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1. Introduction and Preliminaries

Zadeh [20] introduced the theory of fuzzy sets and, soon after, Wee [18] intro-
duced the concept of fuzzy automata. Automata have a long history both in theory
and application [1, 2] and are the prime examples of general computational systems
over discrete spaces [8]. In the conventional spectrum of automata (i.e. deter-
ministic finite-state automata, non-deterministic finite-state automata, probabilistic
automata and fuzzy finite-state automata), deterministic finite-state automata have
found the most application in different areas [3, 11, 12, 16]. Fuzzy automata not
only provide a systematic approach for handling uncertainty in such systems, but
are can also be used in continuous spaces [9, 13, 14, 15, 17]. Moreover, they are able
to create capabilities which are not easily achievable by other mathematical tools
[19].

In 2004, M. Doostfatemeh and S. C. Kremer extended the notion of fuzzy au-
tomata and introduced the notion of general fuzzy automata [7].

In this paper, by using [5, 6, 7], we introduce several new concepts and derive
related results.
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Definition 1.1. Let C∗ = {c+ di : c, d ∈ [0, 1], i =
√
−1}. A complex fuzzy subset

µ of X is a function of X into C∗. If µ be a complex fuzzy subset of X, then |µ| is
a fuzzy subset of X. If µ(x) = c + di, then µ(x) = r exp(iθ), which θ is argument

of µ(x) and r = |µ(x)| =
√
c2 + d2. For a nonempty set X, P̃ (X) denotes the set of

all complex fuzzy subsets on X.

Definition 1.2 ([10]). Let Σ be a set. A word of Σ is the product of a finite sequence
of elements in Σ, Λ denotes the empty word and Σ∗ is the set of all words on Σ. In
fact, Σ∗ is the free monoid on Σ. The length `(x) of word x ∈

∑∗
is the number of

its letters, so `(Λ) = 0.

Definition 1.3. A complex fuzzy finite-state automaton (CFFA) is a six-tuple de-

noted as F̃ = (Q,Σ, R, Z, δ, ω), where Q is a finite set of states, Σ is a finite set

of input symbols, R is the start state of F̃ , Z is a finite set of output symbols,
δ : Q× Σ×Q→ C∗ is the complex fuzzy transition function which is used to map
a state (current state) into another state (next state) upon an input symbol and
ω : Q → Z is the output function. The transition from state qi (current state) to
state qj (next state) upon input ak is denoted by δ(qi, ak, qj).
Associated with each |δ(qi, ak, qj)|, there is a membership value in [0, 1] called the

weight of the transition. The set of all transitions of F̃ is denoted as ∆.

Definition 1.4. A general complex fuzzy automaton (GCFA) F̃ is an eight-tuple
machine denoted as (i) Q is a finite set of states, Q = {q1, q2, . . . , qn},

(ii) Σ is a finite set of input symbols, Σ = {a1, a2, . . . , am},
(iii) R̃ is the set of fuzzy start states,
(iv) Z is a finite set of output symbols, Z = {b1, b2, . . . , bk},
(v) ω : Q→ Z is the output function,

(vi) δ̃ : (Q× [0, 1])× Σ×Q→ C∗ is the augmented transition function,
(vii) F1 : [0, 1]× [0, 1]→ [0, 1] is the membership assignment function,
(viii) F2 : [0, 1]∗ → [0, 1] is called the multi-membership resolution function.
We note that the function F1(µ, |δ|) has two parameters, µ and |δ|, where µ is

the membership value of a predecessor and |δ| is the weight of a transition. In this
definition, the process that takes place upon the transition from state qi to qj on
input ak is represented as:

µt+1(qj) = |δ̃((qi, µt(qi)), ak, qj)| = F1(µt(qi), |δ(qi, ak, qj)|).

Then δ̃((qi, µ
t(qi)), ak, qj) = µt+1(qj) exp(iθ) such that θ is the argument of δ(qi, ak, qj).

This means that the membership value of the state qj at time t+ 1 is computed by
function F1 using both the membership value of qi at time t and the weight of the
transition.

If δ̃((qj , µ
tj (qj)), aj , qj+1) = rj exp(iθj), j = 1, 2, ..., n, then we define

n∨
j=1

δ̃((qjµ
tj (qj)), aj , qj+1) = r exp(iθ),
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where r = max{r1, r2, ..., rn} and θ = max{θ1, θ2, ..., θn}.
Also we define

n∧
j=1

δ̃((qj , µ
tj (qj)), aj , qj+1) = r exp(iθ),

where r = min{r1, r2, ..., rn} and θ = min{θ1, θ2, ..., θn}.
The multi-membership resolution function resolves the multi-membership active
states and assigns a single membership value to them.

Let Qact(ti) be the set of all active states at time ti, ∀i ≥ 0. We have Qact(t0) = R̃,
Qact(ti) = {(q, µti(q)) : ∃q′ ∈ Qact(ti−1),∃a ∈ Σ, δ(q′, a, q) ∈ ∆},∀i ≥ 1. Since
Qact(ti) is a fuzzy set, in order to show that a state q belongs to Qact(ti) and T is
a subset of Qact(ti), we should write:

q ∈ Domain(Qact(ti)) and T ⊂ Domain(Qact(ti)).

Hereafter, we simply denote them as: q ∈ Qact(ti) and T ⊂ Qact(ti).

The combination of the operations of functions F1 and F2 on a multi-membership
state qj will lead to the multi-membership resolution algorithm.

Algorithm 1.5. (Multi-membership resolution) If there are several simultaneous
transitions to the active state qj at time t+ 1, the following algorithm will assign a
unified membership value to that:

(1) each transition weight |δ(qi, ak, qj)| together with µt(qi), will be processed by
the membership assignment function F1, and will produce a membership value. Call
this vi,

vi = |δ̃((qi, µt(qi)), ak, qj)| = F1(µt(qi), |δ(qi, ak, qj)|),
(2) these membership values are not necessarily equal. Hence, they will be pro-

cessed by another function F2, called the multi-membership resolution function,
(3) the result produced by F2 will be assigned as the instantaneous membership

value of the active state qj,

µt+1(qj) =
n

F2
i=1

[vi] =
n

F2
i=1

[F1(µt(qi), |δ(qi, ak, qj)|)].

Where
• n: is the number of simultaneous transitions to the active state qj at time t+ 1,
• |δ(qi, ak, qj)|: is the weight of a transition from qi to qj upon input ak.,
•µt(qi): is the membership value of qi at time t,
• µt+1(qj): is the final membership value of qj at time t+ 1.

Definition 1.6. Let F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2) be a general complex fuzzy au-
tomaton. We define max-min general complex fuzzy automata of the form:

F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2)

such that

δ̃∗ : Qact × Σ∗ ×Q→ C∗,

where Qact = {Qact(t0), Qact(t1), Qact(t2), . . . } and let for every i, i ≥ 0,

δ̃∗((q, µti(q)),Λ, p) =

{
1, q = p,
0, otherwise
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and for every i, i ≥ 1,
δ̃∗((q, µti−1(q)), ui, p) = δ̃((q, µti−1(q)), ui, p) = r exp(iθ),

δ̃∗((q, µti−1(q)), uiui+1, p) =
∨

q′∈Qact(ti)

(δ̃((q, µti−1(q)), ui, q
′)∧ δ̃((q′, µti(q′)), ui+1, p))

and recursively
δ̃∗((q, µt0(q)), u1u2 . . . un, p)

= ∨{δ̃((q, µt0(q)), u1, p1) ∧ δ̃((p1, µ
t1(p1)), u2, p2) ∧ . . .

∧δ̃((pn−1, µ
tn−1(pn−1)), un, p)|p1 ∈ Qact(t1), p2 ∈ Qact(t2), . . . , pn−1 ∈ Qact(tn−1)},

in which ui ∈ Σ, ∀1 ≤ i ≤ n and assuming that the entered input at time ti be ui,
∀1 ≤ i ≤ n− 1.

Definition 1.7. Let F̃ ∗ be a max-min general complex fuzzy automaton. The

response function rF̃
∗

: Σ∗ ×Q→ C∗ of F̃ ∗ is define by

rF̃
∗
(x, q) =

∨
q′∈Qact(t0)

δ̃∗((q′, µt0(q′)), x, q),

for any x ∈ Σ∗, q ∈ Q.

Definition 1.8 ([4]). A nonempty set H endowed with a hyperoperation ◦ : H2 →
P ∗(H) is called a hypergroupoid, where P ∗(H) is the set of all nonempty subsets
of H. The image of the pair (a, b) ∈ H2 is denoted by a ◦ b and called the hyper-

product of a and b. If A and B are nonempty subsets of H, then A◦B =
⋃

a∈A,b∈B

a◦b.

Definition 1.9 ([4]). The hypergroupoid 〈H, ◦〉 is called semihypergroup, if the
hyperoperation ” ◦ ” is associative. A semihypergroup 〈H, ◦〉 is called hypergroup, if

H ◦ a = a ◦H = H, ∀a ∈ H.

Definition 1.10 ([4]). Let 〈H, ◦〉 and 〈K, ∗〉 be hypergroupoids and f : H → K be
a function. We say that

(i) f is a homomorphism, if for all (a, b) ∈ H2, f(a ◦ b) ⊂ f(a) ∗ f(b),
(ii) f is a good homomorphism if for all (a, b) ∈ H2, f(a ◦ b) = f(a) ∗ f(b).

Definition 1.11 ([4]). Let 〈H, ◦〉 be a hypergroupoid and let R be an equivalence
relation on H. We say that R is regular to the right, if the following implication
holds:

aRb⇒ ∀u ∈ H, a ◦ uRb ◦ u
( i.e. ∀x ∈ a ◦ u,∃y ∈ b ◦ u : xRy and ∀y ∈ b ◦ u,∃x ∈ a ◦ u : xRy.)

Regularity to the left is defined similarly. We say that R is regular if it is regular
both to the right and to the left.

Definition 1.12 ([4]). Let H be a semihypergroup and R be an equivalence on H.
(i) If R is regular, then H/R is a semihyper group,with respect to the following

hyperoperation:
x⊗ y = {z : z ∈ x ◦ y},∀(x, y) ∈ (H/R)2.

(ii) In the above-mentioned hypothesis, the canonical projection
∏

: H → H/R
is a good epimorphism and if 〈H, ◦〉 is a hypergroup, then 〈H/R,⊗〉 is also a hyper-
group.
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Definition 1.13 ([4]). The hypergroupoid 〈H, ◦〉 is called an Hν-group, if
(i) weak associativity is satisfied:

x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z 6= ∅,∀(x, y, z) ∈ H3,

and
(ii) the reproductive axiom holds:

H ◦ x = x ◦H = H, ∀x ∈ H.

2. Hypergroups and general complex fuzzy automata

In this section, we construct some Hν- groups on the set of states of a general
complex fuzzy automaton. We then construct some commutative hypergroups on
the set of states of a complex fuzzy automaton.

Theorem 2.1. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a general complex fuzzy au-
tomaton. We define on Q the following hyperoperation for all x ∈ Σ∗ and for all α,
0 < α < 90 :

po
x
q =


{p1, q1}, if 0 ≤ θ1 < α, 0 ≤ θ2 < α
{p1}, if 0 ≤ θ1 < α,α ≤ θ2 ≤ 90
{q1}, if 0 ≤ θ2 < α,α ≤ θ1 ≤ 90
∅, otherwise,

where θ1 is argument of δ̃∗((p, µtp(p)), x, p1) and θ2 is argument of δ̃∗((q, µtq (q)), x, q1).
Now let

p ◦ q = (
⋃

x∈Σ∗\{Λ}

p ◦ q
x

) ∪ (p ◦ q)
Λ

.

Then 〈Q, ◦〉 is a commutative Hν-group.

Proof. We first show that the hyperoperation ”◦” is week associative. Since we have
δ̃∗((p, µtp(p)),Λ, p) = 1, θ1 = 0 and since δ̃∗((q, µtq (q)),Λ, q) = 1, θ2 = 0. Then we
have p ◦ q

Λ
= {p, q},∀p, q ∈ Q.

Thus we have
(p ◦ q) ◦ r = [(

⋃
x∈Σ∗\{Λ}

p ◦ q
x

) ∪ (p ◦ q)
Λ

] ◦ r = [(
⋃

x∈Σ∗\{Λ}
p ◦ q
x

) ◦ r] ∪ [(p ◦ q)
Λ

◦ r]

= [
⋃

t∈
⋃

x∈Σ∗\{Λ}
p◦q
x

(t ◦ r)] ∪ [
⋃
s∈p◦q

Λ

(s ◦ r)] ⊇ (p ◦ r) ∪ (q ◦ r) ⊇ {p, q, r}.

Similarly,

p ◦ (q ◦ r) ⊇ {p, q, r}.
So p ◦ (q ◦ r)∩ (p ◦ q) ◦ r 6= ∅, ∀(p, q, r) ∈ Q3. Hence the hyperoperation ” ◦ ” is week
associative.

We claim that

Q ◦ q = q ◦Q = Q,∀q ∈ Q.
It is clear that Q ◦ q ⊆ Q. For the reverse inclusion, let p ∈ Q. Since p ◦ q

Λ
= {p, q},

we have p ∈ p ◦ q
Λ
⊆ p ◦ q ⊆ Q ◦ q. Therefore Q ⊆ Q ◦ q. �
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Example 2.2. In Theorem 2.1, let Q = {q0, q1, q2}, Σ = {a}, Qact(t0) = R̃ =
{(q0, µ

t0(q0))} = {(q0, 1)}, F1(µ, |δ|) = Min(µ, |δ|), Z = ∅, ω and F2 are not appli-
cable, δ(q0, a, q1) = 0.4 + 0.2i, δ(q1, a, q2) = 0.3 + 0.2i, δ(q2, a, q2) = 0.1 + 0.2i and
α = 45.

If we choose the input string x = aa . . . a, then Qact(t1) = {(q1, µ
t1(q1))},

Qact(ti) = {(q2, µ
ti(q2))},∀i ≥ 2,

µt1(q1) = |δ̃((q0, µ
t0(q0)), a, q1)| = F1(µt0(q0), |δ(q0, a, q1)|) = F1(1, 0.4) = 0.4,

µt2(q2) = |δ̃((q1, µ
t1(q1)), a, q2)| = F1(µt1(q1), |δ(q1, a, q2)|) = F1(0.4, 0.4) = 0.4,

µt3(q2) = |δ̃((q2, µ
t2(q2)), a, q2)| = F1(µt2(q2), |δ(q2, a, q2)|) = F1(0.4, 0.2) = 0.2,

µti(q2) = 0.2,∀i ≥ 4,

δ̃∗((q0, µ
t0(q0)), a, q1) = 0.4 exp(26.5i),

δ̃∗((q1, µ
t1(q1)), a, q2) = 0.4 exp(33.6i),

δ̃∗((q2, µ
t2(q2)), a, q2) = 0.2 exp(63.4i),

δ̃∗((q0, µ
t0(q0)), aa, q2) = 0.4 exp(26.5i) ∧ 0.4 exp(33.6i) = 0.4 exp(26.5i),

δ̃∗((q0, µ
t0(q0)), aaa, q2) = 0.2 exp(26.5i),. . . .

Thus we have
q0 ◦ q0

a
= {q1}, q0 ◦ q0

aa
= {q2}, q0 ◦ q1

a
= {q1, q2},

q1 ◦ q1
a

= {q2}, q1 ◦ q2
a

= {q2} and q2 ◦ q2
a

= ∅.

Thus we have
◦ q0 q1 q2

q0 {q0, q1, q2} {q0, q1, q2} {q0, q1, q2}
q1 {q0, q1, q2} {q1, q2} {q1, q2}
q2 {q0, q1, q2} {q1, q2} {q2}

Theorem 2.3. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a general complex fuzzy au-
tomaton. We define on Q the following hyperoperation for all x ∈ Σ∗ and for all β,
0 < β < 1 :

po
x
q =


{p1, q1}, if β < r1 ≤ 1, β < r2 ≤ 1
{p1}, if β < r1 ≤ 1, and 0 ≤ r2 ≤ β
{q1}, if β < r2 ≤ 1, and 0 ≤ r1 ≤ β
∅, otherwise,

where r1 = |δ̃∗((p, µtp(p)), x, p1)| and r2 = |δ̃∗((q, µtq (q)), x, q1)|. Now let

p ◦ q = (
⋃

x∈Σ∗\{Λ}

p ◦ q
x

) ∪ (p ◦ q)
Λ

.

Then 〈Q, ◦〉 is a commutative Hν-group.

Proof. We first show that the hyperoperation ”◦” is week associative. Since we have
δ̃∗((p, µtp(p)),Λ, p) = 1, r1 = 1 and since δ̃∗((q, µtq (q)),Λ, q) = 1, r2 = 1. Then we
have p ◦ q

Λ
= {p, q},∀p, q ∈ Q.

Thus we have
(p ◦ q) ◦ r = [(

⋃
x∈Σ∗\{Λ}

p ◦ q
x

) ∪ (p ◦ q)
Λ

] ◦ r = [(
⋃

x∈Σ∗\{Λ}
p ◦ q
x

) ◦ r] ∪ [(p ◦ q)
Λ

◦ r]

= [
⋃

t∈
⋃

x∈Σ∗\{Λ}
p◦q
x

(t ◦ r)] ∪ [
⋃
s∈p◦q

Λ

(s ◦ r)] ⊇ (p ◦ r) ∪ (q ◦ r) ⊇ {p, q, r}.
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Similarly,

p ◦ (q ◦ r) ⊇ {p, q, r}.
So p ◦ (q ◦ r)∩ (p ◦ q) ◦ r 6= ∅, ∀(p, q, r) ∈ Q3. Hence the hyperoperation ” ◦ ” is week
associative.

We claim that

Q ◦ q = q ◦Q = Q,∀q ∈ Q.
It is clear that Q ◦ q ⊆ Q. For the reverse inclusion, let p ∈ Q. Since p ◦ q

Λ
= {p, q},

we have p ∈ p ◦ q
Λ
⊆ p ◦ q ⊆ Q ◦ q. Therefore Q ⊆ Q ◦ q. �

Example 2.4. In Theorem 2.3, let Q = {q0, q1, q2}, Σ = {a}, Qact(t0) = R̃ =
{(q0, µ

t0(q0))} = {(q0, 1)}, F1(µ, |δ|) = Min(µ, |δ|), Z = ∅, ω and F2 are not appli-
cable, δ(q0, a, q1) = 0.4 + 0.2i, δ(q1, a, q2) = 0.3 + 0.2i, δ(q2, a, q2) = 0.1 + 0.2i and
β = 0.3.

If we choose the input string x = aa . . . a, then Qact(t1) = {(q1, µ
t1(q1))},

Qact(ti) = {(q2, µ
ti(q2))},∀i ≥ 2,

µt1(q1) = |δ̃((q0, µ
t0(q0)), a, q1)| = F1(µt0(q0), |δ(q0, a, q1)|) = F1(1, 0.4) = 0.4,

µt2(q2) = |δ̃((q1, µ
t1(q1)), a, q2)| = F1(µt1(q1), |δ(q1, a, q2)|) = F1(0.4, 0.4) = 0.4,

µt3(q2) = |δ̃((q2, µ
t2(q2)), a, q2)| = F1(µt2(q2), |δ(q2, a, q2)|) = F1(0.4, 0.2) = 0.2,

µti(q2) = 0.2,∀i ≥ 4,

δ̃∗((q0, µ
t0(q0)), a, q1) = 0.4 exp(26.5i),

δ̃∗((q1, µ
t1(q1)), a, q2) = 0.4 exp(33.6i),

δ̃∗((q2, µ
t2(q2)), a, q2) = 0.2 exp(63.4i),

δ̃∗((q0, µ
t0(q0)), aa, q2) = 0.4 exp(26.5i) ∧ 0.4 exp(33.6i) = 0.4 exp(26.5i),

δ̃∗((q0, µ
t0(q0)), aaa, q2) = 0.2 exp(26.5i),. . . .

Thus we have
q0 ◦ q0

a
= {q1}, q0 ◦ q0

aa
= {q1},q0 ◦ q0

aaa
= ∅, q0 ◦ q1

a
= {q1, q2},

q1 ◦ q1
a

= {q2}, q1 ◦ q2
a

= {q2} and q2 ◦ q2
a

= ∅.

Thus we have
◦ q0 q1 q2

q0 {q0, q1, q2} {q0, q1, q2} {q0, q1, q2}
q1 {q0, q1, q2} {q1, q2} {q1, q2}
q2 {q0, q1, q2} {q1, q2} {q2}

Theorem 2.5. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general com-

plex fuzzy automaton, x ∈ Σ∗, p0 ∈ Qact(t0), r1 = |δ̃∗((p0, µ
tp0 (p0)), x, p)|, r2 =

|δ̃∗((p0, µ
tp0 (p0)), x, q)| and define the equivalence relation Rx on Q by pRxq if and

only if r1 = r2. We define on Q the following commutative hyper operation

po
x
q =


{p, q}, if r1 6= r2⋃
t≤r1

= s, if r1 = r2

p0, if p = q = p0

where t = |δ̃∗((p0, µ
tp0 (p0)), x, s)| and s̄ = {s′ ∈ Q : s′Rxs}. Then 〈Q, o

x
〉 is a

hypergroup.
387
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Proof. It is clear that the hyperoperation ”o
x
” is associative. We claim that

Qo
x
q = qo

x
Q = Q, ∀q ∈ Q.

It is clear that Qo
x
q ⊆ Q. For the reverse inclusion, let p ∈ Q. Then we have

p ∈ po
x
q ⊆ Qo

x
q.

Theus Q ⊆ Qo
x
q. �

Theorem 2.6. In Theorem 2.5, the equivalence relation Rx on Q is regular, where

pRxq ⇔ r1 = r2,

r1 = |δ̃∗((p0, µ
tp0 (p0)), x, p)| and r2 = |δ̃∗((p0, µ

tp0 (p0)), x, q)|.

Proof. It is easy to see that Rx is an equivalence relation. Now, let s ∈ Q and pRxq.
Then it is clear that

(po
x
s)Rx(qo

x
s).

Thus Rx is regular on Q. �

Theorem 2.7. In Theorem 2.5, 〈Q/Rx,⊗〉 is a hypergroup, where

p⊗ q = {r : r ∈ po
x
q},∀(p, q) ∈ (Q/Rx)2.

Proof. By Theorem 1.12, since 〈Q, o
x
〉 is a hypergroup and the equivalence relation Rx

on Q is regular, then we conclude that 〈Q/Rx,⊗〉 is a hypergroup and the canonical
projection

∏
: Q→ Q/Rx is a good epimorphism. �

Theorem 2.8. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general complex

fuzzy automaton, x ∈ Σ∗, p0 ∈ Qact(t0), θ1 is argument of δ̃∗((p0, µ
tp0 (p0)), x, p)

and θ2 is argument of δ̃∗((p0, µ
tp0 (p0)), x, q) and define the equivalence relation Rx

on Q by pRxq if and only if θ1 = θ2. We define on Q the following commutative
hyper operation

po
x
q =


{p, q}, if θ1 6= θ2⋃
θ≤θ1

= s, if θ1 = θ2

p0, if p = q = p0

where θ is argument of δ̃∗((p0, µ
tp0 (p0)), x, s) and s̄ = {s′ ∈ Q : s′Rxs}. Then 〈Q, o

x
〉

is a hypergroup.

Proof. It is clear that the hyperoperation ”o
x
” is associative. We claim that

Qo
x
q = qo

x
Q = Q, ∀q ∈ Q.

It is clear that Qo
x
q ⊆ Q. For the reverse inclusion, let p ∈ Q. Then we have

p ∈ po
x
q ⊆ Qo

x
q.

Thus Q ⊆ Qo
x
q. �
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Theorem 2.9. In Theorem 2.8, the equivalence relation Rx on Q is regular, where

pRxq ⇔ θ1 = θ2,

θ1 is argument of δ̃∗((p0, µ
tp0 (p0)), x, p) and θ2 is argument of δ̃∗((p0, µ

tp0 (p0)), x, q).

Proof. It is easy to see that Rx is an equivalence relation. Now, let s ∈ Q and pRxq.
Then it is clear that

(po
x
s)Rx(qo

x
s).

Thus Rx is regular on Q. �

Theorem 2.10. In Theorem 2.8, 〈Q/Rx,⊗〉 is a hypergroup, where

p⊗ q = {r : r ∈ po
x
q},∀(p, q) ∈ (Q/Rx)2.

Proof. By Theorem 1.12, since 〈Q, o
x
〉 is a hypergroup and the equivalence relation

Rx on Q is regular, we conclude that 〈Q/Rx,⊗〉 is a hypergroup and the canonical
projection

∏
: Q→ Q/Rx is a good epimorphism. �

Theorem 2.11. Let F̃ ∗ = (Q,Σ, R̃, Z, ω, δ̃∗, F1, F2) be a max-min general complex

fuzzy automaton, λ be a complex fuzzy subset on Q, D(λ)(p) = ∨{λ(p) ∧ rF̃∗(x, p) :
x ∈ Σ∗} and p ∈ Q. We define on Q the following hyperoperation

p ◦ p = {r ∈ Q : |D(λ)(p)| ≥ |D(λ)(r)|},

and

p ◦ q = (p ◦ p) ∪ (q ◦ q), where p 6= q.

Then 〈Q, ◦〉 is a commutative hypergroup.

Proof. We first show that the hyperoperation ” ◦ ” is associative. We have
(p ◦ q) ◦ s

= {r1 ∈ Q : |D(λ)(p)| ≥ |D(λ)(r1)|} ∪ {r2 ∈ Q : |D(λ)(q)| ≥ |D(λ)(r2)|}] ◦ s
= {r′1 ∈ Q : |D(λ)(r1)| ≥ |D(λ)(r′1), |D(λ)(p)| ≥ |D(λ)(r1)|}
∪{r′2 ∈ Q : |D(λ)(r2)| ≥ |D(λ)(r′2)|, |D(λ)(q)| ≥ |D(λ)(r2)|}
∪{r3 ∈ Q : |D(λ)(s)| ≥ |D(λ)(r3)|}

⊆ {r′1 ∈ Q : |D(λ)(p)| ≥ |D(λ)(r′1)|} ∪ {r′2 ∈ Q : |D(λ)(q)| ≥ |D(λ)(r′2)|}
∪{r3 ∈ Q : |D(λ)(s)| ≥ |D(λ)(r3)|}.

Let
T = {r1 ∈ Q : |D(λ)(p)| ≥ |D(λ)(r1)|}

∪{r2 ∈ Q : |D(λ)(q)| ≥ |D(λ)(r2)|}
∪{r3 ∈ Q : |D(λ)(s)| ≥ |D(λ)(r3)|}.

Then (p ◦ q) ◦ s ⊆ T .
Now, let r ∈ {r1 ∈ Q : |D(λ)(p)| ≥ |D(λ)(r1)|}. Then |D(λ)(p)| ≥ |D(λ)(r)|.

Thus r ∈ p ◦ p ⊆ (p ◦ q) ◦ s. So (p ◦ q) ◦ s ⊇ T . Hence

(p ◦ q) ◦ s = T.

Similarly,

p ◦ (q ◦ s) = T.

Therefore the hyperoperation ” ◦ ” is associative.
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We claim that
Q ◦ q = q ◦Q = Q, ∀q ∈ Q.

It is clear that Q ◦ q ⊆ Q.
For the reverse inclusion, let p ∈ Q. Since |D(λ)(p)| ≥ |D(λ)(p)|,
p ∈ {r1 ∈ Q : |D(λ)(p)| ≥ |D(λ)(r1)|}∪{r2 ∈ Q : |D(λ)(q)| ≥ |D(λ)(r2)|} = p◦ q.

Then p ∈ Q ◦ q. Thus Q ⊆ Q ◦ q. �

3. Conclusions

In this paper, we have defined the notion of a complex fuzzy subset and the
notion of a general complex fuzzy automaton.Then we have constructed some Hν-
groups and some commutative hypergroups on the set of states of a complex fuzzy
automaton
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