by the monotonic increasing
property of distribution function, we have
G$n7$n+1a$n+1 (tl) > G$n7ln+1,$n+1 (to)
Z Gznvmnﬁ—hmn-{-l (80 (tl))
> Gmn_1,zn,zn (tl)
> Gwnq,wn,wn (tO)-

Then, the sequence {Gy, 4. .2, (fo)} is monotonically increasing in n and being
bounded above is convergent.

Let lim Gy, 21,204, (to) = 1. We shall show that [ = 1. On contrary, suppose
n—oo
I < 1. Then lim Gu, 2,1 2.., (t1) = I (by the above inequality). Thus by squeeze
n— oo

lemma,
Ji’r’g’oGﬂfmwnJrh%n+1 (t) =l< 17 Vte [t07 tl] .
Let t = sup A, where
(3.1) A={t: lim Gapr v () =1}

If ¢ is finite, then there exists a monotonically increasing sequence {¢,,} such
that for all m € N, lim Gy, 2,1 .0pey (tm) = 1 and t,, — t as m — oo. Since
n—oo

G

Tn\zni1,znss 1S left continuous,

Gwn7wn+1;$n+l (ﬂ = 7£%Gwn7wn+lywn+l (tm) N

Thus, by using Lemma 3.1 and lim G, .1 ,2ns: (tm) = 1, we have
n—oo

lim Gw7L7I7L+1;91n+1 (B = lim ( lim Gﬂin,ﬂin+17wn+1 (tm))

n—oo n—oo \m—oo

= lim (lim G oo en s (tm)> =1

m—r oo n—0o0

So, lim Gy, 2, 1,20.: (t) = I. Hence proceeding as above, there exists ¢; such that
n— oo

lim Gy, 221,204, (t1) = L and ¢, > ¢, which is a contradiction with Equation (3.1).
n—oo

Therefore, for all ¢ > ¢y,
(3.2) lim Ga, wniransy (B) =1

n—roo

Since Gy y,y (t) — 1 as t — oo, there exists s > to such that Gu, 4.1 2p0, (8) > 1,
for given k.

Now, since {Gzn,zn+1,mn+1 (to)} is monotonically increasing in n, and, as tg > 0
is arbitrary, we have that {Gmmxn LTt (t)} is monotonically increasing in n for
all £ > 0. Then, the sequence {G’IM”H’%+1 (s)} is monotonically increasing in n,
we have that G (s) > I. But this is a contradiction as | < 1. Thus,

397
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lim G, wnir,aneq (1) = 1, for all t > . Since to > 0 is arbitrary, we conclude that
n—oo

nlzﬁm Gepwnirsang, (1) =1, for all t > 0. O

Lemma 3.3. Let (X,G,T) be a Menger PGM-space with a t-norm T of H-type.
Let {z,,} be a sequence in (X,G,T). If there exists a function ¢ € ® such that

(3.3) Gxnyzn+17$n+1 (p(t) > Gy anan (1)

for alln € N and t > 0 then {x,} is a Cauchy sequence in X.

Proof. Let 8 > 0 be arbitrary. Since ¢ € ®, for each t; such that 0 < t; < 8 there
exists r1 > t1 such that p(r1) < .

Now, if ¢(r1) < t1, then we take t = ¢; and r = rq.

If o(r1) = t1, then choose t as min{ry, 8} > ¢ > t; and r = r;. Thus in each case,
we have 8 >t > ¢(r) and r > t.

Let n > 1 be given. Then for each ¢t choosen in this way, we prove by induction
that for any k € N,

(3.4) Gﬂjn)xn+k7wn+k (t) > T+ ! (Gzn,wn+1,wn+1 (t - 90(7")))

For k = 1, from Equation (3.4), we have

Gmnymn+lgxn+l (t) > TO (Gmml’n+1,zn+1 (t - 30(70))) = Gzn:mn+lyxn+l (t - QD(T)) .

Thus (4) holds for k = 1.
Assume that (4) holds for some k. Since T is monotone, from (PGM-4) and (3),
we have

Gxnvxn+k+lvzn+k+1 (t) = Grﬂ,7r7l+k+l7rn+k+l (t 90(7') 90( ))
>T (Gxn,m,L+1,wn+1 (t ‘P(T» y U 1, Tk 1, Tt 1 ((p(r)))
>T (Gajnxajni»l’wnﬁ»l (t (p(r)) ) Gwmwn+k,mn+k (T))
>T (Ga:n;a:n«}»l7wn+l ( (7“)) ) Gw1L7wn+k,xn+k (t))

= Tk (Gwrl,7wrz+1;ajn+1 (t - SO(T)))
which completes the induction steps. Then (4) holds, for all ¥ € N and for any ¢ < 3.

To prove {x,, } is Cauchy sequence, we need to prove that hgn Gy, owpym, (t) =1,
m,n,l—o0

for all t > 0. To this end, we first prove that lim G, 5, .2, (t) =1, for all £ > 0.
m,n— oo

Now, let 0 < & < 1. Since {T™(t)} is equicontinuous at ¢ = 1 and T7"(1) = 1, there
exists > 0 such that

(3.5) T"(s) > 1 —¢,forall s € (1 =6, 1] and n > 1.

From Lemma 3.2, it follows that lim G, t — (r)) = 1. Thus, there exists
n—oo

no € N such that Gy, 2,1 ,2,,, (t—@(r)) > 1 =46, for all n > ng. So, by (3.4) and

(3.5), we have Gy, 2, p.enin () > 1 —¢, for all k > 0. Hence,

13Tn+4+1,Tn+1 (

(36) lim Gzn,rm,zm (t) =1,

n,m—00

for any 0 < t < 5.
398
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Now, by PGM-4 in Definition 2.5, we have, for all ¢t < 3,

t 4
Gxnaxnmxl (t) Z T (Gxnyxmyan (2> 7G-73m7xm737l <2>>
t t
=T Gw Ty , T a aGw Ty, T a .
( nsLm ,Tm (2) 1yTm ,Lm (2))

Taking limit m,n,l — oo in this inequality and using the continuity of T, we get

t t
(3.7)  lm Gg, zpn () > T( lim Gg, 2 2m (2> , lim Gy oz (2>) .

m,n,l—oo m,n—00 m,l—o0

From Equation (3.6), for all ¢ < 8, we have

. t
n,’rlrlLIEOOGI”7I7n’$m' (2 =4

t
i — | =1.
lﬂnlgooGa:z,wm,a:m (2>

Using these two limits in inequality (3.7), we get
im  Gu, a0 (1) 2T (1,1) =1,

m,n,l—oo

That is, lim Gy, 4, (t) =1, for all 0 < ¢ < 8. Since, 8 > 0 is arbitrary, we

m,n,l—oo

have lim Gy, 4,5 (t) =1, for all 0 < t.

m,n,l—oo
Hence {z,} is Cauchy sequence. O

Lemma 3.4. Let (X,G,T) be a Menger PGM-space and x,y € X. If there exists a
function ¢ € ® such that

(3.8) Gayy (@ (t) 2 Gayy (1),
for allt >0, then x = y.

Proof. In order to prove x = y, we only need to prove that G, , (t) = 1, for all
t > 0. On contrary, assume that 3ty € R such that G, , (to) < 1. Since ¢ € P,
31 > to such that ¢ (¢1) < tg. Then Equation (3.8) and the monotonicity of G,
give

(3.9) Gayy (t0) 2 Gayy (0 (t1)) = Gayy (t1) = Gy oy (o) -

If the inequality holds in Equation (3.9), then we have a contradiction. Thus we
assume that equality holds. Then the set A = {s: Gy 4y (5) = Gayy (t0); s > o}
is non-empty, by the above inequality.

Let 5§ =supA be finite. Then there exists a monotonically increasing sequence
{sn} with s,, € A, for all n € N, such that s,, — 5. Since Gy, is left continuous,
it follows that

Gayy (5) = nlﬁgoGz,y,y (sn) = Gay,y (to) -
This implies that 5 € A. Again treating § in the same way as ty, we obtain either
Ga,yy (5) > Gy (5), which is a contradiction, or there exists §; > § such that

Gy yy (51) = Gy yy (8) = Gy oy y (to) , which is a contradiction with § = sup A. Thus
399
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5 is not finite, i.e, lim Guyy (sn) = Gayy (5) = Gayy (to) < 1, which is again a
n—oo

contradiction as § is not finite. So, Gy, (t) =1, for allt > 0, ie., z =y. O

Theorem 3.5. Let (X,G,T) be a complete Menger space with a t-norm T of H-type.
If f + X — X is a probabilistic o-contraction, i.e., Gy ry 1y (0 (£)) > Ggyy (1), V
z,y € X andt >0, where ¢ € ®, then f has a unique fixed point x € X.

Proof. We define the sequence {z,} as follows: Let g € X and z,, = fx,_1, for all
n € N. Then by the given contraction condition,

Gapznironis (0 (1) = Gran s fon,fa. (9 (1))
Z G‘Tnfl,l'n,l'n (t) )
for all n € N and ¢t > 0. Thus by Lemma 3.3, we conclude that {z,} is a Cauchy

sequence in(X, G, T) and X is complete. So we have that z,, — = € X. Since p € P,
for each ¢ > 0, there exists r > ¢ such that ¢ (1) <¢. Now

Gfon, fo.fo (t) > (C (¢ (1))
> szz,a: (T)
Z Gwn Z Ly T (t) .

Taking limit n — oo in this inequality and keeping in mind that z,, — z for each
t >0, we get

(3.10) lim sz",f:r,fa: (t) =1.

n—oo

Now, using (PM-3) and the continuity of T, we get

t t
ch*,fx*,fx* (t) >T <G~’Ca$n+179¢n+1 <2) 7G$n+17f337f3¢ <2>>

t t
=T <G$,$n+17$n+1 (2) ’Gf$7z7fI7f$ <2>> .

Taking limit n — oo in this inequality and using Equation (3.10) and the continuity
of T, we get

Ge fofe () >T(1,1) = 1.
This implies that G sz, 7. (t) = 1, for all £ > 0. Thus fx = = which proves that x is
a fixed point of f.

To show the uniqueness of fixed point of f, we suppose that y is another fixed
point of f then by contractivity condition, we have

Gmsyvy (SO (t)) = Gfm7fy’fy (80 (t)) Z szyay (t) )
for all ¢ > 0. So by Lemma 3.4, we get = = y. g

Corollary 3.6. Let (X,G,T) be a complete Menger PGM-space with a t-norm T

of H-type. Let fo,fi : X — X be two mappings such that G,a, foy. foy (@ (t)) >

Gayy (t) and G,z f1y 11y (9 (1) = Ggyy (t) hold for all z,y € X and t > 0, where

p € @. If fofr = f1fo then there exists a unique common fized point of fo and f1.
400
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Proof. Let f = fofi. Since ¢ € ®, for each ¢ > 0, there exists r > ¢ such that
o(r) <t.
G raty.ty (¢ (1)) = Gso fi)e,(fo sy (Fofryy (# (1)
= G fo(hra)folFrv).fo(Fay) (# (F))
> Gfio,fry.fry (1)

> Gflﬂﬂ,fly,fly (‘p (T))
> Gy (1)

Z Gﬂ%yvy (t) .

This implies that f is a probabilistic ¢-contraction. Then by the Theorem 3.5, we
conclude that f has a unique fixed point z, in X. Since fyf1 = f1fo, we have

f(fOZ) = fof1 (foZ) = fo (flfOZ) = foz
and
f(fiz) = fifo (fr2) = fi (fofiz) = fiz.

This gives that foz and f1z are also fixed points of f. By the uniqueness of fixed
point of f , we have fyz = f12 = z, i.e., z is a common fixed point of fy and f;. It
is clear that z is a unique common fixed point of fy and f;. O

Theorem 3.7. Let (X,G,T) be a complete Menger PGM-space with a t-norm T of
H-type. Let f: X — X be a mapping satisfying

1
(3.11) Giapy, 1= (9 (1) > 3 (Ga fa,po(t) + Gy py,py (1) + G2 12 52(1))

for all x,y,z € X, where ¢ € ®. Then, for any xo € X the sequence {f™ (z¢)}
converges to a unique fixed point of f.

Proof. Take an arbitrary point xyp € X. Construct a sequence {x,} by z,41 =
f™ (zg) for all n > 0. Since ¢ € P, for each ¢ > 0 there exists r > ¢ such that
¢ (r) <t. Then

G$n7$n+17ﬂfn+1 (t) 2 Gﬁcnﬂcn+1,$n+1 (QO (T))
= Gy fon fa, (0 (7))

1

2 g (Gwnflafxnflvfznfl(t) + 2G$n;f$n7f$n (r))
1

2 g (G-'L'n—lafl'nflvfl'n—l(t) + QG"L'n;f-'L'nvfl'n (t))
1

= g (Gxnflaxnaxn (t) =+ 2G9€n73€n+17$n+1 (t)) )

That is, for all ¢ > 0,

(3'12) Gw'rLyw'rL+17$n+1 (t) Z Gwn717wn7wn (t) .
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Now, we prove that f is a ¢-contraction. For this, we have

Gﬂﬂn,wn+17$n+1 (90 (t)) = wan—lewmfﬂin (90 (t))

> % (G v fon s frn s () +2Ga, fo, fa, (1))

= 2 (Gt (6 26, g 12, (1)

> 2 (G a0+ 2G g0, grgo (5(1))

> % <Gzn_1,rn,xn (t) + % (G s ofon v frn (1) +2G0, fo, fan (7’)))
=5 (Goumnna 0 36 a0 G ()

> % <G11$I () + %Gz,lzz (t) + gGmﬂ,x,m,wm(t))

3 (3604 5 a0

> 3 (36004 G 0)

= Gxn—hxnvxn (t)

Here, first and third inequalities are due to Equation (3.11), second and fourth are
due to the monotonic increasing property of distribution function while the last one
is due to Equation (3.12). Thus, f is @-contraction, and Lemma 3.3 shows that
{z} is Cauchy sequence. Since X is complete Menger PGM-space, there exists a
point € X such that z,, = = as n — oco. Now, since ¢ (r) < t and Gyq,, fo fo is
monotonically increasing, from Equation (3.11), we have

1
wan,fm’fm(t) > wan,fx,fz(‘zp (r) > 3 (Gwn,fmn,fwn (r) + 2G$’f$,fz(7")) .

Letting limit n — oo in this inequality, we get

1 1
Gl’»fl’,fm(t) > (Gm,z,z(r) + QGI,fz,fl’(r)) > 3 (Gx,z,x(t) + 2Gw,fz,fz(t)) s

3
which gives Gy ry ro(t) > Ggao(t) = 1, for all ¢ > 0. So, we have proved that
fr==x.
To show the uniqueness of the fixed point of f, we suppose that y is another fixed
point of f. Then, for all £ > 0

Gayy () > Garyy(p(r))

=G,y 1y (0 (1))
1
1

Y

3 (G pafu (1) +2Gy py 1y (1))
3 (Gofate (t) +2Gy,py, 1y (1))

vV
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Here, first and third inequality is due to the monotonic increasing property of dis-
tribution function and the second one is due to the Equation(3.11). This shows that
x =y. Thus, f has a unique fixed point. O

Example 3.8. Let X = [0,00) and T'(a,b) = min(a,b), for all a,b € X. Define a
function G : X3 x [0,00) — [0, 00) by:

4
t+(z—yl+ly—z[+]z—z])

Then (X,G,T) is a complete Menger PGM-space. Define f: X — X by f(z) =
for each z € X and ¢ : [0,00) — [0, 00) by:

Guy,z () =

T
a1

0 iftZO
p(t) = 4% if & <t<4n1

kt 1ft21,where i§k<1.

Obviously, ¢ € ®.

Now, we want to show that f is p-contraction.

Case 1: Suppose <t< 4" . Since 4"1 T > t, we have F > 4, ie. > o(t) > 3.

Case 2: Suppose t > 1. Since k > = , we have k:t > t, ie., o(t) > ;. Then, we
have ¢(t) > £, for each ¢ > 0. Since the functlon 717 1s strictly increasing on [0,00),
we have

t

_ e (1)
Grmant= O = G0 Ful + 1fu— 21+ 1= — fal)
_ p (1)
PO+ 1w =9l + Iy~ =1+ [~ 2)
> d
N PR R Py
t
G EUREEIEEr)
=Ggy-(1).

Thus, from the Theorem 3.5 f has unique fixed point. In fact, the fixed point is
z=0.
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