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Abstract. Inclusion measure of hesitant fuzzy sets is an important
subject in the theory of hesitant fuzzy set, and it has been studied and
widely used in clustering analysis and decision making. In this paper,
we aim at constructing inclusion measure for hesitant fuzzy sets based on
fuzzy sets. The axiomatical definition of inclusion measure for hesitant
fuzzy sets is firstly proposed, and we construct a new inclusion relation for
hesitant fuzzy sets. Based on this new inclusion relation, different inclusion
measures based on the inclusion measures of fuzzy sets for hesitant fuzzy
sets are further constructed. In addition, in order to describe the fuzziness
degree of HFSs, information energy for HFSs is introduced. Finally, a real
example about hesitant fuzzy multi-attribute decision making is used to
illustrate the validity and applicability of the proposed inclusion measures
and information energies.
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1. Introduction

Fuzzy set (FS) was originally introduced by Zadeh [27] in 1965, it has achieved
a great success in various fields to handle this kind of uncertainty. With more
and more imprecise, uncertain and hesitant information in the real life. Hesitant
fuzzy set (HFS), as an extension of FS, is proposed by Torra [18, 19]. It allows the
membership degree of an element to a given set having a few different values. While
the membership degrees of an element to a given set provided by decision makers are
not only by crisp values, so different extensions of HFS have been introduced, such
as, dual hesitant fuzzy sets [33], interval-valued hesitant fuzzy set [2], generalized
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hesitant fuzzy sets [14], hesitant fuzzy linguistic term sets [15], hesitant fuzzy rough
sets [4] and interval-valued intuitionistic hesitant fuzzy soft sets [13]. The relative
information measure of HFS and its extension are introduced and applied to cluster
analysis, decision making and other fields.

After proposing HFS, Xia and Xu [22] proposed a series of aggregation operators
for hesitant fuzzy elements (HFEs) to solve decision making problem. Afterwards,
Xu and Xia [23] applied the proposed distance measures, similarity measures for
HFSs to decision making. Farhadinia [6] took further studied the relationship among
distance measure, similarity measure and entropy for HFSs and applied similarity
measure to clustering analysis. Later, Li et al. [11] pointed out some drawbacks of
the existing distance measures for HFSs and improved distance measures for HFSs
which contain hesitant degrees. Li et al. [11] also applied the proposed new distance
measures to decision making. In addition, other decision making methods associated
with distance measure for HFSs under the environment of hesitant fuzzy information
were constructed, such as the TOPSIS method [24], VIKOR method [12], TODIM
method [29], ELECTRE I method [3], ELECTRE II method [1] and the satisfaction
degree based interactive decision making method [28]. All these studies show that
aggregation operators, distance measures and similarity measures for HFSs play
an important role in dealing decision making, while few researches study decision
making by inclusion measures for HFSs. In this paper, a decision making method
associated with inclusion measures is proposed.

Inclusion measures are constructed in term of inclusion relation. The inclusion
relation of two sets is include or exclude in set theory. As a generalization, inclusion
relation for FSs has proposed by Zadeh [27]. It is a binary relation and describes
whether a FS is completely contained within another FS or not. But in practice, it is
too strict, so Kosko [10] argued to consider the degree of contained. The axiomatical
definition and constructive approach of inclusion measure for FSs have been studied
in [16, 31], and applied these inclusion measure of FSs to clustering analysis [5, 26].
The constructive approaches of inclusion measure for FSs mainly divide into two
methods: one is based on the cardinality of FSs, the other is based on fuzzy implica-
tors. For the inclusion relation of hesitant fuzzy elements (HFEs), Zhang and Yang
[25, 30] proposed a new partial order for HFEs by means of inclusion relation of FSs
in [31], based on which, inclusion measures for HFEs were constructed by the cardi-
nality of HFEs and fuzzy implicators. And inclusion measures for HFSs were further
studied by means of inclusion measures for HFEs and applied to decision making.
In some cases, inclusion measures proposed by Zhang and Yang [25, 30] are coun-
terintuitive, for example, let h1 = {0.03, 0.51, 0.52, 0.53} and h2 = {0.3, 0.45, 0.46}.
Obviously, the degree of h1 containing h2 is bigger than that of h2 containing h1,
while the degree of h1 containing h2 is smaller than that of h2 containing h1 by
inclusion measures in [25, 30]. In this paper, several inclusion measures for HFSs
are obtained by a new inclusion relation for HFSs and apply to decision making.
In addition, entropy plays an important role in fuzzy set theory, while information
energy has a closer connection with it. The larger information energy is, the smaller
entropy is, that is, it is less fuzziness. Information energy for FSs is a measure of
useful information obtained from a FS and the relative information energies were
introduced in [7, 17, 20, 21], but information energy for HFSs has not researched.
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In this paper, we introduce the concept of information energy for HFSs, and apply
it to decision making.

The rest of the paper is organized as follows. In section 2, we review some basic
concepts for FSs and HFSs. And we propose the axiomatical definition of inclusion
measure for HFSs. In section 3, we introduce a method for transforming a HFS
into a collection of FSs. Based on this method, a new inclusion relation for HFSs
is proposed and several inclusion measures for HFSs are constructed in terms of
inclusion measures for FSs. In section 4, we introduce information energy for HFSs
and give several formulas of information energies. In section 5, a real example is
provided to illustrate the application and validity of the proposed inclusion measures
and information energies for HFSs in hesitant fuzzy decision making. The conclusion
is given in the last section.

2. Preliminaries

To facilitate the presentation. In this section, we briefly recall some preliminary
definitions and results. They will be necessary along the other sections of the paper.

In general, the class of objects encountered in the practical world have not be
precisely defined criteria of membership, such as tall and short, young and old. In
order to better described it, Zadeh introduced the concept of FS in [27].

Definition 2.1 ([27], Fuzzy set). Let X be a nonempty set, a fuzzy set (FS) A on
X is defined in terms of a function µA when applied to X returns a real number of
[0, 1], that is,

A = {〈x, µA(x)〉 | x ∈ X},
where the real value µA(x) represents the degree of membership of x in A. For
convenience, the collection of all FSs on X is denoted as F(X).

Definition 2.2 ([27], Inclusion relation for FSs). Let A and B be two FSs on a
nonempty set X. Then an inclusion relation for FSs is defined as follows:

(2.1) A ⊆ B ⇔ µA(x) ≤ µB(x),∀x ∈ X.
Definition 2.3 ([18, 19], Hesitant fuzzy set). Let X be a nonempty set. A hesitant
fuzzy set (HFS) M on X is defined in terms of a function hM when applied to X
returns a subset of [0, 1], that is,

M = {〈x, hM (x)〉 | x ∈ X},
where hM (x) is a set of some different values in [0, 1], representing the possible
membership degrees of the element x ∈ X to the set M . For the sake of simplicity,
Xia and Xu [22] called hM (x) a hesitant fuzzy element (HFE).

Note that H(X) denotes the collection of all HFSs on X. Empty HFS: hM (x) = 0
for all x ∈ X, M = {0} for short. Full HFS: hM (x) = 1 for all x ∈ X, M = {1} for
short.

As we known, different HFEs have different cardinality. The concept of cardinality
for HFEs has been introduced in [6, 23].

Definition 2.4 ([6, 23]). Let M = {〈x, hM (x)〉 | x ∈ X} be a HFS on a nonempty
set X, we defined l(hM (x)) as the cardinality of the HFE hM (x), where l(hM (x))
stands for the number of values in hM (x). In symbols: l(hM (x)) = |hM (x)|.
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In hesitant fuzzy multi-attribute decision making, the form of evaluation values to
alternatives under attributes provided by experts are considered as HFEs, different
alternatives have different HFEs under attributes. The cardinality of HFEs are
usually different and HFEs are out of order, which cause difficulties to compare
them. In order to better compare two HFEs, we need to arrange them in any order
for convenience and add values to the smaller cardinality of HFE until it has the
same cardinality to the bigger HFE.

In [22, 24], the authors proposed that all the elements in each HFE hM (x) can
be arranged in increasing order or in decreasing order, supposing that HFEs are

arranged in increasing order and h
σ(j)
M (x) is referred to the jth smallest value in

hM (x) in this paper. In most cases, for x ∈ X, l(hM (x)) 6= l(hN (x)), for convenience,
let lx = max{l(hM (x)), l(hN (x))}. In order to operate correctly, we should extend
the smaller one until both of them have the same cardinality when we compare
them. The best way to extend the smaller one is to add the same values several
times in it and the selection of adding value mainly depends on the decision makers’
risk preference, optimists choose to add the maximum value, while pessimists may
choose to add the minimum value. In this paper, we consider experts are optimists
and HFEs are arranged in increasing order.

Based on the concept of cardinality and the method of adding values for HFEs,
Farhadinia [6] proposed the following inclusion relation for HFSs.

Definition 2.5 ([6]). Let M and N be two HFSs on a nonempty set X and X =
{x1, x2, · · · , xn}. Then the inclusion relation for HFSs is defined as follows:

(2.2) M v1 N iff h
σ(j)
M (xi) ≤ hσ(j)N (xi), 1 ≤ i ≤ n, 1 ≤ j ≤ lxi

,

where lxi
= max{|hM (xi)|, |hN (xi)|}.

Farhadinia [6] also gave another inclusion relation based on the score function of
HFSs as follows:

Definition 2.6 ([6]). Let M and N be two HFSs on a nonempty set X and X =
{x1, x2, · · · , xn}. Then the inclusion relation for HFSs is defined as follows:

(2.3) M v2 N iff Score(M) ≤ Score(N),

where Score(·) [23] represents the score function of a HFS given by

Score(M) =
1

n

n∑
i=1

 1

lxi

lxi∑
j=1

h
σ(j)
M (xi)

, lxi
= max{|hM (xi)|, |hN (xi)|}.

In general, µA(x) ≤ µB(x) holds for just a few x in the formula (2.1). So we
need to consider the degree of A containing B or B containing A. We know that
inclusion measure for FSs has been established in fuzzy set theory and the axiomatic
definition can be described as follows [32].

Definition 2.7 ([32]). (Inclusion measure for FSs) Let X be a nonempty set. A
real function IF : F(X) × F(X) → [0, 1] is called an inclusion measure for FSs if
IF satisfies the following properties:

(IF1) for all A, B ∈ F(X), if A ⊆ B, then IF (A,B) = 1,
(IF2) IF (X,φ) = 0, where X = {1}, φ = {0},
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(IF3) for all M , N , O ∈ F(X), if M ⊆ N ⊆ O, then IF (O,M) ≤ min{IF (N,M),
IF (O,N)}.

Based on the above definition of inclusion measure for FSs, we give the axiomatic
definition of inclusion measure for HFSs.

Definition 2.8. (Axiomatic definition of inclusion measure for HFSs) Let H(X) be
the collection of all HFSs on a nonempty set X. A function IH : H(X)×H(X)→
[0, 1] is called an inclusion measure if IH satisfies the following properties:

(IH1) for all M , N ∈ H(X), if M ⊆ N , then IH(M,N) = 1,
(IH2) IH(X,φ) = 0 where X = {1}, φ = {0},
(IH3) For allM , N , O ∈ H(X), ifM ⊆ N ⊆ O, then IH(O,M) ≤ min{IH(N,M),
IH(O,N)}.

Note that (IH3)⇔ (IH3)
′
: If M ⊆ N ⊆ O ⊆ P , then IH(P,M) ≤ IH(O,N).

In fuzzy set theory, several widely used inclusion measures in [5, 26, 31] are listed
as follows:

(2.4) IF1(A,B) =

{
|A∩B|
|A| , A 6= φ,

0, A = φ,

where | A |=
|X|∑
i=1

A(xi).

(2.5) IF2(A,B) =

{
0, A = B = φ,
|B|
|A∪B| , otherwise,

where | A |=
|X|∑
i=1

A(xi).

(2.6) IF3(A,B) =

|X|∑
i=1

λiT (A(xi), B(xi)),

where λi is a positive real number with
|X|∑
i=1

λi = 1, T (α, β) = min{α, β} is an

implicator.
Throughout this paper, we denotes the HFS M = {〈x, k〉 | x ∈ X} as M = {k},

where k is a real number.

3. Inclusion measures for HFSs

In this section, we first introduce the relationship between HFSs and collections
of FSs and propose a new inclusion relation for HFSs. Further, we construct some
inclusion measures for HFSs based on the new inclusion relation.

As is known, given a collection of FSs, a HFS could be defined in terms of this
collection of FSs.

Definition 3.1 ([18]). Let M = {µ1, µ2, · · · , µn} be a collection of n FSs, where
each µi (i = 1, 2, · · · , n) is a membership function on a nonempty set X. Then the
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HFS associated with M, that is, hM is defined as follows:

hM(x) =
⋃
µ∈M
{µ(x)}.

Note that for the repeated memberships in hM(x), we only calculate once. For
the memberships in hM(x) being zero, we omit it.

From Definition 3.1, it is clear that given a collection of FSs, the corresponding
HFS can be obtained. Conversely, given a HFS, the corresponding collection of FSs
could be derived by the following definition.

Definition 3.2. Let M = {〈x, hM (x)〉 | x ∈ X} be a HFS on a nonempty set
X = {x1, x2, · · · , xn} and lM = max

x∈X
|hM (x)|. If |hM (x)| 6= lM , for x ∈ X, we

extend hM (x) by adding the maximum value in it until it has the same cardinality
with lM . Then the collection of FSs associated with M is defined as follows:

AMi = {〈xj , hσ(i)M (xj)〉 | j = 1, 2, · · · , n}, i = 1, 2, · · · , lM .
For convenience, we denote the collection of FSs by F (M), that is,

F (M) = {AM1 , AM2 , · · · , AMlM }.

It is obvious that the cardinality of F (M) is lM . Especially, if the HFS M = {k},
(k is a real number), that is to say, M is a FS, then F (M) = {M}.

Remark 3.3. From Definition 3.1, we know that a HFS can be obtained by a
collection of FSs. Conversely, Definition 3.2 explains that a collection of FSs can be
decided by a HFS. So we may study a HFS by means of a collection of FSs.

In the following, we give two examples.

Example 3.4. Let X = {x1, x2, x3} andM = {µ1, µ2, µ3}, where µ1 = {〈x1, {0.1}〉,
〈x2, {0.4}〉, 〈x3, {0.5}〉}, µ2 = {〈x1, {0.7}〉, 〈x2, {0.6}〉, 〈x3, {0.4}〉} and µ3 = {〈x1, {0.4}
〉, 〈x2, {0.4}〉}. Then the HFS associated with M is:

hM(x1) = {µ1(x1)} ∪ {µ2(x1)} ∪ {µ3(x1)} = {0.1, 0.7, 0.4},
hM(x2) = {µ1(x2)} ∪ {µ2(x2)} ∪ {µ3(x2)} = {0.4, 0.6},
hM(x1) = {µ1(x3)} ∪ {µ2(x3)} ∪ {µ3(x3)} = {0.5, 0.4}.

Thus, HM = {〈x1, {0.1, 0.7, 0.4}〉, 〈x2, {0.4, 0.6}〉, 〈x3, {0.5, 0.4}〉}.

Example 3.5. Let M = {〈x1, {0.2}〉, 〈x2, {0.4, 0.5}〉, 〈x3, {0.5, 0.7, 0.8}〉} on X =
{x1, x2, x3}. Then the collection of FSs associated with M are:

AM1 = {〈x1, {0.2}〉, 〈x2, {0.4}〉, 〈x3, {0.5}〉},
AM2 = {〈x1, {0.2}〉, 〈x2, {0.5}〉, 〈x3, {0.7}〉},
AM3 = {〈x1, {0.2}〉, 〈x2, {0.5}〉, 〈x3, {0.8}〉}.

Thus, F (M) = {AM1 , AM2 , AM3 }.

Remark 3.6. According to Definition 3.2, we have AMi (x) = h
σ(i)
M (x), ∀AMi ∈ F (M)

and x ∈ X.

Based on Remark 3.3, we can give the inclusion relation for HFSs by means of
the inclusion relation for FSs.
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Definition 3.7. Let M and N be two HFSs on a nonempty set X. Then the
inclusion relation for HFSs is defined as follows:

(3.1) M v3 N iff AMi ⊆ ANj ,∀AMi ∈ F (M),∀ANj ∈ F (N),

where F (M) and F (N) are two collections of FSs associated with M and N , respec-
tively.

Clearly, if M and N are FSs in Definition 3.7, then we can get that M v3 N iff
µM (xi) ≤ µN (xj), for xi, xj ∈ X. This is consistent with Definition 2.2.

By the formula (2.2) and the formula (3.1), we present the relationship between
v1 and v3 in the following proposition.

Proposition 3.8. Let M and N be two HFSs on a nonempty set X. If M v3 N ,
then M v1 N .

Proof. According to the formula (3.1), we know if M v3 N , then AMi ⊆ ANj ,

for ∀AMi ∈ F (M) and ∀ANj ∈ F (N). Thus, AMi ⊆ ANi , for ∀AMi ∈ F (M) and

∀ANi ∈ F (N). By Definition 3.2 and Remark 3.6, we have AMi (x) = h
σ(i)
M (x) and

ANi (x) = h
σ(i)
N (x), ∀x ∈ X. So h

σ(i)
M (x) ≤ h

σ(i)
N (x), ∀x ∈ X. This implies M v1 N

by Definition 2.5. �

In the following, we give an example to show that inclusion relation v3 is stricter
than inclusion relation v1, while inclusion relations v1 and v3 are stricter than v2.

Example 3.9. Let X = {x1, x2}, and M = {〈x1, {0.2, 0.3}〉, 〈x2, {0.3, 0.4}〉, 〈x3, {0.
6}〉}, N = {〈x1, {0.3, 0.5}〉, 〈x2, {0.5, 0.6}〉, 〈x3, {0.7, 0.9}〉} be two HFSs on X. Then
F (M) = {AM1 , AM2 }, F (N) = {AN1 , AN2 }, where

AM1 = {〈x1, {0.2}〉, 〈x2, {0.3}〉, 〈x3, {0.6}〉},
AM2 = {〈x1, {0.3}〉, 〈x2, {0.4}〉, 〈x3, {0.6}〉},
AN1 = {〈x1, {0.3}〉, 〈x2, {0.5}〉, 〈x3, {0.7}〉},
AN2 = {〈x1, {0.5}〉, 〈x2, {0.6}〉, 〈x3, {0.9}〉}.

According to Definition 2.2, we have AMi ⊆ ANj , i, j = 1, 2. Therefore M v3 N by
Definition 3.7, consequently, M v1 N .

If we change M into M ′ = {〈x1, {0.2, 0.4}〉, 〈x2, {0.3, 0.4}〉, 〈x3, {0.6}〉}, then
M ′ v1 N and M ′ 6v3 N ; if we change M into M ′′ = {〈x1, {0.2, 0.3}〉, 〈x2, {0.5, 0.7}〉,
〈x3, {0.6}〉}, then M ′′ 6v1 N , M ′′ 6v3 N and M ′′ v2 N .

From Example 3.9, we can see that for any two HFSs, inclusion relations v1 and
v3 sometimes can not be confirmed.

As we know, inclusion measure for FSs has been studied and applied to decision
making and clustering analysis, while few articles study inclusion measures for HFSs.
In the following, inclusion measures for HFSs will be introduced.

In the following, we denote
∨

and
∧

as the maximum and minimum operations,
respectively.

Theorem 3.10. Let M and N be two HFSs on a nonempty set X. Then

(3.2) IH1(M,N) =

lM∨
i=1

lN∧
j=1

IF (AMi , A
N
j )

is an inclusion measure for HFSs, where IF is an inclusion measure for FSs.
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Proof. We show that IH1(M,N) satisfies three properties of Definition 2.8 as follows.
(IH1) If M v3 N , then AMi ⊆ ANj for ∀AMi ∈ F (M) and ANj ∈ F (N) by

Definition 3.7. Since IF is an inclusion measure for FSs, it follows from (IF1) of
Definition 2.7 that IF (AMi , A

N
j ) = 1, for ∀AMi ∈ F (M) and ANj ∈ F (N). Thus,

IH1(M,N) =

lM∨
i=1

lN∧
j=1

IF (AMi , A
N
j ) = 1.

(IH2) When M = X, N = φ, we have F (M) = {{1}}, F (N) = {{0}}. By (IF2) of
Definition 2.7, we can conclude that IF ({1}, {0}) = 0, which implies IH1(X,φ) = 0.

(IH3) If M1 v3 M2 v3 M3, that is, AM1
i ⊆ AM2

j ⊆ AM3

k , for ∀AM1
i ∈ F (M1),

AM2
j ∈ F (M2) and AM3

k ∈ F (M3). Then we can obtain that IF (AM3

k , AM1
i ) ≤

IF (AM3

k , AM2
j ) and IF (AM3

k , AM1
i ) ≤ I(AM2

j , AM1
i ), by (IF3) of Definition 2.7. Thus

lM3∨
i=1

lM1∧
j=1

IF (AM3

k , AM1
i ) ≤

lM3∨
i=1

lM2∧
j=1

IF (AM3

k , AM2
j ),

lM3∨
i=1

lM1∧
j=1

IF (AM3

k , AM1
i ) ≤

lM2∨
i=1

lM1∧
j=1

IF (AM2
j , AM1

i ).

That is, IH1(M3,M1) ≤ max{IH1(M3,M2), IH1(M2,M1)}.
In summary, IH1(M,N) is an inclusion measure. This completes the proof. �

Theorem 3.11. Let M and N be two HFSs on a nonempty set X, Then the fol-
lowing functions

(3.3) IH2(M,N) =

lM∧
i=1

lN∨
j=1

IF (AMi , A
N
j ),

(3.4) IH3(M,N) =

lM∨
i=1

lN∨
j=1

IF (AMi , A
N
j ),

(3.5) IH4(M,N) =

lM∧
i=1

lN∧
j=1

IF (AMi , A
N
j )

are inclusion measures for HFSs, where IF is an inclusion measure for FSs.

Proof. Firstly, we show that IH2(M,N) satisfies three properties of Definition 2.8
as follows.

(IH1) If M v3 N , then AMi ⊆ ANj , for ∀AMi ∈ F (M) and ANj ∈ F (N), by
Definition 3.7. Since IF is an inclusion measure for FSs, it follows from (IF1) of
Definition 2.7 that IF (AMi , A

N
j ) = 1, for ∀AMi ∈ F (M) and ANj ∈ F (N). Thus,

IH2(M,N) =
lM∧
i=1

lN∨
j=1

IF (AMi , A
N
j ) = 1.

(IH2) When M = X, N = φ, we have F (M) = {{1}}, F (N) = {{0}}. By (IF2) of
Definition 2.7, we can conclude that IF ({1}, {0}) = 0, which implies IH2(X,φ) = 0.
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(IH3) If M1 v3 M2 v3 M3, that is, AM1
i ⊆ AM2

j ⊆ AM3

k , for ∀AM1
i ∈ F (M1),

AM2
j ∈ F (M2) and AM3

k ∈ F (M3). Then we can obtain that IF (AM3

k , AM1
i ) ≤

IF (AM3

k , AM2
j ) and IF (AM3

k , AM1
i ) ≤ IF (AM2

j , AM1
i ), by (IF3) of Definition 2.7.

Thus
lM3∧
i=1

lM1∨
j=1

IF (AM3

k , AM1
i ) ≤

lM3∧
i=1

lM2∨
j=1

IF (AM3

k , AM2
j ),

lM3∧
i=1

lM1∨
j=1

IF (AM3

k , AM1
i ) ≤

lM2∧
i=1

lM1∨
j=1

IF (AM2
j , AM1

i ).

So, IH2(M3,M1) ≤ max{IH2(M3,M2), IH2(M2,M1)}.
Similar to the proof of IH2(M,N), it is sufficient to show that IH3(M,N) and

IH4(M,N) satisfy three properties of Definition 2.8. �

We can also get the following theorem easily.

Theorem 3.12. Let IH ′ and IH ′′ be two inclusion measures for HFSs. Then the
following assertions hold:

(1) IH ′(M,N)IH ′′(N c,M c) is an inclusion measure for HFSs,
(2) IH ′(M,N) ∧ IH ′′(N c,M c) is an inclusion measure for HFSs,
(3) IH ′(M,N) ∨ IH ′′(N c,M c) is an inclusion measure for HFSs,
(4) λ1IH

′(M,N) + λ2IH
′′(N c,M c)] is an inclusion measure for HFSs, where

λ1, λ2 ∈ [0, 1] and λ1 + λ2 = 1,
(5) 0 ∨ [IH ′(M,N) + IH ′′(N c,M c)− 1] is an inclusion measure for HFSs,
(6) 1 ∧ [IH ′(M,N) + IH ′′(N c,M c)] is an inclusion measure for HFSs.

Remark 3.13. If we replace similarity measures or distance measures for inclusion
measures in Theorem 3.10 and Theorem 3.11 in above, we could obtain some new
similarity measures or distance measures for HFSs. Furthermore, Theorem 3.12 also
holds for similarity measures or distance measures of HFSs.

4. Information energy for HFSs

Information energy for FSs and interval-valued fuzzy numbers have been discussed
in [7, 17, 20, 21], it is used to reflect the fuzziness degree of a set. The larger of
the information energy, the smaller of the fuzziness degree. Information energy for
HFSs has not been studied. In this section, the information energy for HFSs will be
introduced.

The information energy for FSs has been proposed in [20] and described as follows.

Definition 4.1 ([20]). Let X be a nonempty set. Then a real function E : F(X)→
[0, 1] is called an information energy for FSs, if it satisfies the following properties:

(i) for all A ∈ F(X), E(A) = 0, if µA(x) = 1
2 ∀x ∈ X,

(ii) for all A ∈ F(X), E(A) = 1, if µA(x) = 0 or µA(x) = 1 ∀x ∈ X,
(iii) for all A ∈ F(X), E(A) = E(Ac),

(iv) for all A,B ∈ F(X), if A ⊆ B ⊆ { 12} or A ⊇ B ⊇ { 12}, then E(A) ≥ E(B).

From Definition 4.1, it is easy to conclude that information energy gets minimum
0 when µA(x) = 1

2 ∀x ∈ X, that is, it is fuzziest. While information energy gets
maximum 1 when µA(x) = 0 or µA(x) = 1 ∀x ∈ X, that is, it is crisp.
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Give a HFS M , we can get the only collection of F (M) by Definition 3.2. There-
fore, the information energy for HFSs can be expressed by the information energy
of the collection of FSs. Based on these, the information energy for HFSs is defined
as follows.

Definition 4.2. (Information energy for HFSs) Let X be a nonempty set and M
be a HFS on X. Then information energy for HFSs is defined as follows:

IE(M) =
1

lM

lM∑
i=1

E(AMi ).

In Definition 4.2, information energy IE(M) gets maximum 1 if M = {0} or

M = {1}; while information energy get minimum 0 if M = { 12}. If M = {k},
information energy can be expressed as IE(M) = E(M).

According to Definition 4.1 and Definition 4.2, the following theorem can be
obtained.

Theorem 4.3. Let X = {x1, x2, · · · , xn} be a nonempty set and H(X) be the col-
lection of all HFSs on X, It is easy to check that the functions IE1 and IE2 are two
information energies for HFS:

(4.1) IE1(M) =
1

nlM

lM∑
j=1

n∑
i=1

[4(AMj (xi))
2 − 4AMj (xi) + 1],

(4.2) IE2(M) =
1

nlM

lM∑
j=1

n∑
i=1

[1− sinAMj (xi)π],

where M ∈ H(X) and AMj ∈ F (M).

From Theorem 4.3, we can obtain that a lot of information energies can be con-
structed, the selection of E in Definition 4.2 is different, the information energy IE
will different.

Remark 4.4. In Definition 4.2, we can find that the closer membership degrees of

HFS M to { 12}, the bigger fuzziness of HFS M .

5. An application in hesitant fuzzy multi-attribute decision making

In this part, we apply the proposed inclusion measures and information energies
to multi-attribute decision making problem under the environment of hesitant fuzzy
information.

For a multi-attribute decision making problem. Let H = {H1, H2, · · · , Hm} be
a collection of alternatives, X = {x1, x2, · · · , xn} be a collection of attributes and
w = {w1, w2, · · · , wn} be the weight vector of attributes, where wj ∈ [0.1] and
n∑
j=1

wj = 1.

Based on the above statement, we give the following decision making method.
Step 1. The decision makers provide their evaluations about the alternative Hi

under the attribute xj , denoted by the HFE hij (i = 1, 2, · · · ,m; j = 1, 2, · · · , n).
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Step 2. Identify the positive ideal solution H+ [8, 24],

H+ = {< xj ,max
i
{hσ(λ)ij } >| j = 1, 2, · · · , n}

= {〈x1, {(h11)+, (h21)+, · · · , (hl1)+}〉, 〈x2, {(h12)+, (h22)+, · · · , (hl2)+}〉, · · · ,

〈xn, {(h1n)+, (h2n)+, · · · , (hln)+}〉},
where l = max

i=1,2,··· ,m;j=1,2,··· ,n
{|hij |}, |hij | denotes the cardinality of the HFE hij and

(hji )
+ = max

1≤k≤m
h
σ(j)
Hk

(xi), 1 ≤ i ≤ n, 1 ≤ j ≤ l.

Step 3. Calculate the degree ofHi (i = 1, 2, · · · ,m) containingH+ by IH1(H+, Hi)
and the information energy IE1(Hi) provided byHi (i = 1, 2, · · · ,m), where IF (·, ·) =
IF1(·, ·) in IH1(H+, Hi).

Step 4. Calculate the sum of IH1(H+, Hi) and IE1(Hi), and denote it as S(Hi)
(i = 1, 2, · · · ,m).

Step 5. Get the priority of the alternatives Hi (i = 1, 2, · · · ,m) by ranking S(Hi)
(i = 1, 2, · · · ,m).

Now, a real example adapted from [9, 23] is employed to illustrate the proposed
decision making method.

Example 5.1 ([9, 23]). Energy plays an important role in the socio-economic de-
velopment of societies. Therefore, the most appropriate energy policy selection is of
great importance. Now, suppose that there are five alternatives (energy projects)
Hi (i = 1, 2, 3, 4, 5) to be invested, and four attributes to be considered: x1: techno-
logical; x2: environmental; x3: social political; x4: economic. The attribute weight
vector is w = (0.15, 0.3, 0.2, 0.35)T . Several decision makers are invited to evaluate
the performances of the five alternatives. To get a more reasonable result, it is better
that the decision makers give their evaluations anonymously. Thus, each providing
value only means that it is a possible value, and its importance is unknown. So, it
is reasonable to allow these values repeated many times to appear only once, and
all possible evaluations for an alternative under attributes can be considered as a
HFS on X. The results evaluated by the decision makers are contained in a hesitant
fuzzy decision matrix, show in Table 1.

It is clear that different HFEs of different HFSs have different numbers of values,
so the cardinality of HFEs may be different. In order to identify the positive ideal
solution H+ of HFSs, we need to add values in the smaller cardinality of HFE.
According to the regulation of adding value in HFE, we consider that decision makers
are optimistic and add maximum values in the smaller cardinality HFEs. The result
lists in Table 2.

In the following, we use the developed method to get the most desirable alterna-
tive.

Step 1. The evaluation values provided by decision makers are presented in Table
1, and all possible evaluation values for an alternative under the attributes can be
considered as a HFS.

Step 2. According to Table 2, we have
H+ = {< x1, {0.6, 0.7, 0.7, 0.8, 0.9} >,< x2, {0.6, 0.9, 0.9, 0.9, 0.9} >,

< x3, {0.7, 0.8, 0.9, 0.9, 0.9} >,< x4, {0.6, 0.8, 0.9, 0.9, 0.9} >}.
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Step 3. Calculate IH1(H+, Hi) and IE1(Hi) by the formula (3.3) and the formula
(4.1) in Theorem 3.10 and Theorem 4.3, respectively. we have

IH1(H+, H1) = 0.36, IH1(H+, H2) = 0.36, IH1(H+, H3) = 0.76,
IH1(H+, H4) = 0.48, IH1(H+, H5) = 0.6.
IE1(H1) = 0.2025, IE1(H2) = 0.172, IE1(H3) = 0.1767,
IE1(H4) = 0.3025, IE1(H5) = 0.334.

Step 4. According to Step 3, we can conclude
S(H1) = 0.5625, S(H2) = 0.532, S(H3) = 0.9367,
S(H4) = 0.7825, S(H5) = 0.934.

Step 5. According to S(Hi) (i = 1, 2, 3, 4, 5) in step 4, alternatives Hi (i =
1, 2, 3, 4, 5) are ranked as

H3 ≥ H5 ≥ H4 ≥ H2 ≥ H1.

This implies that H3 is the most desirable energy project.

Table 1. Hesitant fuzzy information.
x1 x2 x3 x4

H1 {0.3, 0.4, 0.5} {0.1, 0, 7, 0.8, 0.9} {0.2, 0.4, 0.5} {0.3, 0.5, 0.6, 0.9}
H2 {0.3, 0.5} {0.2, 0.5, 0.6, 0.7, 0.9} {0.1, 0.5, 0.6, 0.8} {0.3, 0.4, 0.7}
H3 {0.6, 0.7} {0.6, 0.9} {0.3, 0.5, 0.7} {0.4, 0.6}
H4 {0.3, 0.4, 0.7, 0.8} {0.2, 0.4, 0.7} {0.1, 0.8} {0.6, 0.8, 0.9}
H5 {0.1, 0.3, 0.6, 0.7, 0.9} {0.4, 0.6, 0.7, 0.8} {0.7, 0.8, 0.9} {0.3, 0.6, 0.7, 0.9}

Table 2. The extended hesitant fuzzy information.
x1 x2 x3 x4

H1 {0.3, 0.4, 0.5, 0.5, 0.5} {0.1, 0, 7, 0.8, 0.9, 0.9} {0.2, 0.4, 0.5, 0.5, 0.5} {0.3, 0.5, 0.6, 0.9, 0.9}
H2 {0.3, 0.5, 0.5, 0.5, 0.5} {0.2, 0.5, 0.6, 0.7, 0.9} {0.1, 0.5, 0.6, 0.8, 0.8} {0.3, 0.4, 0.7, 0.7, 0.7}
H3 {0.6, 0.7, 0.7, 0.7, 0.7} {0.6, 0.9, 0.9, 0.9, 0.9} {0.3, 0.5, 0.7, 0.7, 0.7} {0.4, 0.6, 0.6, 0.6, 0.6}
H4 {0.3, 0.4, 0.7, 0.8, 0.8} {0.2, 0.4, 0.7, 0.7, 0.7} {0.1, 0.8, 0.8, 0.8, 0.8} {0.6, 0.8, 0.9, 0.9, 0.9}
H5 {0.1, 0.3, 0.6, 0.7, 0.9} {0.4, 0.6, 0.7, 0.8, 0.8} {0.7, 0.8, 0.9, 0.9, 0.9} {0.3, 0.6, 0.7, 0.9, 0.9}

If we use IH2(H+, Hi), IH3(H+, Hi) and IH4(H+, Hi) (i = 1, 2, 3, 4, 5) to cal-
culate the degree of Hi containing H+ respectively in step 3 and keep IE1 and IF1

unchanged, we can obtained the following results, listed as Table 3.

Table 3. Results obtained by inclusion measures IH2, IH3, IH4 and IE1.

S(H1) S(H2) S(H3) S(H4) S(H5) Ranking
IH2 0.9803 0.9776 0.9823 1.1914 1.3028 H5 ≥ H4 ≥ H3 ≥ H2 ≥ H1
IH3 1.0825 1.132 1.1767 1.3025 1.334 H5 ≥ H3 ≥ H4 ≥ H2 ≥ H1
IH4 0.4525 0.422 0.7045 0.6358 0.7507 H5 ≥ H3 ≥ H4 ≥ H2 ≥ H1

From Table 3, we can see that the most desirable alternative derived by inclusion
measures IH2, IH3 and IH4 is H5. Therefore, H5 is the most desirable alternative.

In order to better describe the decision making method, we choose IE2 to calculate
the information energy of HFSs and keep IHi (i = 1, 2, 3, 4) and IF1 unchanged,
the results are listed in Table 4.

Table 4. Results obtained by inclusion measures IH1, IH2, IH3, IH4 and IE2.

S(H1) S(H2) S(H3) S(H4) S(H5) Ranking
IH1 0.5861 0.5556 0.9556 0.8211 0.9708 H5 ≥ H3 ≥ H4 ≥ H2 ≥ H1
IH2 1.0039 1.0011 1.0048 1.2300 1.3395 H5 ≥ H3 ≥ H4 ≥ H1 ≥ H2
IH3 1.1061 1.1556 1.1992 1.3410 1.3708 H5 ≥ H4 ≥ H3 ≥ H2 ≥ H1
IH4 0.4761 0.4456 0.7270 0.6744 0.7874 H5 ≥ H4 ≥ H3 ≥ H2 ≥ H1

From Table 4, we can conclude that H5 is the most desirable alternative. Com-
paring the Table 3 with Table 4, the ranking results obtained by Table 3 and Table
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4 are similar, H5 is the most desirable alternative. The difference of the Table 3 and
Table 4 is the ranking of H1 and H2, H3 and H4. It is caused by the information
energy IEi(·), implying the information energy IEi is also an important factor in
decision making. Note that, the selection of IHi depends on decision makers. In
general, we choose IH1 and IH2 to calculate the inclusion measure.

Comparing the above ranking results with the papers Li [11] and Xu [23], in
which the ranking results obtained by distance measures for HFSs. It is clear that
different distance measures lead to different ranking results and different values of
the parameter in distance measures also lead to different ranking results [11, 23]. So,
the ranking results are closed related to distance measures and the selection of their
parameter. In Zhang and Yang [30], the ranking result is H1 ≥ H2 ≥ H4 ≥ H3 ≥ H5,
so H1 is the most desirable alternative. However, IH1(H+, H1) = 0.36 < IH1

(H+, H5) = 0.6, IHi(H
+, H1) < IH1(H+, H5) (i = 2, 3, 4) and IE1(H1) = 0.2025

< IE1(H5) = 0.334. Obviously, H1 is not the most desirable alternative. Therefore,
the method proposed in this paper is more reasonable. In hesitant fuzzy TODIM
method or ELECTRE II method, more parameter value need to be provided in
ranking, it will lead to the ranking result having deviation.

6. Conclusions

Inclusion measure is an important subject in hesitant fuzzy set theory, inclusion
measure of FSs and other extension of FSs have already been studied and applied
to some fields. In this paper, we mainly construct some new inclusion measures for
HFSs by inclusion measures for FSs. We first proposed the axiomatical definition
of inclusion measure for HFSs and discussed the relationship between HFSs and
collections of FSs. Based on these, a new inclusion relation of HFSs was established
and the relationships with existing inclusion relations of HFSs was also discussed.
Further, several new inclusion measures for HFSs developed by collections of FSs in
view of the relationship between HFSs and collections of FSs and the new inclusion
relation. In addition, we introduced information energy for HFSs, which is used to
reflect the fuzziness degree of a set. Finally, the validity and efficiency of the proposed
decision making method associated with inclusion measures and information energies
for HFSs has been illustrated by an energy police selection example. In the future,
we hope that the inclusion measures can be applied to other aspects, such as pattern
recognition, cluster analysis and image processing.
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