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ABSTRACT. In this paper, we first define the notion of a complex fuzzy
subset and the notion of a general complex fuzzy automaton and construct
some H, - groups on the set of states of a general complex fuzzy automaton.
We then construct some commutative hypergroups on the set of states of
a complex fuzzy automaton.
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1. INTRODUCTION AND PRELIMINARIES

Zaden [20] introduced the theory of fuzzy sets and, soon after, Wee [18] intro-
duced the concept of fuzzy automata. Automata have a long history both in theory
and application [1, 2] and are the prime examples of general computational systems
over discrete spaces [3]. In the conventional spectrum of automata (i.e. deter-
ministic finite-state automata, non-deterministic finite-state automata, probabilistic
automata and fuzzy finite-state automata), deterministic finite-state automata have

found the most application in different areas [3, 11, 12, 16]. Fuzzy automata not
only provide a systematic approach for handling uncertainty in such systems, but
are can also be used in continuous spaces [9, 13, 14, 15, 17]. Moreover, they are able

to create capabilities which are not easily achievable by other mathematical tools
[19].

In 2004, M. Doostfatemeh and S. C. Kremer extended the notion of fuzzy au-
tomata and introduced the notion of general fuzzy automata [7].

In this paper, by using [5, 6, 7], we introduce several new concepts and derive
related results.
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Definition 1.1. Let C* = {c+di : ¢,d € [0,1],i = /—1}. A complex fuzzy subset
pof X is a function of X into C*. If u be a complex fuzzy subset of X, then |u| is
a fuzzy subset of X. If pu(x) = ¢+ di, then p(xz) = rexp(if), which 0 is argument
of u(z) and r = |u(z)| = V2 + d2. For a nonempty set X, P(X) denotes the set of
all complex fuzzy subsets on X.

Definition 1.2 ([10]). Let ¥ be a set. A word of X is the product of a finite sequence
of elements in X, A denotes the empty word and ¥* is the set of all words on X. In
fact, ¥* is the free monoid on X. The length ¢(x) of word x € " is the number of
its letters, so £(A) = 0.

Definition 1.3. A complex fuzzy finite-state automaton (CFFA) is a six-tuple de-
noted as F = (Q,X,R,Z,6, w), where @Q is a finite set of states, ¥ is a finite set
of input symbols, R is the start state of F, Z is a finite set of output symbols,
§:Q XX xQ — C* is the complex fuzzy transition function which is used to map
a state (current state) into another state (next state) upon an input symbol and
w : Q — Z is the output function. The transition from state ¢; (current state) to
state ¢; (next state) upon input aj is denoted by 6(g;, ax, g;).

Associated with each [6(g;, ax, g;)|, there is a membership value in [0, 1] called the
weight of the transition. The set of all transitions of F is denoted as A.

Definition 1.4. A general complex fuzzy automaton (GCFA) F is an eight-tuple
machine denoted as (i) @ is a finite set of states, Q = {q1,42,---,qn},

(ii) ¥ is a finite set of input symbols, ¥ = {a1,as,...,an},

i) R is the set of fuzzy start states,

iv) Z is a finite set of output symbols, Z = {by, b, ..., b},

V) w: @ — Z is the output function,

vi) 6 : (@ x [0,1]) x ¥ x @ — C* is the augmented transition function,
vii) Fy : [0, 1] x [0, 1] — [0, 1] is the membership assignment function,

viii) Fy : [0 1]* — [0,1] is called the multi-membership resolution function.

We note that the function Fj(u,|d]) has two parameters, p and |d|, where p is
the membership value of a predecessor and |d| is the weight of a transition. In this
definition, the process that takes place upon the transition from state ¢; to ¢; on
input ay is represented as:

(if
(
(
(
(
(

1 q) = 16((qi, 1'(4))s an, )| = Fr(w'(qi), |6(qi, ax, g;)))-

Then §((g;, p i), ak, q;) = ptT1(g;) exp(if) such that 6 is the argument of §(g;, ag, q;).
This means that the membership value of the state ¢; at time ¢ 4 1 is computed by
function F3 using both the membership value of ¢; at time ¢ and the weight of the
transition.

If (5((q]7 i(g5)),aj,qj4+1) =1 exp(if;), j = 1,2, ...,n, then we define

\/ (971" (45)): aj, qj1) = 7 exp(if),
- 382
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where r = max{ry,ra, ..., } and 8 = maxz{61,6,,...,0,}.
Also we define

N\ (4, 14 (45)), a5, g541) = rexp(if),
j=1

where r = min{ry, ra, ...,mn } and = min{6y,0s, ..., 6, }.
The multi-membership resolution function resolves the multi-membership active
states and assigns a single membership value to them.

Let Qqct(t;) be the set of all active states at time ¢;, Vi > 0. We have Quet(to) = R,
Quct(ti) = {(q, 1% (q)) : 3¢ € Quct(ti—1),Ja € %,6(¢',a,q) € A},Vi > 1. Since
Qact(t;) is a fuzzy set, in order to show that a state ¢ belongs to Quct(t;) and T is
a subset of Quct(t;), we should write:

q € Domain(Qact(t;)) and T C Domain(Qact(t:))-

Hereafter, we simply denote them as: ¢ € Quet(t;) and T C Quer(t).

The combination of the operations of functions F; and F5 on a multi-membership
state g; will lead to the multi-membership resolution algorithm.

Algorithm 1.5. (Multi-membership resolution) If there are several simultaneous
transitions to the active state q; at time t + 1, the following algorithm will assign a
unified membership value to that:

(1) each transition weight |6(q;, ax,q;)| together with p'(g;), will be processed by
the membership assignment function Fy, and will produce a membership value. Call
this v;,

vi = [6((ai> 1" (@2))s ar, 45)| = Fr(u' (@), 16(gi, ar, a5)1),

(2) these membership values are not necessarily equal. Hence, they will be pro-
cessed by another function Fy, called the multi-membership resolution function,

(3) the result produced by F» will be assigned as the instantaneous membership
value of the active state gj,

pHay) = Falod = FaF (' (). 10(ass ax. ).

Where
o n: is the number of simultaneous transitions to the active state gq; at time t+1,
® |0(qi, ar,q;)|: is the weight of a transition from g; to q; upon input ay.,
o1t (q;): is the membership value of q; at time t,
o 11'T1(q;): is the final membership value of q; at time t + 1.

Definition 1.6. Let F = (Q, %, R, Z,w,S,Fl,Fg) be a general complex fuzzy au-
tomaton. We define max-min general complex fuzzy automata of the form:
F*=(Q,%,R, Z,w,8", F1, %)
such that .
0% Quet XX xQ — C*,
where Quet = {Qact(t0), Qact (1), Qact(t2), . .. } and let for every 4, i > 0,

<, " _J L a=p
6" ((q,1""(9)); Ay p) —{ 0, otherwise
383
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and for every i, i > 1, .
0*((q, n"*=* (@), ui p) = 0((q, "= (q)), wi, p) = rexp(if),
(g, n=(q))s wiwigr,p) =\ (6((q, 1" (0)) wi, )N 6((¢', 1 (¢')), g1, p))
q'€Qact(ti)
and recursively
0*((q, " (q)), uruz . .. un, p)
:N\/{J((q, Mto (Q))a ulapl) A 5((}71; :U’tl (pl))a u23p2) ARES

A(s((p'n,—lv /Ltnfl (pn—l))a Unap)|p1 S Qact(t1)7p2 S Qact(t2)» -.yPn—1 € Qact(tn—l)}v
in which u; € ¥, V1 <4 < n and assuming that the entered input at time ¢; be u,,
Vi<i<n-—1

Definition 1.7. Let F* be a max-min general complex fuzzy automaton. The
response function ¥ : ¥* x Q — C* of F* is define by

g =\ 8(d m0 () @),
q/EQact(tO)
for any z € ¥*, ¢ € Q.

Definition 1.8 ([1]). A nonempty set H endowed with a hyperoperation o : H? —
P*(H) is called a hypergroupoid, where P*(H) is the set of all nonempty subsets
of H. The image of the pair (a,b) € H? is denoted by a o b and called the hyper-
product of @ and b. If A and B are nonempty subsets of H, then AoB = U aob.
acAbeB

Definition 1.9 ([4]). The hypergroupoid (H,o) is called semihypergroup, if the
hyperoperation ” o” is associative. A semihypergroup (H, o) is called hypergroup, if

Hoa=aoH=H, VYacH.

Definition 1.10 ([1]). Let (H,o) and (K, *) be hypergroupoids and f : H — K be
a function. We say that

(i) f is a homomorphism, if for all (a,b) € H?, f(aob) C f(a) * f(b),

(ii) f is a good homomorphism if for all (a,b) € H?, f(aob) = f(a) * f(b).

Definition 1.11 ([4]). Let (H,o) be a hypergroupoid and let R be an equivalence
relation on H. We say that R is regular to the right, if the following implication
holds:
aRb=VYu € H,aouRbou
(ie. Vzx €aou,Jy€bou: xRy and Vy €bou,Ix €aou: xRy.)

Regularity to the left is defined similarly. We say that R is regular if it is regular
both to the right and to the left.

Definition 1.12 ([4]). Let H be a semihypergroup and R be an equivalence on H.

(i) If R is regular, then H/R is a semihyper group,with respect to the following
hyperoperation:

TRy={z:2cxoy},Y(T,7) € (H/R)>.

(ii) In the above-mentioned hypothesis, the canonical projection [[: H — H/R
is a good epimorphism and if (H, o) is a hypergroup, then (H/R, ®) is also a hyper-
group.

384
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Definition 1.13 ([4]). The hypergroupoid (H, o) is called an H,-group, if
(i) weak associativity is satisfied:

zo(yoz)N(zxoy)oz+#a,V(x,y z2) € H,

and
(ii) the reproductive axiom holds:

Hox=x0H=H, Vx € H.

2. HYPERGROUPS AND GENERAL COMPLEX FUZZY AUTOMATA

In this section, we construct some H,- groups on the set of states of a general
complex fuzzy automaton. We then construct some commutative hypergroups on
the set of states of a complex fuzzy automaton.

Theorem 2.1. Let F* = (Q,Z,R, Z,w,S*,Fl,Fg) be a general complex fuzzy au-
tomaton. We define on Q the following hyperoperation for all x € ¥X* and for all «,
0<a<90:
{plvql}a ZfO S 01 < O[,O S 92 <«
) {m}, f0<b <a,a<6; <90
p= {1}, f0<6: <a,a<6; <90
a, otherwise,
where 0y is argument of 8* ((p, u'» (p)), z,p1) and O is argument of 6*((q, pt<(q)), z, q1)-
Now let
pog=( |J poaU(pog).
zen\{A} A

Then (Q, o) is a commutative H,-group.

Proof. We first show that the hyperoperation ” o” is week associative. Since we have
6*((p, u'» (p)), A,p) = 1, 61 = 0 and since 6*((q, u'(q)), A, q) = 1, 5 = 0. Then we
have pog= {p,a}.Vp,q € Q.
Thus we have

(pogor=I[( U pOQ)U(piq)]or: c U poq)or]U[(pEQ)or]

zeX*\{A} =z zex*\{A} Z
= U  @emull (sen2por)uUlger) 2 {p.gr}
te U pogq sepiq

eesF\{A} @
Similarly,
po(gor)2{p,qr}.
Sopo(gor)N(pogq)or # @, ¥(p,q,7) € Q3. Hence the hyperoperation ” o
associative.
We claim that

»

is week

Qoqg=qoQ=Q,Vq€Q.
It is clear that Q o ¢ C Q. For the reverse inclusion, let p € Q. Since po g = {p, ¢},
A
we have p e pogC poqg C Qogq. Therefore Q C Qogq. g
A
385
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Example 2.2. In Theorem 2.1, let Q = {qo,q1,q2}, & = {a}, Quut(to) = R =
{(q0, " (q0))} = {(q0, 1)}, Fi(u,|8]) = Min(u,|d|), Z = @, w and Fy are not appli-
cable, §(qo,a,q1) = 0.4+ 0.24, §(q1,0a,q2) = 0.3 + 0.24, §(g2,a,q2) = 0.1 + 0.2¢ and
a = 45.

If we choose the input string x = aa...a, then Qquct(t1) = {(q1, " (q1))},
Qact(ti) = {(q27 (q?))} Vi > 2

~

1 (q1) = 16((qo, MtO(QO)) a,q1)| = Fi (' (qo),10(qo, a, q1)|) = Fi(1,0.4) = 0.4,
12 (g2) = [0((q1 u Yq1)),a,q2)| = Fi(pt(q1),16(q1, a,g2)|) = F1(0.4,0.4) = 0.4,
183 (q2) = 16((g2, 1*2 (q2)), @, @2)| = F1 (12 (), 10(g2, @, g2)|) = F1(0.4,0.2) = 0.2,
pli(ge) = 0.2,Vi > 4,

é*((QO,MtO(QO)) a,q1) = 0.4exp(26.5%),

5*((q1, ™ (1)), @, g2) = 0.4 exp(33.61),

CE*((Qz,/it2 (g2)),a qz) = 0.2 exp(63.47),

0*((g0, 1" (q0)), aa, ga) = 0.4 exp(26.5i) A 0.4 exp(33.6i) = 0.4 exp(26.5i)
*((qo, 1t (qo)), aaa, g2) = 0.2 exp(26.54),. . .

Thus we have
q0° 4o = {a1}, 90 ° o = {e2}, gooq = {ql,qz},

qio Q1 = {q}, Q1 ° (J2 = {¢2} and g2 © Q2

Thus we have
°© ‘ do q1 q2
qo | {90, 01,32} {q0,q1,92} {90, q1,q2}
a1 | {00, 01,2} {q1, 42} {q1,q2}
qz {QO, qi, Q2} {(Ih CI2} {QQ}

Theorem 2.3. Let [* = (Qll,é, Z,w75*,F1,F2) be a general complexr fuzzy au-
tomaton. We define on @Q the following hyperoperation for all x € ¥* and for all 3,
0<p<l:

{phql}a Zf/@ <7 S laﬂ < Tg S 1
{p}, fB<ri <1, and 0 <71y <8
{ai}, if p<ra <1, and0<r; <f
a, otherwise,

where 1 = |6*((p, u* (p)), &, p1)| and r4 = |6*((q, p'(q)), z, q1)|. Now let
pog=( |J peq)U(poq).

zes\{A} 7

boqg =
x

Then (@, 0) is a commutative H,-group.

Proof. We first show that the hyperoperation ” o” is week associative. Since we have
0*((p, utr (p)),A,p) = 1, r1 = 1 and since 6*((q, u'1(q)),A,q) = 1, 7o = 1. Then we
have pog= {p.q},Vp,q € Q.

Thus we have

(pog)or=[( U poquU(pog)or=I[ U poq)or]U[(piq)or]

zeX*\{A} =z A zeX*\{A} Z
= U  @emull (sem2mor)ulger) 2 {p.qr}
te U pogq SEpiq

zESF\{A} ®

386
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Similarly,
po(gor)2{p,qr}.

Sopo(qgor)N(poq)or # @, ¥(p,q,r) € Q. Hence the hyperoperation ” o” is week
associative.

We claim that

RQog=qoQ=Q,Yq€Q.
It is clear that Q o ¢ C Q. For the reverse inclusion, let p € Q. Since po g = {p, ¢},
A

we have p e pogC poqg C Qogq. Therefore Q C Qogq. 0
A

Example 2.4. In Theorem 2.3, let Q = {qo,q1, a2}, & = {a}, Quet(to) = R =
{(qo0, 1**(q0))} = {(q0, 1)}, F1(p,]8]) = Min(p,|8]), Z = @, w and F» are not appli-
cable, 6(qo,a,q1) = 0.4+ 0.24, §(¢q1,a,q2) = 0.3 4+ 0.24, §(¢2,a,¢2) = 0.1 + 0.2¢ and
8 =0.23.

If We choose the input string z = aa. . .a, then Que(t1) = {(q1, u** (1))},
Qact = {(qQa (q2))} Vi > 2,

Mtl( 1) =16((q0, 14" (90)), @, q1)| = Fi(p'®(q0), |6(q0, a, ¢1)|) = F1(1,0.4) = 0.4,
12 (q2) = 10((q1, 1" (q1)), @, g2)| = Fi(p"* (q1),10(q1, @, g2)|) = F1(0.4,0.4) = 0.4,
1 (g2) = [0((q2, 1% (q2)), @, q2)| = F1(p'*(g2),10(q2, @, ¢2)]) = F1(0.4,0.2) = 0.2,
1t (g2) = 0.2,Vi > 4,

0*((qo, 1" (q0)), @, 1) = 0.4 exp(26.51),

0*((q1, 1" (1)), @, g2) = 0.4 exp(33.61),

0*((g2, 1" (g2)), a qg) = 0.2 exp(63.47),

6*((qo, u(qo)), aa, ga) = 0.4 exp(26.5i) A 0.4 exp(33.6i) = 0.4 exp(26.57)
0*((go, 1" (q0)) aaa, gz) = 0.2 exp(26.51),. ..

Thus we have
QOOQO ={a1}, QOOqo ={a1}.900q =9, QOOCh ={q1, ¢},

aaa
q10q1 =1{q}, q10 QQ ={q2} and g2 © QQ
Thus we have
© ‘ ) q1 q2
do {(IO7(I1>(12} {QO,(J17Q2} {CIO7Q1,(12}
a1 | {90, 01,02} {1,492} {q1,¢2}
e | {90, 01,2} {a1, ¢} {a2}

Theorem 2.5. Let F* = (Q,Z,R, Z,w,g*,Fl,Fg) be a maz-min general com-
plex fuzzy automaton, © € X*, po € Qaet(to), ™1 = [0 ((po, utro (po)), x,p)|, 2 =
\5*((p0,ut1’o (po)), z,q)| and define the equivalence relation R, on Q by pR.q if and
only if 1 = ro. We define on Q the following commutative hyper operation

{p>Q}7 Zf?"] 7é T2
U =s, ifri =1
tS’I‘1

Po, if p=q=mpo

where t = |6*((po, ptvo (po)),x,8)| and 3 = {s' € Q : sRys}. Then (Q,0) is a
hypergroup.

pog =
x

387
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Proof. 1t is clear that the hyperoperation ”0” is associative. We claim that
xr
Qog =qoQ@ =Q, Vg€ Q.
It is clear that Qog C Q. For the reverse inclusion, let p € Q. Then we have
x
P € pog € Qog.
x x
Theus @ C Qogq. O
xr

Theorem 2.6. In Theorem 2.5, the equivalence relation R, on @ is reqular, where
pqu a4 Tl = 7'2,
r1 = [0*((po, 7 (po)), 2, p)| and ro = |0*((po, ' (po)), z, q)|.

Proof. 1t is easy to see that R, is an equivalence relation. Now, let s € @ and pR.q.
Then it is clear that
(pos) R (qos).
xT xr
Thus R, is regular on Q. a

Theorem 2.7. In Theorem 2.5, (Q/R.,®) is a hypergroup, where
peq={T:7€pog},¥(5,7) € (Q/Ra)”.

Proof. By Theorem 1.12, since (@, o) is a hypergroup and the equivalence relation R,
xr

on @ is regular, then we conclude that (Q/R,,®) is a hypergroup and the canonical
projection [] : @ — Q/R, is a good epimorphism. O

Theorem 2.8. Let F* = (Q,Z,R, Z,w,S*,Fl,Fg) be a maz-min general complex
fuzzy automaton, © € X*, po € Qaet(to), 01 is argument of 6*((po, utvo (po)), z,p)
and 05 is argument of 5*((p0,,utpo (po0)),,q) and define the equivalence relation R,
on Q by pR.q if and only if 01 = 03. We define on Q the following commutative
hyper operation

{p,q}, if 01 # 62

U =s, if6p =6

0<0,

po, fp=4q=po

where 0 is argument of 6*((po, put*o (o)), x,s) and 5= {s' € Q : ' Rys}. Then (Q,0)
s a hypergroup. ’

pogq =
x

Proof. Tt is clear that the hyperoperation ” g” is associative. We claim that
Qog =qoQ =Q, Vg€ Q.
It is clear that ng C Q. For the reverse inclusion, let p € ). Then we have
p € pog C Qog.

Thus Q C Qogq. O
388
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Theorem 2.9. In Theorem 2.8, the equivalence relation R, on Q is reqular, where
prq <~ 91 = 923
01 is argument of §*((po, 170 (po)), @, p) and 05 is argument of 5 ((po, 4 (po)), @ q).

Proof. 1t is easy to see that R, is an equivalence relation. Now, let s € @ and pR.q.
Then it is clear that

(pos) Rx(qos)-
Thus R, is regular on Q. O

Theorem 2.10. In Theorem 2.8, (Q/R.,®) is a hypergroup, where
p@q={T:7 €pog},¥(p,q) € (Q/Rx)*.

Proof. By Theorem 1.12, since (@, 0) is a hypergroup and the equivalence relation
R, on (Q is regular, we conclude th;t (Q/R,,®) is a hypergroup and the canonical
projection [] : @ — Q/R, is a good epimorphism. O
Theorem 2.11. Let F* = (Q,%, R, Z,W,S*,Fl,FQ) be a max-min general complex
fuzzy automaton, X be a complex fuzzy subset on Q, D(X)(p) = V{\(p) A P (z,p):
x €X*} and p € Q. We define on Q the following hyperoperation

pop={reQ:|[DN)p)| = [DN)(r)},
and

pog=(pop)U(goq), wherep#gq.

Then (@, 0) is a commutative hypergroup.

b2

Proof. We first show that the hyperoperation ” o ” is associative. We have

(poq)os
={ri € Q: D)) = [DA)(r)|} U{rs € Q : [D(N)(q)| = [D(A)(r2)[}] o s
={ri € Q:[D\)(r1)| > [DN)(r}),[DN)(p)| > [D(N)(r1)[}
U{ry € Q1 [D(N)(r2)| = [D(N)(r3)], ID(N)(g)] > [D(N)(r2)[}
U{rs € @ : [D(A)(s)| > [D(A)(r3)[} - _
C{rieQ:[DWN(p)| = DN (r)|} U{ry € Q : [D(N)(q)| = [D(N)(r3)[}
. U{rs € Q : [D(N)(s)| = [D(N)(r3)]}-
et
T'={reQ:[DAN)(p)|=[DAN)(r)}
U{rs € Q : [D(N)(q)| = [D(N)(r2)[}
U{rs € Q : [D(N)(s)| = [D(N)(r3)]}-

Then (poq)osCT. - B o o
Now, let 7 € {r1 € Q : [D(A)(p)| = [D(A)(r1)[}. Then [D(A)(p)| = [D(A)(r)]-
Thus r €pop C (pog)os. So(pogq)osDT. Hence
(pogq)os=T.
Similarly,
po(qos)=T.

” is associative.

389
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We claim that

Qogq=qoQ=Q, VgeQ.

It is clear that Q o q C Q.

For the reverse inclusion, let p € Q. Since [D(X)(p)]
pe{rieQ: D)) = [DA)(r)}U{r: € Q:

2 [DP)I,_
DN)(@)| = [DA)(r2)[} = pog.

Then p € Qoq. Thus Q@ C Qogq. O

3. CONCLUSIONS

In this paper, we have defined the notion of a complex fuzzy subset and the
notion of a general complex fuzzy automaton.Then we have constructed some H,-
groups and some commutative hypergroups on the set of states of a complex fuzzy
automaton
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