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Abstract. In this paper, we investigate the multiple attribute decision
making problems with dual hesitant fuzzy information. Motivated by the
idea of Bonferroni mean and Choquet integral, we develop the aggregation
techniques called the dual hesitant fuzzy choquet ordered Bonferroni mean
operator for aggregating the dual hesitant fuzzy information. We research
its properties and discuss its special cases. We also apply the newly de-
fined operator to deal with multiple attribute decision making problems
under dual hesitant fuzzy environment. Finally, an illustrative example is
given to show the developed method and demonstrate its practicality and
effectiveness.
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1. Introduction

Multiple attribute decision making (MADM) handles decision situations where
a set of alternatives have to be assessed against multiple attributes before a final
choice is selected. It can be used in many fields such as economics, management
and engineering. There are two basic topics in MADM: one topic is that how the
decision makers express their assessments, the other is how these assessments are
aggregated.

In many decision making problems, it is difficult for a decision maker to give his
assessments in crisp values due to ambiguity and incomplete information. Instead, it
has become popular that these assessments are presented by fuzzy set or extensions
of fuzzy set. Fuzzy set (FS), proposed by Zadeh, is a powerful tool to deal with
vagueness and has received much attention [7, 11, 12]. Atanassov [2] generalized FS
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to intuitionistic fuzzy set (IFS), in which each element is expressed by an ordered
pair denoting a membership degree and a non-membership degree. Then Torra and
Narukawa [13, 14] generalized FS to hesitant fuzzy set which permits the membership
having a set of possible values. Following this way, by giving different values to
the membership degree or the non-membership degree of an element, several other
famous extensions of FS have been developed, such as type-2 fuzzy sets (T2FSs)
[34], type n fuzzy sets (TnFSs), fuzzy multisets (FMSs) [10, 26], interval-valued
intuitionistic fuzzy sets (IVIFSs) [1].

Among the aggregation operators, the average mean (AM) and the geometric
mean (GM) are two basic kinds. The AM and GM have been extended extensively.
For example, in order to reorder the arguments before being aggregated, the ordered
weighted averaging (OWA) operator[27] and the ordered weighted geometric (OWG)
operator [6, 21] were proposed. For the continuous interval valued fuzzy information,
Yager [29] developed a continuous ordered weighted averaging (C-OWA) operator.
Then, Yager and Xu [33] further proposed the continuous ordered weighted geomet-
ric (C-OWG) operator. The AM and GM were also extended to linguistic fuzzy
information, such as the linguistic weighted averaging (LWA) operator [19], the lin-
guistic ordered weighted averaging (LOWA) operator [20], the linguistic weighted
geometric averaging (LWGA) operator [18] and the linguistic ordered weighted geo-
metric averaging (LOWGA) operator [18]. In order to deal with the aggregated
arguments which were correlative, the power average (PA) operator [28], the power
geometric (PG) operator [25] and the choquet ordered average operator [30] were
introduced. As Bonferroni mean (BM) [3] can capture the interrelationship between
input arguments, it has also been applied to construct aggregation operators. For
example, Xu and Yager [24] investigated the BM under intuitionistic fuzzy environ-
ment. Xia et al. [23] proposed the geometric Bonferroni mean (GBM). Furthermore,
Zhu et al. [36] developed the hesitant fuzzy geometric Bonferroni means.

Recently, Zhu et al. [35] introduced a dual hesitant fuzzy sets (DHFSs) which is
another new extension of FSs. It is a comprehensive set containing FSs, IFSs, FMSs
and HFSs as special cases under certain conditions. By several possible values for the
membership and nonmembership degrees respectively, DHFSs can take much more
information given by decision makers into account in multiple attribute decision
making. In their work, some basic operations and properties for DHFSs were inves-
tigated. Then Wang et al. [17] investigated the multiple attribute decision making
problem based on the aggregation operators with dual hesitant fuzzy information.
They also developed some aggregation operators for aggregating dual hesitant fuzzy
information including dual hesitant fuzzy weighted average (DHFWA) operator, dual
hesitant fuzzy weighted geometric (DHFWG) operator, dual hesitant fuzzy ordered
weighted average (DHFOWA) operator, dual hesitant fuzzy ordered weighted geo-
metric (DHFOWG) operator, dual hesitant fuzzy hybrid average (DHFHA) operator
and dual hesitant fuzzy hybrid geometric (DHFHG) operator. Ye proposed a cor-
relation coefficient [31] and a cross-entropy measure [32] for DHFSs, then applied
them to multiple attribute decision making under dual hesitant fuzzy environments.
However, the existing dual hesitant fuzzy aggregation operators above only consider
situations where all the attributes in the dual hesitant fuzzy set are independent.
Nevertheless, attributes in DHFSs are usually correlative in real life. Fortunately,
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the Choquet integral [4] can characterize the correlations of the decision data. Mo-
tivated by BM and Choquet integral, we propose a dual hesitant fuzzy choquet
ordered Bonferroni mean (DHFCOBM) operator, whose prominent characteristic is
that it can consider both the interactions of the attributes and the correlations of
the input arguments. It is worth mentioning that DHFCOBM can be regarded as
an extension of DHFWA and DHFOWA.

To facilitate our discussion, the remainder of this paper is organized as follows.
Some basic concepts related to dual hesitant fuzzy sets are introduced in the next sec-
tion. In Section 3, we propose a family of dual hesitant fuzzy aggregation operators
based on Bonferroni means, and then develop new approaches to multiple attribute
decision making problems based on these new operators. An illustrative example
is also given to show the effectiveness of the developed approach. We conclude the
paper and give some remarks in Section 4.

2. Preliminaries

2.1. Dual hesitant fuzzy sets.

Definition 2.1 ([13]). Let X be a reference set. Then we define hesitant fuzzy set
on X in terms of a function that when applied to X returns a sunset of [0, 1].

To be easily understood, Xia and Xu [22] express the HFS by a mathematical
symbol: E = (〈x, hE(x)〉|x ∈ X), where hE(x) is a set of some values in [0, 1],
denoting the possible membership degree of the element x ∈ X to the set E. For
convenience, Xia and Xu [22] call h = hE(x) a hesitant fuzzy element (HFE) and H
the set of all HFEs when there is no confusion.

Nevertheless, HFSs only considers the membership degree of the element x ∈ X
to the set E and ignores the non-membership degree. In order to overcome this
difficult, Zhu et al. [35] generalized HFSs to DHFS.

Definition 2.2 ([35]). Let X be a fixed set, then a dual hesitant fuzzy set D on X
is defined as

D = {〈x, h(x), g(x)〉|x ∈ X}
in which h(x) and g(x) are two sets of some values in [0, 1], denoting the possible
membership degrees and nonmembership degrees of the element x ∈ X to the set
D, respectively, with conditions: 0 ≤ γ, η ≤ 1 and 0 ≤ γ+ +η+ ≤ 1, where γ ∈ h(x),
η ∈ g(x), γ+ ∈ h+(x) = ∪γ∈h(x)max{γ}, and η+ ∈ g+(x) = ∪η∈g(x)max{η} for
∀x ∈ X. For convenience, the pair d(x) = {h(x), g(x)} is called a dual hesitant
fuzzy element (DHFE) and denoted by d = {h, g}.

In order to compare two dual hesitant fuzzy elements, corresponding score func-
tion is defined as follows.

Definition 2.3 ([35]). Let d1 = {h1, g1} and d2 = {h2, g2} be any two DHFEs.
Then the score function of di (i = 1, 2) is

S(di) =
1

n(hi)

∑
γ∈hi

γ − 1

n(gi)

∑
η∈gi

η (i = 1, 2)

267



Huonian Tu et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 3, 265–278

and the accuracy function of di (i = 1, 2) is

P (di) =
1

n(hi)

∑
γ∈hi

γ +
1

n(gi)

∑
η∈gi

η (i = 1, 2)

where n(hi) and n(gi) are the numbers of the elements in hi and gi, respectively.
Then

(i) if S(d1) > S(d2), then d1 is superior to d2, denoted by d1 � d2;
(ii) if S(d1) = S(d2), then

(1) if P (d1) = P (d2), then d1 is equivalent to d2, denoted by d1 ∼ d2;
(2) if P (d1) > P (d2), then d1 is superior to d2, denoted by d1 � d2.

Besides, some new operations on the DHFEs d, d1 and d2 are also introduced in
[35]:

(i) dλ = ∪γ∈h,η∈g{{γλ}, {1− (1− η)λ}}, λ > 0,
(ii) λd = ∪γ∈h,η∈g{{1− (1− γ)λ}, {µλ}}, λ > 0,
(iii) d1 ⊕ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2{{γ1 + γ2 − γ1γ2}, {η1η2}},
(iv) d1 ⊗ d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2{{γ1γ2}, {η1 + η2 − η1η2}}.

2.2. Choquet integral and Bonferroni mean.

Definition 2.4 ([9]). A fuzzy measure µ on the set X is a set function µ : θ(X)→
[0, 1] satisfying the following axioms and θ(X) is the set of all subsets of X:

(i) µ(φ) = 0, µ(X) = 1,
(ii) A ⊆ B implies µ(A) ≤ µ(B), for all A,B ⊆ X,
(iii) µ(A ∪ B) = µ(A) + µ(B) + ρµ(A)µ(B), for all A,B ⊆ X and A ∩ B = φ,

where ρ ∈ (−1,∞).

Especially, if ρ = 0, then the condition (iii) reduces to the axiom of additive
measure: µ(A ∪ B) = µ(A) + µ(B), for all A,B ⊆ X and A ∩ B = φ. If all the
elements in X are independent, then we have

µ(A) =
∑
xi∈A

µ({xi}),∀A ⊆ X.

The discrete Choquet integral is a linear expression up to a reordering of the ele-
ments, which is defined as below.

Definition 2.5 ([15]). Let f be a positive real-valued function on X, and µ be a
fuzzy measure on X. The discrete Choquet integral of f with respect to µ is defined
by

Cµ(f) = Σni=1fσ(i)
[
µ(Aσ(i))− µ(Aσ(i−1))

]
.

where (σ(1), σ(2), · · · , σ(n)) is a permutation of (1, 2, · · · , n), such that fσ(i−1) ≥
fσ(i) for all i = 2, 3, · · · , n, Aσ(k) = {xσ(j) | j ≤ k}, for k ≥ 1, and Aσ(0) = φ.

As an extension of the arithmetic average, the Bonferroni mean (BM) is a very
practical aggregation operator, which considers the interrelationships among argu-
ments.
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Definition 2.6 ([3]). Let p, q ≥ 0, and ai(i = 1, 2, · · · , n) be a collection of non-
negative numbers. If

Bp,q(a1, a2, · · · , an) =

 1

n(n− 1)

n∑
i,j=1,i6=j

api a
q
j

 1
p+q

,

then Bp,q is called a Bonferroni mean (BM).

Particularly, if q = 0,the BM degenerates to the generalized mean operator [8] as
the following:

Bp,0(a1, a2, · · · , an) =

 1

n

n∑
i,j=1

api

 1
p

.

Further, if p = 1 and q = 0, then BM reduces to the well-known average mean:

B1,0(a1, a2, · · · , an) =
1

n

n∑
i,j=1

ai.

3. Major Section

Inspired by the Definition 2.6, we can define the dual hesitant fuzzy Bonferroni
mean as follows:

Definition 3.1. Let dj (j = 1, 2, · · · , n) be a collection of DHFEs and p, q > 0, then
we define the the dual hesitant fuzzy Bonferroni mean (DHFBM) operator as

DHFBMp,q(d1, d2, · · · , dn) =

 1

n(n− 1)

n⊕
i,j=1;i6=j

(dpi ⊗ d
q
j)

 1
p+q

.

According to the operational laws of DHFEs, we can drive the theorem below.

Theorem 3.2. Let dj = {hj , gj} (j = 1, 2, · · · , n) be a collection of DHFEs. Then
their aggregated value by using the DHFBM operator is also a DHFE, and

DHFBMp,q(d1, d2, · · · , dn) =

 1

n(n− 1)

n⊕
i,j=1;i6=j

(dpi ⊗ d
q
j)

 1
p+q

=
⋃

γi∈hi,ηi∈gi



1−

n∏
i 6=j

(1−γpi γ
q
j )

1
n(n−1)

 1
p+q

,
1−

1−
n∏
i 6=j

(1−(1−ηi)p(1−ηj)q)
1

n(n−1)

 1
p+q




Proof. According to the operational laws of DHFEs, we can get

dpi =
⋃

γi∈hi,ηi∈gi

{{γpi }, {1− (1− ηi)p}} , dqj =
⋃

γj∈hj ,ηj∈gj

{
{γqj }, {1− (1− ηj)q}

}
and

dpi ⊗ d
q
j =

⋃
γi∈hi,γj∈hj ,ηi∈gi,ηj∈gj

{
{γpi γ

q
j }, {1− (1− ηi)p(1− ηj)q}

}
.
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Then we acquire

n⊕
i,j=1;i 6=j

(dpi ⊗ d
q
j)

=
⋃

γi∈hi,γj∈hj ,ηi∈gi,ηj∈gj


1−

n∏
i 6=j

(
1−γpi γ

q
j

) ,


n∏
i 6=j

(1−(1−ηi)p(1− ηj)q)


 .

Thus

1

n(n− 1)

n⊕
i,j=1;i 6=j

(dpi ⊗ d
q
j)

=
⋃

γi∈hi,γj∈hj ,ηi∈gi,ηj∈gj


1−

n∏
i 6=j

(
1−γpi γ

q
j

) 1
n(n−1)

 ,


n∏
i6=j

(1−(1−ηi)p(1−ηj)q)
1

n(n−1)


 .

Finally, we complete our proof by computing ( 1
n(n−1)

⊕n
i,j=1;i 6=j(d

p
i ⊗ d

q
j))

1
p+q . �

Obviously, the DHFBM operator has the following properties.

Theorem 3.3. (Quasi-Idempotency). Let dj = {hj , gj} (j = 1, 2, · · · , n) be a col-
lection of DHFEs. If d1 = d2 = · · · = dn = d = {h, g} = {{γ}, {η}}, then
DHFBMp,q(d, d, · · · , d) = d.

By Theorem 3.2, the proof is straightforward and we omit it here.

Theorem 3.4. (Quasi-Monotonicity). Let dj = {hj , gj}(j = 1, 2, · · · , n) be a
collection of DHEEs, where hj = {γj1, γj2, · · · , γjk}, gj = {ηj1, ηj2, · · · , ηjs}(j =
1, 2, · · · , n). Let d′j = {h′j , g′j}(j = 1, 2, · · · , n) be another collection of DHEEs,
where h′j = {γ′j1, γ′j2, · · · , γ′jk}, g′j = {η′j1, η′j2, · · · , η′js}(j = 1, 2, · · · , n). If γjp ≤
γ′jp, ηjq ≥ η′jq,∀p = 1, 2, · · · , k, ∀q = 1, 2, · · · , s, then

DHFBMp,q(d1, d2, · · · , dn) ≤ DHFBMp,q(d′1, d
′
2, · · · , d′n).

Proof. Since γjp ≤ γ′jp, ηjq ≥ η′jq,∀p = 1, 2, · · · , k, ∀q = 1, 2, · · · , s, we have1−
n∏

i,j=1;i6=j

(1− γpi γ
q
j )

1
n(n−1)

 1
p+q

≤

1−
n∏

i,j=1;i 6=j

(1− γ
′p
i γ

′q
j )

1
n(n−1)

 1
p+q

,

1−

1−
n∏

i,j=1;i6=j

(1− (1− ηi)p(1− ηj)q)
1

n(n−1)

 1
p+q

≥ 1−

1−
n∏

i,j=1;i 6=j

(
1− (1− ηi)

′p(1− ηj)
′q
) 1

n(n−1)

 1
p+q

.

Then, by Theorem 3.2 and Definition 2.3, we complete the proof. �
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Theorem 3.5. (Commutativity). Let dj(j = 1, 2, · · · , n) be a collection of DHFEs,

and (d̃1, d̃2, · · · , d̃n) be any permutation of (d1, d2, · · · , dn). Then

DHFBMp,q(d1, d2, · · · , dn) =

 1

n(n− 1)

n⊕
i,j=1;i6=j

(dpi ⊗ d
q
j)

 1
p+q

=

 1

n(n− 1)

n⊕
i,j=1;i6=j

(d̃pi ⊗ d̃
q
j)

 1
p+q

= DHFBMp,q(d̃1, d̃2, · · · , d̃n).

When we change the parameters p and q of the DHFBM, we can get some special
cases as below.
Case 1. If q → 0, then by Theorem 3.2, we have

lim
q→0

DHFBMp,q(d1, d2, · · · , dn)

=
⋃

γi∈hi,ηi∈gi



(

1−
n∏
i=1

(1− γpi )
1
n

) 1
p

 ,

1−

1−
n∏
i=1;

(1− (1− ηi)p)
1
n

 1
p




= (
1

n

n⊕
i=1

dpi )
1
p = DHFBMp,0(d1, d2, · · · , dn)

which we call the dual hesitant fuzzy generalized mean (DHFGM) operator.
Case 2. If p = 2, q → 0, then the DHFGM reduces to

DHFBM2,0(d1, d2, · · · , dn) = (
1

n

n⊕
i=1

d2i )
1
2

which we call the dual hesitant fuzzy square mean (DHFSM) operator.
Case 3. If p = 1, q → 0, then the DHFGM degenerates to

DHFBM1,0(d1, d2, · · · , dn) =
1

n

n⊕
i=1

di

which we call the dual hesitant fuzzy mean (DHFM) operator.
Case 4. If p = q = 1, then by Theorem 3.2, we obtain

DHFBM1,1(d1, d2, · · · , dn) =

 1

n(n− 1)

n⊕
i,j=1;i6=j

(di ⊗ dj)

 1
2

which we call the dual hesitant fuzzy interrelated square mean (DHFISM) operator.
In practical decision, we have to deal with complicated situations considering

both the relations among individual arguments and the importance of them. In
what follows, we develop some weighted dual hesitant fuzzy aggregations based on
BM.

In some practical applications, we have to consider not only the importance of in-
dividual arguments but also the relations among attributes. Then, by giving weights
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to each attribute, we can develop the dual hesitant fuzzy weighted Bonferroni mean
as below.

Definition 3.6. Let di(i = 1, 2, · · · , n) be a collection of DHFEs, p, q ≥ 0, and
w = (w1, w2, · · · , wn)T be the weight of di, where wi denotes the importance degree
of di, satisfying wi > 0 and

∑n
i=1 = 1. Then

DHFWBMp,q(d1, d2, · · · , dn) =

 1

n(n− 1)

n⊕
i,j=1;i 6=j

(wid
p
i ⊗ wjd

q
j)

 1
p+q

is called the dual hesitant fuzzy weighted Bonferroni mean (DHFWBM).

Remark 3.7. Let di = {hi, gi}, suppose there is only one fuzzy value in each hi
and gi (i = 1, 2, · · · , n), then DHFWBM1,0(d1, d2, · · · , dn) = 1

n

⊕n
i=1(widi) =

1
nDHFWA(d1, d2, · · · , dn). That is to say, the DHFWBM can reduce to DHFWA
[17].

Sometimes, we may need to weight the ordered positions of the dual hesitant
fuzzy arguments instead of weighting the arguments themselves. In this case, we
can develop the ordered weighted operators as follows.

Definition 3.8. Let di(i = 1, 2, · · · , n) be a collection of DHFEs, p, q ≥ 0, and w =
(w1, w2, · · · , wn)T be the associated weight vector such that wi > 0 and

∑n
i=1 = 1.

(σ(1), σ(2), · · · , σ(n)) is a permutation of 1, 2, · · · , n,such that dσ(j−1) ≥ dσ(j) for
all j = 2, 3, · · · , n. Then

DHFOWBMp,q(h1, h2, · · · , hn) =

 1

n(n− 1)

n⊕
i,j=1,i6=j

(wid
p
σ(i) ⊗ wjd

q
σ(j))

 1
p+q

are called the dual hesitant fuzzy ordered weighted Bonferroni mean (DHFOWBM).

Remark 3.9. Let di = {hi, gi}, suppose there is only one fuzzy value in each hi
and gi (i = 1, 2, · · · , n), then DHFOWBM1,0(d1, d2, · · · , dn) = 1

n

⊕n
i=1(wihσ(i)) =

1
nDHFOWA(d1, d2, · · · , dn). That is to say, the DHFOWBM can reduce to DHFOWA
[17].

If we want to not only weight the dual hesitant fuzzy arguments but also weight
the ordered positions of the dual hesitant fuzzy arguments, we can propose the
following hybrid average operators.

Definition 3.10. Let di(i = 1, 2, · · · , n) be a collection of DHFEs, p, q ≥ 0, and
w = (w1, w2, · · · , wn)T be the associated weight vector such that wi > 0 and

∑n
i=1 =

1. d̃σ(j) is the j-th largest element of the dual hesitant fuzzy arguments (d̃j =
(nwj)dj , j = 1, 2, · · · , n). Then, we call

DHFHBMp,q(d1, d2, · · · , dn) =

 1

n(n− 1)

n⊕
i,j=1,i6=j

(wid̃
p
σ(i) ⊗ wj d̃

q
σ(j))

 1
p+q

the dual hesitant fuzzy hybrid Bonferroni mean (DHFHBM).
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Remark 3.11. Let di = {hi, gi}, suppose there is only one fuzzy value in each hi

and gi (i = 1, 2, · · · , n), then DHFHBM1,0(d1, d2, · · · , dn) = 1
n

(⊕n
i=1(wid̃σ(i))

)
=

1
nDHFHA(d1, d2, · · · , dn). That is to say, DHFHBM can reduce to DHFHA [17].

However, the above aggregation operators are based on the assumption that the
attributes are independent. In real decision making problems, these are usually
interactions among attributes. As we all know, the Choquet integral [4] can depict
the correlations of attributes. In what follows, we shall develop the dual hesitant
fuzzy choquet ordered averaging operator based on the famous Choquet integral.

Definition 3.12. Let di(i = 1, 2, · · · , n) be a collection of DHFEs on X, µ be a
fuzzy measure on X and p, q ≥ 0. Then, we call

DHFCOBMp,q
µ (d1, d2, · · · , dn)

=

 1

n(n− 1)

n⊕
i,j=1,i6=j

(µ(Aσ(i))−µ(Aσ(i−1))d
p
σ(i) ⊗ (µ(Aσ(j))−µ(Aσ(j−1))d

q
σ(j))

 1
p+q

the dual hesitant fuzzy choquet ordered Bonferroni mean (DHFCOBM), where
(σ(1), σ(2), · · · , σ(n)) is a permutation of (1, 2, · · · , n),such that dσ(j−1)≥ dσ(j) for
all j = 2, 3,· · · ,n, Aσ(k) ={xσ(j) | j ≤ k}, for k≥1, and Aσ(0) =φ.

Remark 3.13. If µ({xσ(j)}) = µ({Aσ(j)})−µ({Aσ(j−1)}), j = 1, 2, · · · , n, then
DHFCOBM degenerates into DHFWBM. Let wj = µ({Aσ(j)})− µ({Aσ(j−1)}), j =
1, 2, · · · , n, then DHFCOBM degenerates into DHFOWBM. In addition, suppose
there is only onefuzzy value in each hi, gi(i = 1, 2, · · · , n) and let p = 1, q =
0, then DHFCOBM1,0

µ (d1, d2, · · · , dn) = 1
n

(⊕n
i=1(µ(Aσ(i))− µ(Aσ(i−1))dσ(i)

)
=

1
nDHFCOAµ(d1, d2, · · · , dn). This is the so-called dual hesitant fuzzy choquet or-
dered averaging operator proposed by Wang et al. [16].

Next, we shall utilize the DHFCOBM operator to multiple attribute decision mak-
ing under dual hesitant fuzzy environment. The following assumptions or notations
are used to represent the MADM problems for evaluation of theses with dual hesi-
tant fuzzy information. Let A = {A1, A2, · · · , Am} be a discrete set of alternatives,
and G = {G1, G2, · · · , Gn} be the state of nature. If the decision makers provide
several values for the alternative Ai under the attribute Gj with anonymity, these
values can be considered as a dual hesitant fuzzy element dij = {hij , gij}. Suppose
that the decision matrix D = (dij)m×n is the dual hesitant fuzzy decision matrix,
where dij = {hij , gij}, (i = 1, 2, · · · ,m, j = 1, 2, · · · , n) are in the form of DHFEs. In
the following, we apply the DHFCOBM operator to the multiple attribute decision
making problems for evaluation of theses with dual hesitant fuzzy information.

Step 1. Confirm the fuzzy measures µ of attributes of G and attributes sets of G.
Step 2. Utilize the decision information given in matrix D, and the DHFCOBM

operator

d̃i = DHFCOBMp,q
µ (d1, d2, · · · , dn)

=

 1

n(n− 1)

n⊕
i,j=1,i6=j

(µ(Aσ(i))−µ(Aσ(i−1))d
p
σ(i) ⊗ (µ(Aσ(j))−µ(Aσ(j−1))d

q
σ(j))

 1
p+q
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to derive the overall preference values d̃i(i = 1, 2, · · · ,m) of the alternative Ai.

Step 3. Calculate the scores s(d̃i)(i = 1, 2, · · · ,m) of the overall dual hesitant

fuzzy values d̃i(i = 1, 2, · · · ,m) by Definition 2.3.
Step 4. Rank all the alternatives Ai(i = 1, 2, · · · ,m) in accordance with the scores

s(d̃i)(i = 1, 2, · · · ,m) and select the best one(s).
Step 5. End.

Example 3.14. Here, we will present a numerical example (adapted from [5, 17]) to
show evaluation of theses with dual hesitant fuzzy information in order to illustrate
the proposed method. There are five theses Ai (i = 1, 2, 3, 4, 5), and we want to
select the best one. Four attributes are selected by experts to evaluate the theses:
(1) G1 is the language of a thesis; (2) G2 is the innovation; (3) G3 is the rigor; (4)
G4 is the structure of the thesis. In order to avoid influence each other, the experts
are required to evaluate the five theses Ai (i = 1, 2, 3, 4, 5) under the above four
attributes in anonymity and the decision matrix D = (dij)5×4 is presented in Table
1, where dij = {hij , gij}, (i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4) are in the form of DHFEs.
The fuzzy measure of attribute Gj (j = 1, 2, · · · , 4) and attribute sets of G are as
follows: µ(G1) = 0.30, µ(G2) = 0.35, µ(G3) = 0.30, µ(G4) = 0.22, µ(G1, G2) =
0.70, µ(G1, G3) = 0.60, µ(G1, G4) = 0.55, µ(G2, G3) = 0.50, µ(G2, G4) = 0.45,
µ(G3, G4) = 0.40, µ(G1, G2, G3) = 0.82, µ(G1, G2, G4) = 0.87, µ(G1, G3, G4) =
0.75, µ(G2, G3, G4) = 0.60, µ(G1, G2, G3, G4) = 1.00.

Table 1. Dual hesitant fuzzy decision matrix D̃

G1 G2 G3 G4

A1 {{0.1, 0.2},{0.5}} {{0.3},{0.2,0.5}} {{0.3},{0.5}} {{0.4},{0.2,0.3}}
A2 {{0.4,0.7},{0.3}} {{0.3, 0.5},{0.4}} {{0.1},{0.6,0.7}} {{0.2},{0.3, 0.4}}
A3 {{0.6, 0.8},{0.2}} {{0.4},{0.3, 0.5}} {{0.6},{0.2}} {{0.4, 0.7},{0.3}}
A4 {{0.4},{0.2}} {{0.6, 0.8},{0.2}} {{0.5},{0.1}} {{0.6},{0.2,0.3}}
A5 {{0.4, 0.7},{0.1}} {{0.3},{0.6}} {{0.4},{0.2}} {{0.3},{0.6}}

Next, we apply the developed approach to evaluate these theses with dual hesitant
fuzzy information.

Step 1. We use the decision information given in matrix D, and the DHFCOBM

operator to obtain the overall preference values d̃i of the thesis Ai (i = 1, 2, 3, 4, 5).

Take thesis A1 for example, (take p = q = 1), there are 4160 numbers in d̃1 and
we omit them here. When assigning different values to the parameter p, q, we can
obtain different dual hesitant fuzzy values.

Step 2. Calculate the scores s(d̃i) (i = 1, 2, 3, 4, 5) of the overall dual hesitant fuzzy

values d̃i (i = 1, 2, 3, 4, 5) of the thesis Ai: s(d̃1) = −0.720127, s(d̃2) = −0.698057,

s(d̃3) = −0.526878, s(d̃4) = −0.503364, s(d̃5) = −0.627032.
Step 3. Rank all the alternatives Ai(i = 1, 2, · · · ,m) in accordance with the

values of s(d̃i): A4 � A3 � A5 � A2 � A1. Note that � means ”preferred to”.
Thus, the best thesis is A4.

Remark 3.15. In order to show the merit of the proposed method, we utilized
some existing methods proposed by Wang [17] and Wang [16] to solve this illustrate
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example. For simplicity, we omit the calculation process and only list the results in
Table 2 and Table 3.

Table 2. Scores for theses obtained by the existing operators. (Let
w = (0.22, 0.23, 0.15, 0.4)T )

operators s(d̃1) s(d̃2) s(d̃3) s(d̃4) s(d̃5) Ranking �
DHFWA -0.027916 -0.044882 0.303905 0.384994 0.0424899 A4, A3, A5, A1, A2
DHFWG -0.092636 -0.149213 0.248196 0.345339 -0.113935 A4, A3, A1, A5, A2
DHFOWA -0.118141 -0.12896 0.280061 0.36394 0.0788862 A4, A3, A5, A1, A2
DHFOWG -0.183517 -0.275715 0.214003 0.319019 -0.0754086 A4, A3, A5, A1, A2
DHFCOA -0.118141 0.0188229 0.34354 0.38197 0.169648 A4, A3, A5, A2, A1

Table 3. Scores for theses obtained by new operator DHFCOBM.

new operators s(d̃1) s(d̃2) s(d̃3) s(d̃4) s(d̃5) Ranking �
DHFCOBM1,1 -0.720127 -0.698057 -0.526878 -0.503364 -0.627032 A4, A3, A5, A2, A1

DHFCOBM1,0 -0.712216 -0.664281 -0.504271 -0.465212 -0.579535 A4, A3, A5, A2, A1

DHFCOBM0,1 -0.712216 -0.664281 -0.504271 -0.465212 -0.579535 A4, A3, A5, A2, A1

DHFCOBM2,0 -0.514869 -0.434002 -0.236848 -0.196797 -0.328211 A4, A3, A5, A2, A1

From Table 2 and Table 3, we can compare these methods as follows.
First, we find that the rankings in Table 2 are usually different from Table 3. The

reason may be that there are interdependent phenomena among attributes or input
arguments in this numerical example. For example, µ(G1)+µ(G2)+µ(G3)+µ(G4) =
0.30 + 0.35 + 0.30 + 0.22 > 1 = µ(G1, G2, G3, G4) also tells us that the attributes
are correlative. The DHFCOBM operator can perform aggregation of attributes
when they are correlative and it allows argument values to support each other in
the aggregation process. However, the existing operators, such as DHFWA and
DHFOWG, always suppose that the attributes are independent, and each attribute
is given a fixed weight subjectively. So the DHFCOBM operator is a better choice
here.

Second, with the aid of fuzzy measure µ in the DHFCOBM operator, we can
define a weight on not only each attribute but also each combination of attributes.
During the calculation, the weight vectors can be obtained by the source decision
information automatically. However, for other operators such as DHFOWA and
DHFWG, the weight vectors must be given by experts in advance. Thus, our method
is more reasonable and objective. Compare DHFCOBM with DHFCOA in Table 2
and Table 3, the rankings are the same which indicates that both DHFCOBM and
DHFCOA are equipped with Choquet integral.

Third, the DHFCOBM operator can accommodate situations in which the input
arguments are dual hesitant fuzzy information. As dual hesitant fuzzy set is a com-
prehensive set containing FSs, IFSs, FMSs and HFSs as special cases, our method
can be widely used.

Fourth, the DHFCOBM operator has additional parameters p and q which control
the power. In Table 3, the scores vary with parameters p and q, which make decision
making more flexible and can meet the different needs of different decision makers.
That is to say, the decision makers can choose the value of the parameters according
to their preferences.
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4. Conclusions

In this paper, we have investigated the multiple attribute decision making problem
based on the DHFCOBM operator with dual hesitant fuzzy information. Firstly,
some operational laws of dual hesitant fuzzy elements and score function of dual
hesitant fuzzy elements have been introduced. Then, motivated by the ideal of
Bonferroni mean and Choquet integral, the dual hesitant fuzzy choquet ordered
Bonferroni mean (DHFCOBM) operator has been developed. Its advantage is that
it can consider not only the importance of the attributes but also the correlation
among the input arguments, which makes it more feasible and practical. At the
same time we have introduced several aggregation operators for DHFSs based on
BM, and discussed their basic relationships. As different parameters can be chosen
in these aggregation operators, the decision becomes more flexible. Next, we have
applied the DHFCOBM operator to multiple attribute decision making problems
with dual hesitant fuzzy information. Finally, an illustrative example for evaluation
of theses has been given to demonstrate its practicality and effectiveness. In the
future, we will apply the dual hesitant fuzzy multiple attribute decision making to
other domains.
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