
Annals of Fuzzy Mathematics and Informatics

Volume 14, No. 3, (September 2017), pp. 315–330

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Fuzzy congruence relations on almost distributive
lattices

Berhanu Assaye Alaba, Gezahagne Mulat Addis

@FMI

@ F M I

@ F M I

@ F M I

@ F M I

@ F M I
@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I

@ F M I @ F M I
@ F M I @ F M I
@ F M I @ F M I
@ F M I

Reprinted from the
Annals of Fuzzy Mathematics and Informatics

Vol. 14, No. 3, September 2017



Annals of Fuzzy Mathematics and Informatics

Volume 14, No. 3, (September 2017), pp. 315–330

ISSN: 2093–9310 (print version)

ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

@FMI
c© Kyung Moon Sa Co.

http://www.kyungmoon.com

Fuzzy congruence relations on almost distributive
lattices

Berhanu Assaye Alaba, Gezahagne Mulat Addis

Received 25 May 2017; Revised 23 June 2017; Accepted 12 July 2017

Abstract. In this paper we give several characterizations for fuzzy
ideals, fuzzy homomorphisms, and fuzzy congruences of an almost dis-
tributive lattice. In addition, the quotient of an almost distributive lattice
induced by a fuzzy congruence is also presented in the paper. Furthermore,
we obtain a kind of fuzzy congruences for which their quotient is a distribu-
tive lattice and for which it is not. Mainly, we construct a monomorphism
of the lattice of fuzzy ideals into the lattice of fuzzy congruences of almost
Boolean rings, and we give a necessary and sufficient condition for this
monomorphism to become a lattice isomorphism.
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1. Introduction

The concept of an almost distributive lattice(ADL) was first introduced by U.M.
Swamy and G. C. Rao [9] in 1980 as a common abstraction to most of the existing
ring theoretic and lattice theoretic generalization of Boolean algebras. An ADL is an
algebra with two binary operations ∨ and ∧ which satisfies almost all the properties
of a distributive lattice with smallest element 0 except possibly the commutativity
of ∨, the commutativity of ∧ and the right distributivity of ∨ over ∧. It was also
observed that any one of these three properties converts an ADL into a distributive
lattice. The study of ideals, and congruence relations on ADLs was initiated in [9]
and later studied by many authors. In most of algebraic structures the concept
of congruences is closely related with structures such as; normal subgroups (in the
case of groups), ideals (in the case of rings), and quotient algebras. This makes the
study of congruences more important both from theoretical stand point and for its
applications in many fields. In this view, the concept of filter congruences and factor
congruences was introduced in an ADL analogous to that in a distributive lattice by



Gezahagne Mulat Addis et al. /Ann. Fuzzy Math. Inform. 14 (2017), No. 3, 315–330

U.M. Swamy et al. [8]. Following this, Y. S. Pawar et al. [4] further studied on the
class of congruences on ADLs induced by multiplicatively closed sets.

On the other hand, the study of fuzzy sets was done in 1965 by L. A. Zadeh [11].
Since then many authors have been studying fuzzy subalgebras of several algebraic
structures. Rosenfeld [5] in 1971 developed the concept of fuzzy subgroup. W. J.
Liu [2] in 1982 initiated the study of fuzzy subrings, and fuzzy ideals of a ring. D.S.
Malik et al. [3] studied fuzzy homomorphisms of rings. In 1990, Y. Bo et al. [10]
introduced the concept of fuzzy ideals and fuzzy congruences of distributive lattices
and showed that if L is relatively complemented distributive lattice with zero, then
there is a one-to-one correspondence between the lattice of fuzzy ideals and the
lattice of fuzzy congruences of L. Later in 1998 U. M. Swamy et al. [7] studied
properties of L-fuzzy ideals and L-fuzzy congruences of lattices.

More recently, U. M. Swamy et al. [6] initiated the study of L-fuzzy ideals of
ADLs. They particularly proved that the class of L-fuzzy ideals of an ADL forms
a complete distributive lattice. In this paper, we extend the results in [6] and give
several characterizations for fuzzy ideals, fuzzy homomorphisms, and fuzzy congru-
ences of ADLs. Quotient ADLs induced by fuzzy congruences are also presented
in the paper. In addition, we obtain a kind of fuzzy congruences for which their
quotient is a distributive lattice and for which it is not. Furthermore, we give the
smallest fuzzy congruence on an ADL A such that its quotient is a distributive lat-
tice. Finally, we construct a monomorphism of the lattice of fuzzy ideals and the
lattice of fuzzy congruences of almost Boolean rings and we give a necessary and
sufficient condition for this monomorphism to become an order isomorphism.

Most of the results in the paper seem analogous to those results in distributive
lattices, though the proofs are different due to the absence of the commutativity of
∨ and ∧.

2. Preliminaries

In this section we recall some definitions and basic results on almost distributive
lattices.

Definition 2.1 ([9]). An algebra (A,∨,∧, 0) of type (2, 2, 0) is called an almost
distributive lattice, abbreviated as ADL, if it satisfies the following axioms:

(i) a ∨ 0 = a,
(ii) 0 ∧ a = 0,
(iii) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c),
(iv) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),
(v) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),
(v) (a ∨ b) ∧ b = b, for all a, b, c ∈ A.

Lemma 2.2 ([9]). For any a ∈ A, we have

(1) a ∧ 0 = 0,
(2) 0 ∨ a = a,
(3) a ∧ a = a,
(4) a ∨ a = a.

Lemma 2.3 ([9]). For any a, b ∈ A, we have
316
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(1) (a ∧ b) ∨ b = b,
(2) a ∨ (a ∧ b) = a = a ∧ (a ∨ b),
(3) a ∨ (b ∧ a) = a = (a ∨ b) ∧ a,
(4) ∧ is associative and a ∧ b ∧ c = b ∧ a ∧ c.

Corollary 2.4 ([9]). For any a, b ∈ A, we have

(1) a ∨ b = a if and only if a ∧ b = b,
(2) a ∨ b = b if and only if a ∧ b = a.

Definition 2.5 ([9]). For any a, b ∈ A, we say that a is less than or equals to b and
we write a ≤ b, if a ∧ b = a or equivalently a ∨ b = b.

Theorem 2.6 ([9]). For any a, b ∈ A, the following are equivalent:

(1) (a ∧ b) ∨ a = a,
(2) a ∧ (b ∨ a) = a,
(3) (b ∧ a) ∨ b = b,
(4) b ∧ (a ∨ b) = b,
(5) a ∧ b = b ∧ a,
(6) a ∨ b = b ∨ a,
(7) the supremum of a and b exists in A and equals to a ∨ b,
(8) there exists x ∈ A such that a ≤ x and b ≤ x,
(9) the infimum of a and b exists in A and equals to a ∧ b.

Definition 2.7 ([9]). A nonempty subset I of an ADL A is called an ideal of A, if
a ∨ b, a ∧ x ∈ I, for all a, b ∈ I and for all x ∈ A.

It can be observed that x ∧ a ∈ I for all a ∈ I and all x ∈ A. For any subset
S ⊆ A, the smallest ideal of A containing S is called the ideal of A generated by S
and is denoted by 〈S]. Note that:

〈S] = {(
∨
xi) ∧ a : a ∈ A, xi ∈ S, i = 1, ..., n for some n ∈ Z+}.

If S = {a}, then we write 〈a] , for 〈S]. In this case, 〈a] = {a ∧ x : x ∈ A}.

3. Fuzzy ideals and Fuzzy homomorphisms on ADLs

In this section, we give several characterizations for fuzzy ideals and fuzzy homo-
morphisms of ADLs. Some of the results on fuzzy ideals are due to [6]. Remember
that, for any set A, a function µ : A→ [0, 1] is called a fuzzy subset of A. For each
t ∈ [0, 1] , the set

µt = {x ∈ A : µ(x) ≥ t}
is called the level subset of µ at t [11].

Definition 3.1. A fuzzy subset µ of A is called a fuzzy subADL of A, if:

µ(x ∨ y) ∧ µ(x ∧ y) ≥ µ(x) ∧ µ(y), for all x, y ∈ A.

Definition 3.2 ([6]). A fuzzy subset µ of A is called a fuzzy ideal of A, if:

µ(0) = 1 and µ(x ∨ y) = µ(x) ∧ µ(y), for all x, y ∈ A.

We denote the class of all fuzzy ideals of A by FI(A).

Example 3.3. Let A = {0, a, b, c} and let ∨ and ∧ be binary operations on A
defined by:
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∨ 0 a b c
0 0 a b c
a a a a a
b b b b b
c c a b c

∧ 0 a b c
0 0 0 0 0
a 0 a b c
b 0 a b c
c 0 c c c

Then (A,∨,∧, 0) is an ADL(a discrete ADL) [9]. Now define a fuzzy subset µ of A
by:

µ(0) = 1, µ(a) = 0.6 = µ(b) and µ(c) = 0.8.

Thus µ is a fuzzy ideal of A.

Lemma 3.4. [6] A fuzzy subset µ of A is a fuzzy ideal of A if and only if

(1) µ(0) = 1,
(2) µ(x ∨ y) ≥ µ(x) ∧ µ(y),
(3) µ(x ∧ y) ≥ µ(x) ∨ µ(y), for all x, y ∈ A,

Lemma 3.5. Let µ be fuzzy subADL of A. Then µ is a fuzzy ideal of A if and only
if

µ(0) = 1 and a ∧ b = b⇒ µ(a) ≤ µ(b), for all a, b ∈ A

Lemma 3.6 ([6]). Let µ be fuzzy subset of A. Then µ is a fuzzy ideal of A if and
only if µt is an ideal of A, for all t ∈ [0, 1] .

Lemma 3.7. The intersection of any family of fuzzy ideals of A is a fuzzy ideal.

Remark 3.8. Note that the union of a family of fuzzy ideals of A is not in general
a fuzzy ideal of A. We verify this in the following example:

Example 3.9. Let A = {0, a, b, c} and let ∨ and ∧ be binary operations on A de-
fined by:

∨ 0 a b c
0 0 a b c
a a a a a
b b a b a
c c a a c

∧ 0 a b c
0 0 0 0 0
a 0 a b c
b 0 b b 0
c 0 c 0 c

Then it is clear that (A,∨,∧, 0) is an ADL. Now define fuzzy subsets µ and σ of A
by:

µ(0) = 1, µ(a) = 0.5 = µ(b) and µ(c) = 0.7,
σ(0) = 1, σ(a) = 0.6 = σ(c) and σ(b) = 0.8.

Thus both µ and σ are fuzzy ideals of A but µ ∪ σ fails to be a fuzzy ideal of A.

Lemma 3.10 ([6]). A nonempty subset I of A is an ideal of A if and only if the
characteristic function χI of I is a fuzzy ideal of A.

Definition 3.11. Let µ be fuzzy subset of A. The smallest fuzzy ideal of A con-
taining µ is called a fuzzy ideal of A induced by µ and is denoted by 〈µ] .

Lemma 3.12. For any fuzzy subset µ of A,

〈µ] =
⋂
{σ ∈ FI(A) : µ ⊆ σ}.
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Lemma 3.13. Let S be any subset of A and χS its characteristic function. Then
〈χS ] = χ〈S].

Proof. To prove that 〈χS ] = χ(S], we show that χ〈S] is the smallest fuzzy ideal of A
containing χS . Since 〈S] is an ideal of A containing S, it is clear that χ〈S] is a fuzzy
ideal of A containing χS . It remains to show that it is the smallest fuzzy ideal of A
containing χS . Let µ be any fuzzy ideal of A containing χS , that is, χS(x) ≤ µ(x),
for all x ∈ S, then µ(x) = 1, for all x ∈ S.

Now consider y ∈ 〈S]. Then y = (
∨
xi)∧a, for some a ∈ A, xi ∈ S, i = 1, ..., n;n ∈

Z+. Then, for each y ∈ 〈S] , we have

µ(y) = µ((
∨
xi) ∧ a) ≥ µ(

∨
xi) ∨ µ(a) ≥ µ(

∨
xi) ≥

∧
µ(xi) = 1.

Thus χ〈S](y) ≤ µ(y), for all y ∈ A. So χ〈S] ⊆ µ. Hence the result holds. �

For any fuzzy subset µ of A, it is clear that

µ(x) = Sup{α ∈ [0, 1] : x ∈ µα}, for all x ∈ A.
In the following theorem, we characterize a fuzzy ideal induced by fuzzy sets.

Theorem 3.14. Let µ be a fuzzy subset of A. Then a fuzzy subset µ̂ of A defined
by:

µ̂(x) = Sup{α ∈ [0, 1] : x ∈ 〈µα]}, for all x ∈ A
is a fuzzy ideal of A induced by µ.

Proof. It is enough if we show that µ̂ is the smallest fuzzy ideal of A containing µ.
Clearly µ̂ is a fuzzy subset of A. Also µ̂(0) = Sup{α ∈ [0, 1] : 0 ∈ 〈µα]}. Since 〈µα]
is an ideal of A, for all α ∈ [0, 1], 0 ∈ 〈µα] , for all α ∈ [0, 1]. Then it follows that
µ̂(0) = Sup{α ∈ [0, 1]} = 1.

Next we show that µ̂(x ∨ y) ≥ µ̂(x) ∧ µ̂(y), for all x, y ∈ A. For;
µ̂(x) ∧ µ̂(y) = Sup{α ∈ [0, 1] : x ∈ 〈µα]} ∧ Sup{β ∈ [0, 1] : y ∈ 〈µβ ]}

= Sup{min{α, β} : x ∈ 〈µα] , y ∈ 〈µβ ]}.
If we put λ = min{α, β}, then λ ≤ α and λ ≤ β, which implies that 〈µα] ⊆ 〈µλ] and
〈µβ ] ⊆ 〈µλ]. That is, if x ∈ 〈µα] and y ∈ 〈µβ ], then x, y ∈ 〈µλ] . Thus x ∨ y ∈ 〈µλ].
So

µ̂(x) ∧ µ̂(y) = Sup{min{α, β} : x ∈ 〈µα] , y ∈ 〈µβ ]}
≤ Sup{λ ∈ [0, 1] : x ∨ y ∈ 〈µλ]}
= µ̂(x ∨ y).

Next we show that µ̂(x ∧ y) ≥ µ̂(x) ∨ µ̂(y). It follows from the definition of
µ̂ that µ̂(b) ≥ µ̂(a), whenever a ∧ b = b, for all a, b ∈ A. Using this fact, Since
x∧(x∧y) = x∧y and y∧(x∧y) = x∧y, for all x, y ∈ A, we get that µ̂(x∧y) ≥ µ̂(x)
and µ̂(x ∧ y) ≥ µ̂(y) which implies that µ̂(x ∧ y) ≥ µ̂(x) ∨ µ̂(y). Then µ̂ is a fuzzy
ideal of A.

Next we show that µ ⊆ µ̂. For any x ∈ A, put µ(x) = λ. Then x ∈ µλ ⊆ 〈µλ] .
Thus x ∈ 〈µλ] . So λ ∈ {α ∈ [0, 1] : x ∈ 〈µα]}, that is,

µ̂(x) = Sup{α ∈ [0, 1] : x ∈ 〈µα]} ≥ λ = µ(x).

Hence µ ⊆ µ̂.
Now it remains to show that µ̂ is the smallest fuzzy ideal such that µ ⊆ µ̂. Let

γ be any fuzzy ideal of A such that µ ⊆ γ. Then µα ⊆ γα, for all α ∈ [0, 1]. For;
319



Gezahagne Mulat Addis et al. /Ann. Fuzzy Math. Inform. 14 (2017), No. 3, 315–330

x ∈ µα ⇒ µ(x) ≥ α⇒ γ(x) ≥ α⇒ x ∈ γα. Since γ is a fuzzy ideal of A, we have γα
is an ideal of A, for all α ∈ [0, 1]. That is, γα is an ideal of A containing µα. Thus
〈µα] ⊆ γα.

Now for any x ∈ A, consider

µ̂(x) = Sup{α ∈ [0, 1] : x ∈ 〈µα]} ≤ Sup{α ∈ [0, 1] : x ∈ γα} = γ(x).

Hence the result holds. �

Theorem 3.15 ([6]). The class FI(A) of all fuzzy ideals of A forms a complete
lattice where the infimum and supremum of any family {µα : α ∈ ∆} of fuzzy ideals
is given by: ∧

µα = ∩µα and
∨
µα = 〈∪µα] .

In the remaining part of this section we define fuzzy homomorphisms on ADLs
and we present some results on fuzzy homomorphisms in connection with fuzzy
ideals.

Recall from [1] that, for any sets A and B a mapping f : A × B → [0, 1] is
called a fuzzy relation of A into B. A fuzzy relation f of A into B is called a
fuzzy mapping if for each x ∈ A there exists a unique element yx ∈ B such that
f(x, yx) = 1 in this case we call this unique element yx a fuzzy image of x under f .
We write f : A 99K B, for a fuzzy mapping f of A into B. Image of f is the set
{yx : x ∈ A} = {y ∈ B : f(x, y) = 1}. Moreover, for any y ∈ B,

f−1(y) = {x ∈ A : yx = y} = {x ∈ A : f(x, y) = 1}.

As usual, f is said to be onto, if for each y ∈ B, there exists x ∈ A such that yx = y
and f is said to be one-one, if for each a, b ∈ A, ya = yb =⇒ a = b.

Definition 3.16. Let A and B be ADLs. A fuzzy mapping f : A 99K B is called a
fuzzy homomorphism of ADLs, if the following are satisfied, for all a, b ∈ A :

(i) y0 = 0 (a zero element in B),
(ii) f(x1 ∨ x2, y) ≥ sup{f(x1, y1) ∧ f(x2, y2) : y = y1 ∨ y2, y1, y2 ∈ B},
(iii) f(x1 ∧ x2, y) ≥ sup{f(x1, y1) ∧ f(x2, y2) : y = y1 ∧ y2, y1, y2 ∈ B}.

Lemma 3.17. Let f : A 99K B be a fuzzy homomorphism of ADLs. Then we have
the following:

(1) y(a∨b) = ya ∨ yb,
(2) y(a∧b) = ya ∧ yb,

for all a, b ∈ A.

Proof. We have ya and yb are the unique elements in B such that f(a, ya) = 1 and
f(b, yb) = 1. We show that f(a∨ b, ya∨yb) = 1. Put z = ya∨yb for simplicity. Then

f(a ∨ b, z) = Sup{f(a, z1) ∧ f(b, z2) : z = z1 ∨ z2, z1, z2 ∈ B}
≥ f(a, ya) ∧ f(b, yb)

= 1.

Since y(a∨b) is the unique element in B such that f(a ∨ b, y(a∨b)) = 1, we get that
y(a∨b) = ya ∨ yb. Similarly, it can be verified that y(a∧b) = ya ∧ yb. �
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Lemma 3.18. Let A and B be ADLs and f a fuzzy homomorphism of A onto
B. Let µ be a fuzzy subADL(respectively a fuzzy ideal) of A and σ be a fuzzy sub-
ADL(respectively a fuzzy ideal) of B . Then

(1) f(µ) is a fuzzy subADL(respectively a fuzzy ideal) of B,
(2) f−1(σ) is a fuzzy subADL(respectively a fuzzy ideal) of A.

Theorem 3.19. Let A and B be ADLs and f : A → B a mapping. Then f is a
homomorphism if and only if its characteristic mapping χf is a fuzzy homomorphism
of A into B, where χf : A×B → [0, 1] is defined as:

χf (a, b) =

{
1 if f(a) = b

0 otherwise,

for all (a, b) ∈ A×B.

Theorem 3.20. Let f be a fuzzy homomorphism of A into B. Then a subset f∗ of
A defined by

f∗ = {x ∈ A : f(x, 0) = 1}
is an ideal of A.

Proof. Clearly, f(0, 0) = 1. then 0 ∈ f∗. Let a, b ∈ f∗. Then f(a, 0) = 1 = f(b, 0).
We show that f(a ∨ b, 0) = 1, for;

f(a ∨ b, 0) = sup{f(a, y1) ∧ f(b, y2) : 0 = y1 ∨ y2 and y1, y2 ∈ B}
≥ f(a, 0) ∧ f(b, 0) = 1.

That is, f(a ∨ b, 0) = 1. Thus a ∨ b ∈ f∗. Also let a ∈ f∗ and x ∈ A. Then
f(a, 0) = 1. Now consider

f(a ∧ x, 0) = Sup{f(a, y1) ∧ f(x, y2) : 0 = y1 ∧ y2} ≥ f(a, 0) ∧ f(x, yx) = 1,

that is, f(a ∧ x, 0) = 1. Thus a ∧ x ∈ f∗. So f∗ is an ideal of A. �

Theorem 3.21. Let f be a fuzzy homomorphism of A into B. Then a fuzzy subset
µf of A defined by

µf (x) = f(x, 0), for all x ∈ A
is a fuzzy ideal of A.

Proof. Clearly µf (0) = 1. For any a, b ∈ A, consider the following:

µf (a ∨ b) = f(a ∨ b, 0)

= sup{f(a, y1) ∧ f(b, y2) : y1 ∨ y2 = 0 and y1, y2 ∈ B}
≥ f(a, y1) ∧ f(b, y2) ∀ y1, y2 ∈ B, with y1 ∨ y2 = 0.

In particular, for y1 = 0 and y2 = 0. That is, µf (a ∨ b) ≥ f(a, 0) ∧ f(b, 0) =
µf (a) ∧ µf (b).
Also,

µf (a ∧ b) = f(a ∧ b, 0)

= sup{f(a, y1) ∧ f(b, y2) : 0 = y1 ∧ y2andy1, y2 ∈ B}
≥ f(a, y1) ∧ f(b, y2) ∀y1, y2 ∈ B, with y1 ∧ y2 = 0.
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In particular, for y1 = 0 and y2 = yb. That is, µf (a ∧ b) ≥ f(a, 0) ∧ f(b, yb) =
f(a, 0) ∧ 1 = f(a, 0) = µf (a). Similarly, doing we get µf (a ∧ b) ≥ µf (b) which
implies that µf (a ∧ b) ≥ µf (a) ∨ µf (b). Thus µf is a fuzzy ideal of A. �

4. Fuzzy congruences on ADLs

In this section we define fuzzy congruence relations on ADLs and we give several
characterizations for fuzzy congruences in terms of fuzzy ideals and fuzzy homomor-
phisms.
Recall that for any set A a fuzzy subset Θ of A×A is called a fuzzy relation on A.

Definition 4.1. A fuzzy relation Θ on an ADL A is a called fuzzy congruence
relation on A, if the following are satisfied:

(i) Θ(a, a) = 1, for all a ∈ A,
(ii) Θ(a, b) = Θ(b, a), for all a, b ∈ A,
(iii) Θ(a, c) ≥ Θ(a, b) ∧Θ(b, c), for all a, b, c ∈ A,
(iv) Θ(a ∨ c, b ∨ d) ∧Θ(a ∧ c, b ∧ d) ≥ Θ(a, b) ∧Θ(c, d), for all a, b, c, d ∈ A.
We denote the set of all fuzzy congruence relations on A by FC(A).

Example 4.2. Let A be an ADL as in Example 3.3. Define a fuzzy relation Θ on
A as follows:

Θ(0, 0) = Θ(a, a) = Θ(b, b) = Θ(c, c) = 1,
Θ(0, c) = Θ(c, 0) = 0.8,
Θ(a, b) = Θ(b, a) = Θ(a, c) = Θ(c, a) = Θ(b, c) = Θ(c, b)

= Θ(0, a) = Θ(a, 0) = Θ(0, b) = Θ(b, 0) = 0.7.
Then Θ is a fuzzy congruence relation on A.

Lemma 4.3. Let θ be an equivalence relation on A. Then θ is a congruence relation
on A if and only if its characteristic function χθ is a fuzzy congruence on A.

Lemma 4.4. A fuzzy relation Θ on A is a fuzzy congruence on A if and only if
every level subset Θt of Θ at t ∈ [0, 1] is a congruence relation on A.

Theorem 4.5. Let Θ be a fuzzy congruence relation on A. A fuzzy subset µΘ defined
by µΘ(x) = Θ(x, 0) for all x ∈ A is a fuzzy ideal of A.

Proof. The proof is analogous to that of Theorem 3.21. �

Theorem 4.6. Let Θ be a fuzzy congruence relation on A. A fuzzy subset νΘ defined
by νΘ(x) = Inf{Θ(a ∧ x, x) : a ∈ A}, for all x ∈ A is a fuzzy ideal of A.

Proof. νΘ(0) = Inf{Θ(a ∧ 0, 0) : a ∈ A} = Inf{Θ(0, 0) : a ∈ A} = Θ(0, 0) = 1. For
any x, y ∈ A, consider

νΘ(x ∨ y) = Inf{Θ(a ∧ (x ∨ y), x ∨ y) : a ∈ A}
= Inf{Θ[(a ∧ x) ∨ (a ∧ y), x ∨ y] : a ∈ A}
≥ Inf{Θ(a ∧ x, x) ∧Θ(a ∧ y, y) : a ∈ A}
= Inf{Θ(a ∧ x, x) : a ∈ A} ∧ Inf{Θ(a ∧ y, y) : a ∈ A}
= νΘ(x) ∧ νΘ(y).

Also consider
νΘ(x ∧ y) = Inf{Θ(a ∧ (x ∧ y), x ∧ y) : a ∈ A}

= Inf{Θ[(a ∧ x) ∧ y], x ∧ y) : a ∈ A}
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≥ Inf{Θ(a ∧ x, x) ∧Θ(y, y) : a ∈ A}
= Inf{Θ(a ∧ x, x) : a ∈ A}
= νΘ(x).

In the similar fashion, we get νΘ(x∧y) ≥ νΘ(y). Then νΘ(x∧y) ≥ νΘ(x)∨νΘ(y).
Thus νΘ is a fuzzy ideal of A. �

Theorem 4.7. Let Θ be a fuzzy congruence relation on A. Then µΘ = νΘ.

Proof. For any fuzzy congruence relation on A, we claim to show that µΘ = νΘ. For
any x ∈ A, we have νΘ(x) = Inf{Θ(a ∧ x, x) : a ∈ A}. Then νΘ(x) ≤ Θ(a ∧ x, x),
for all a ∈ A. In particular, for a = 0,

νΘ(x) ≤ Θ(0 ∧ x, x) = Θ(0, x) = Θ(x, 0) = µΘ(x).

On the other hand, for any a ∈ A, consider
Θ(a ∧ x, x) = Θ[a ∧ x, (a ∧ x) ∨ x]

≥ Θ(a ∧ x, a ∧ x) ∧Θ(0, x)
= Θ(x, 0) = µΘ(x).

Thus Θ(a ∧ x, x) ≥ µΘ(x), for all a ∈ A. So

νΘ(x) = Inf{Θ(a ∧ x, x) : a ∈ A} ≥ µΘ(x).

Hence µΘ = νΘ. �

Theorem 4.8. Let f : A 99K B be a fuzzy homomorphism. Define a fuzzy kernel of
f denoted by Kf : A×A :→ [0, 1] as follows:

Kf (a, b) =

{
1 if ya = yb

0 otherwise,

for all a, b ∈ A. Then this Kf is a fuzzy congruence relation on A.

Corollary 4.9. f is a fuzzy monomorphism if and only if its kernel Kf is the
characteristic function of the diagonal of A.

Theorem 4.10. Let Θ be a fuzzy congruence relation on A. For any x ∈ A, define
a subset Θx of A by

Θx = {y ∈ A : Θ(x, y) = 1}.
Then Θ0 is an ideal of A.

Remark 4.11. This Θ0 is a level subset of a fuzzy ideal µΘ (given in Theorem 4.5)
at t = 1. Let Θ be a fuzzy congruence on A. For any x ∈ A consider a subset Θx of
A given by Θx = {y ∈ A : Θ(x, y) = 1}. Then we have the following properties:

(1) For any x, y ∈ A either Θx ∩Θy = ∅ or Θx = Θy,
(2) x ∈ Θy if and only if Θx = Θy or equivalently if Θ(x, y) = 1.

Put
A

Θ
= {Θx : x ∈ A} and define operations ∧ and ∨ on

A

Θ
as follows:

Θx ∧Θy = Θx∧y and Θx ∨Θy = Θx∨y (*)

Then (
A

Θ
,∧,∨,Θ0) becomes an ADL with Θ0 as its zero element and it is called a

quotient ADL induced by the fuzzy congruence Θ on A.

Definition 4.12. A fuzzy subset µ of A is said to be multiplicatively closed, if
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µ(x ∧ y) ≥ µ(x) ∧ µ(y), for all x, y ∈ A.

Let λ be a multiplicatively closed fuzzy subset of A with Sup{λ(x) : x ∈ A} = 1.
Define fuzzy relations Ψλ and Φλ on A induced by λ as follows:

Ψλ(x, y) = Sup{λ(a) : x ∧ a = y ∧ a, a ∈ A} and
Φλ(x, y) = Sup{λ(b) : b ∧ x = b ∧ y, b ∈ A}. for all x, y ∈ A.

Then we have the following results.

Theorem 4.13. Ψλ is a fuzzy congruence relation on A and the quotient
A

Ψλ
is

a distributive lattice. Moreover if A has maximal elements then the quotient
A

Ψλ

becomes bounded with the class of all maximal elements, its unit element and {0} its
least element.

Proof. We first show that Ψλ is a fuzzy congruence on A. For; for any x, y, z ∈ A,
consider the following:

(1) Ψλ(x, x) = Sup{λ(a) : x ∧ a = x ∧ a, a ∈ A} = Sup{λ(a) : a ∈ A} = 1,
(2) Ψλ(x, y) = Sup{λ(a) : x ∧ a = y ∧ a, a ∈ A} = Ψλ(y, x),
(3) for any a, b ∈ A, if x∧a = y∧a and y∧b = z∧b, then we get x∧(a∧b) = y∧(a∧b)

and y ∧ (a ∧ b) = z ∧ (a ∧ b) which implies that x ∧ (a ∧ b) = z ∧ (a ∧ b).
Now consider

Ψλ(x, y) ∧Ψλ(y, z)
= Sup{λ(a) : x ∧ a = y ∧ a, a ∈ A} ∧ Sup{λ(b) : y ∧ b = z ∧ b, b ∈ A}
= Sup{λ(a) ∧ λ(b) : x ∧ a = y ∧ a and y ∧ b = z ∧ b, a, b ∈ A}
≤ Sup{λ(a ∧ b) : x ∧ a = y ∧ a and y ∧ b = z ∧ b, a, b ∈ A}
≤ Sup{λ(c) : x ∧ c = y ∧ c, c ∈ A}
= Ψλ(x, z).

(4) similarly, it can be verified that

Ψλ(x1 ∨ x2, y1 ∨ y2) ≥ Ψλ(x1, y1) ∧Ψλ(x2, y2)

and

Ψλ(x1 ∧ x2, y1 ∧ y2) ≥ Ψλ(x1, y1) ∧Ψλ(x2, y2).

Thus Ψλ is a fuzzy congruence relation on A.

Next we show that the quotient
A

Ψλ
is a distributive lattice. Clearly, it is an ADL

together with binary operations ∨ and ∧ defined as in (*). It suffices to show that

either ∧ or ∨ is commutative on
A

Ψλ
. For any x, y ∈ A, consider

Ψλ(x∧y, y∧x) = sup{λ(a) : (x∧y)∧a = (y∧x)∧a, a ∈ A} = sup{λ(a) : a ∈ A} = 1.

Then Ψλ
x∧y = Ψλ

y∧x which says that ∧ is commutative. Thus the quotient
A

Ψλ
is a

distributive lattice. �

Remark 4.14. It is clear that Φλ is a fuzzy congruence on A. But the quotient
A

Φλ
is not in general a distributive lattice. We verify this by giving the following

example.
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Example 4.15. Let A be a discrete ADL with |A| ≥ 3 (see [9] and [4]). Let λ be a
fuzzy subset of A defined by:

λ(x) =

{
0 if x = 0

1 otherwise.

Then λ is a multiplicatively closed fuzzy subset of A and Φλ is a fuzzy congruence

on A. We show that
A

Φλ
∼= A. For; consider the canonical map f : A→ A

Φλ defined

by:

f(x) = Φλx, for all x ∈ A.
Then it is clear that f is an epimorphism. It remains to show that f is one-one. For
any x, y ∈ A

f(x) = f(y) ⇒ Φλx = Φλy

⇒ Φλ(x, y) = 1

⇒ Sup{λ(a) : a ∧ x = a ∧ y} = 1.

Since Imgλ = {0, 1}, there exists a nonzero a ∈ A such that a ∧ x = a ∧ y. By
the fact that every nonzero element in A is maximal, it follows that x = y. Thus
f is one-one and hence an isomorphism. Since A is a discrete ADL with at least 3

elements, it is not a lattice. So the quotient
A

Φλ
is not a distributive lattice.

In the next theorem, we give the smallest fuzzy congruence on A for which its
quotient is a distributive lattice.

Theorem 4.16. A fuzzy relation η on A defined by

η(a, b) =

{
1 if 〈a] = 〈b]
0 otherwise,

for all a, b ∈ A, is a fuzzy congruence relation on A and it is the smallest such that

the quotient
A

η
is a distributive lattice.

Proof. Clearly, η is a fuzzy congruence on A. It is also clear that 〈a ∧ b] = 〈b ∧ a] ,
for all a, b ∈ A. Then η(a∧ b, b∧a) = 1. Thus η(a∧b) = η(b∧a) which implies that the

quotient A
η is a distributive lattice. Now let Θ be any fuzzy congruence on A such

that the quotient A
Θ is a distributive lattice. We claim to show that η ⊆ Θ. For any

a, b ∈ A, consider the following.
If 〈a] 6= 〈b], then η(a, b) = 0 ≤ Θ(a, b). Otherwise,

〈a] = 〈b] ⇒ a ∧ b = b, b ∧ a = a

⇒ Θ(a∧b) = Θb, Θ(b∧a) = Θa

⇒ Θa = Θb (since
A

Θ
is a lattice)

⇒ Θ(a, b) = 1 = η(a, b).

Thus η ⊆ Θ. �
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Definition 4.17. An ADL A is said to be associative, if the binary operation ∨ in
A is associative.

Theorem 4.18. Let A be an associative ADL and µ a fuzzy ideal of A. Let us
define fuzzy relation φµ on A by:

φµ(x, y) = Sup{µ(a) : a ∨ x = a ∨ y, a ∈ A}, for all x, y ∈ A.
Then φµ is a fuzzy congruence relation on A.

Proof. For any x, y, z ∈ A, consider
(1) φµ(x, x) = Sup{µ(a) : a ∨ x = a ∨ x, a ∈ A} = Sup{µ(a) : a ∈ A} = 1,
(2) φµ(x, y) = Sup{µ(a) : a ∨ x = a ∨ y, a ∈ A} = φµ(y, x),
(3) if a ∨ x = a ∨ y and b ∨ y = b ∨ z, for a, b ∈ A, then as A is an associative

ADL, we get (a∨ b)∨ x = (a∨ b)∨ y and (a∨ b)∨ y = (a∨ b)∨ z which implies that
(a ∨ b) ∨ x = (a ∨ b) ∨ z.

Now consider
φµ(x, y) ∧ φµ(y, z)

= Sup{µ(a) : a ∨ x = a ∨ y, a ∈ A} ∧ Sup{µ(b) : b ∨ y = b ∨ z, b ∈ A}
= Sup{µ(a) ∧ µ(b) : a ∨ x = a ∨ y and b ∨ y = b ∨ z, a, b ∈ A}
= Sup{µ(a) ∧ µ(b) : (a ∨ b) ∨ x = (a ∨ b) ∨ z, a, b ∈ A}
≤ Sup{µ(a ∨ b) : (a ∨ b) ∨ x = (a ∨ b) ∨ z, a, b ∈ A}
≤ Sup{µ(c) : c ∨ x = c ∨ z, c ∈ A}
= φµ(x, z).

(4) Similar to (3), we can verify that

φµ(x1 ∨ x2, y1 ∨ y2) ≥ φµ(x1, y1) ∧ φµ(x2, y2)

and
φµ(x1 ∧ x2, y1 ∧ y2) ≥ φµ(x1, y1) ∧ φµ(x2, y2).

Thus φµ is a fuzzy congruence relation on A. �

Theorem 4.19. φµ is the smallest fuzzy congruence on A containing the product
fuzzy ideal µ × µ, of A × A, where the product of any two fuzzy subsets µ and ν of
A and B respectively is defined as:

(µ× ν)(x, y) = µ(x) ∧ ν(y), for all (x, y) ∈ A×B.

Proof. We see in the above theorem that φµ is a fuzzy congruence on A. We first
show that µ× µ ⊆ φµ. For; for any x, y ∈ A, we have (µ× µ)(x, y) = µ(x) ∧ µ(y) =
µ(x∨y). Put B = {µ(a) : a∨x = a∨y, a ∈ A}. Since (x∨y)∨x = x∨y = (x∨y)∨y,
µ(x∨y) ∈ B. Then µ(x∨y) ≤ Sup B = φµ(x, y). That is, µ×µ ⊆ φµ. Let Γ be any
fuzzy congruence on A such that µ × µ ⊆ Γ. For any x, y ∈ A, let a ∈ A such that
a∨x = a∨y. Since Γ is a fuzzy congruence on A, we have Γ(x, y) ≥ Γ(x, z)∧Γ(z, y),
for all z ∈ A. In particular, for z = a∨ x = a∨ y, Γ(x, y) ≥ Γ(x, a∨ x)∧ Γ(a∨ y, y).
But

Γ(x, a ∨ x) = Γ((a ∧ x) ∨ x, a ∨ x)
≥ Γ(a ∧ x, a) ∧ Γ(x, x)
= Γ(a ∧ x, a)
≥ (µ× µ)(a ∧ x, a)
= µ(a ∧ x) ∧ µ(a)
≥ µ(a).
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Similarly, we have Γ(a ∨ y, y) ≥ µ(a). Then Γ(x, y) ≥ µ(a), for all a ∈ A with
µ(a) ∈ B. Thus Sup B ≤ Γ(x, y). So φµ(x, y) ≤ Γ(x, y), for all x, y ∈ A. Hence the
result holds. �

5. Fuzzy Ideals and fuzzy congruenes in almost Boolean rings

Definition 5.1 ([9]). An algebra (A,+, ·, 0) is called an almost Boolean ring abbre-
viated as ABR, if for any a, b, c, d ∈ R, it satisfies the following:

(i) a+ 0 = a,
(ii) a+ a = 0,
(iii) (ab)c = a(bc),
(iv) a(b+ c) = ab+ ac,
(v) (a+ b)c = ac+ bc,
(vi) {a+ (b+ c)}d = {(a+ b) + c}d.

Definition 5.2 ([9]). An ADL (A,∨,∧, 0) is said to be relatively complemented, if
every interval is a Boolean algebra.

Lemma 5.3 ([9]). An ADL A is relatively complemented if and only if for any
a, b ∈ A, there exists x ∈ A such that a ∨ b = a ∨ x and a ∧ x = 0. In this case, x is
unique which we denote by ab.

Theorem 5.4 ([9]). Let (A,∨,∧, 0) be a relatively complemented ADL. Define bi-
nary operations ”·” and ”+” on A by a·b = a∧b and a+b = ab∨ba. Then (A,+, ·, 0)
is an almost Boolean ring. Furthermore, a ∧ b = a · b and a ∨ b = a+ (b+ a · b).

Theorem 5.5 ([9]). Let (A,+, ·, 0) be an almost Boolean ring. Define binary oper-
ations ∧ and ∨ by a ∧ b = a · b and a ∨ b = a + (b + a · b). Then (A,∨,∧, 0) is a
relatively complemented ADL. Furthermore, we get a · b = a∧ b and a+ b = ab ∨ ba.

The above two theorems give us a duality between the class of relatively comple-
mented ADLs and the class of almost Boolean rings analogous to the well known
Stone’s duality between the class of relatively complemented lattices with 0 and the
class of Boolean Rings.

Definition 5.6. Let A be an almost Boolean ring. A fuzzy subset µ of A is called
a fuzzy ideal of A, if the following are satisfied:

µ(0) = 1, µ(a+ b) ≥ µ(a) ∧ µ(b) and µ(a · b) ≥ µ(a) ∨ µ(b), for all a, b ∈ A.

Moreover, a fuzzy relation Θ on an almost Boolean ring A is said to be a fuzzy
congruence relation on A, if

Θ(a+ c, b+ d) ∧Θ(a · c, b · d) ≥ Θ(a, b) ∧Θ(c, d), for all a, b, c, d ∈ A.

As a result of the duality in [9] between the class of relatively complemented ADLs
and the class of almost Boolean rings, one can easily verify that a fuzzy subset µ of
A is a fuzzy ideal of A as an ADL (i.e., considering A as a relatively complemented
ADL) if and only if it is a fuzzy ideal of A as an almost Boolean ring (i.e., considering
A as an almost Boolean ring). Similarly, a fuzzy equivalence relation θ on A is a
fuzzy congruence on A as an ADL if and only if it is a fuzzy congruence on A as an
almost Boolean ring.
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Theorem 5.7. Let A be an almost Boolean ring and µ be a fuzzy ideal of A. Then
a fuzzy relation Θµ defined by:

Θµ(a, b) = µ(a+ b), for all a, b ∈ A
is a fuzzy congruence relation on A.

Proof. For any a, b, c ∈ A, consider the following.
(1) Θµ(a, a) = µ(a+ a) = µ(0) = 1.
(2) Θµ(a, b) = µ(a+ b) = µ(b+ a) = Θµ(b, a).
(3) For any a, b, c ∈ A, let us first see that a+ c = ((a+ b) + (b+ c))(a+ c). For;

a+ c = (a+ c)(a+ c) = (a+ b+ b+ c)(a+ c) = ((a+ b) + (b+ c))(a+ c).

Then
Θµ(a, c) = µ(a+ c) = µ{((a+ b) + (b+ c))(a+ c)}

≥ µ((a+ b) + (b+ c)) ∨ µ(a+ c)
≥ µ((a+ b) + (b+ c))
≥ µ(a+ b) ∧ µ(b+ c)
= Θµ(a, b) ∧Θµ(b, c).

(4) Using similar techniques as in (3), one can verify that

Θµ(a ∨ c, b ∨ d) ≥ Θµ(a, b) ∧Θµ(c, d)

and
Θµ(a ∧ c, b ∧ d) ≥ Θµ(a, b) ∧Θµ(c, d).

Then Θµ is a fuzzy congruence relation on A. �

Now let us denote Θµ by C(µ) to say that it is induced by the fuzzy ideal µ. On
the other hand, for any given fuzzy congruence Θ on an almost Boolean ring A, we
can define a fuzzy ideal µΘ on A by µΘ(x) = Θ(x, 0), for all x ∈ A (see Theorem
4.5). Let us denote µΘ by I(Θ) to say that it is induced by Θ. Then we have the
following results.

Lemma 5.8. Let A be an almost Boolean ring. If µ is any fuzzy ideal of A, then
I(C(µ)) = µ.

Proof. For any x ∈ A, consider I(C(µ))(x) = C(µ)(x, 0) = µ(x + 0) = µ(x). Then
I(C(µ)) = µ. �

Theorem 5.9. There is a monomorphism of the lattice FI(A) of all fuzzy ideals of
an almost Boolean ring A into the lattice FC(A) of all fuzzy congruences on A.

Proof. Consider a mapping µ 7→ C(µ) of FI(A) into FC(A). It follows from the
above lemma that this mapping is a lattice monomorphism. �

Theorem 5.10. The monomorphism µ 7→ C(µ) of the lattice FI(A) into the lattice
FC(A) is an isomorphism if and only if A is a generalized Boolean algebra (or simply
a Boolean Ring).

Proof. It is observed in [10] that if A is a generalized Boolean algebra, then the
mapping µ 7→ C(µ) is a lattice isomorphism.

Conversely, suppose that the mapping µ 7→ C(µ) is a lattice isomorphism of
FI(A) into FC(A). We claim to show that A is a distributive lattice. Now it
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suffices to show that the binary operation ”·” is commutative on A. Let Θ and Φ
be fuzzy relations on A defined by:

Θ(x, y) =

{
1 if x = y

0 otherwise

and

Φ(x, y) =

{
1 if 〈x] = 〈y]

0 otherwise,

for all x, y ∈ A. Then it can be easily verified that both Θ,Φ ∈ FC(A). Since
the mapping µ 7→ C(µ) is an isomorphism, there exists µ, ν ∈ FI(A) such that
C(µ) = Θ and C(ν) = Φ which will give us that both µ and ν are the characteristic
function of {0}. That is, µ = ν which implies that Θ = Φ. Thus 〈x] = 〈y] if and only
if x = y, for all x, y ∈ A. It follows from the fact 〈x · y] = 〈y · x] that x · y = y ·x, for
all x, y ∈ A. This says that A is a generalized Boolean algebra (or simply a Boolean
ring). �
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