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Abstract. The notions of anti fuzzy ideals, bi-ideals and interior ideals
of Partially Ordered Γ-Semigroups(POΓS) have been proposed in this pa-
per. We characterize some properties of POΓS in terms of anti fuzzy ideals
(AFI). We obtain equivalent statements on composition of AFI using the
characteristic function and anti fuzzy bi-ideal(AFBI). Also we study the re-
lationship between anti fuzzy product and union of AFI in a POΓS. Finally,
we deliberate the necessary and sufficient condition of PO-Γ-semigroups.

2010 AMS Classification: 20M99, 20M12,08A72

Keywords: PO-Γ-semigroup, Anti fuzzy sub Γ-semigroup, Anti fuzzy ideal, Anti
fuzzy bi-ideal, Anti fuzzy interior ideal, Anti fuzzy product, Composition of anti
fuzzy ideal, Normal anti fuzzy ideal, Fuzzy magnified translation.

Corresponding Author: Thota Srinivas (thotasrinivas.srinivas@gmail.com)

1. Introduction

The idea of fuzzy set was first considered by Zadeh [26]. The AFI of lie algebras
was considered by Akram [1]. Fuzzy subgroups and anti fuzzy subgroups were con-
sidered by Biswas [2]. The notion of left regular PO-Γ-semigroups were studied by
Lee et al.[11]. The notion of AFI in ternary semirings was considered by Nagaiah
[14]. The notion of fuzzy ideal extension of ordered semigroups was considered by
Xie [25]. AFI of Γ-rings was considered by Ozturk et al.[15]. Fuzzy groups were
considered by Rosenfeld [17]. Γ-semigroups were considered by Sen [18]. Later on
Sen et al.[19] considered only one sided Γ-semigroups. Moreover, POΓS (Partially
Ordered Γ-semigroups) studied by Kwon et al.[10].

The notion of AFI in semigroups, characterizations of different classes in semi-
groups and the properties of their AFIs were considered by Khan et al.[8] and Shabir
et al.[20]. Recently, Srinivas et al.[22] has been studied the concept of the notion of
Γ-near-rings in terms of AFI and its properties. Further Nagaiah et al.[13] extended
varies properties of PO-Γ-semigroups. Prime radicals of Γ-Semigroup were studied
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by Dutta et al.[3]. Bi-ideals in ordered Γ-Semigroups were considered by Thawhat
[24] and fuzzy bi-ideals in semigroups were considered by Kuroki [9]. Moreover,
properties of PO-Γ-semigroups in terms of fuzzy ideals were studied by Majumder
et al.[12]. After that Pal et al.[16] studied the characterization of Γ-semigroup in
terms of AFI. Kehayopulu et al.[7] introduced the regular ordered semigroups in
terms of fuzzy sets. Many more researchers studied the different types of fuzzy
ideals in ordered Γ-semigroups and its properties of PO-Γ-semigroups,for example
see [4, 5, 6, 21, 23].

In this direction we study the Partially Ordered Γ-semigroups in terms of AFI.

2. Preliminaries

Definition 2.1 ([4]). Let S and Γ be two non-empty sets. Then S is called a Γ-
semigroup, if there exists a mapping from S×Γ×S → S, written as (a, α, b) 7→ aαb
satisfying the identity (aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ.

Definition 2.2 ([12]). Let S be a Γ-semigroup. By subΓ-semigroup of S, we mean
a non-empty subset A of S such that AΓA ⊆ A.

Definition 2.3 ([4]). A Γ-semigroup S is called a PO-Γ-semigroup, if for any a, b, c ∈
S and for α ∈ Γ, a ≤ b implies aαc ≤ bαc and cαa ≤ cαb.

Definition 2.4 ([21]). Let S be a PO-Γ-semigroup. A non-empty subset A of S is
said to be right (resp. left) ideal of S, if

(i) AΓS ⊆ A (resp. SΓA ⊆ A ),
(ii) if x ∈ A and y ∈ S such that y ≤ x, then y ∈ A.

Definition 2.5 ([21]). Let S be an PO-Γ-semigroup. A sub Γ-semigroup A of S is
said to be bi-ideal of S, if

(i) AΓSΓA ⊆ A,
(ii) if x ∈ A and y ∈ S such that y ≤ x, then y ∈ A.

Definition 2.6. A fuzzy subset µ of a non-empty set X is a function µ : X → [0, 1].

Definition 2.7. A function Ω : S → S
′
, where S and S

′
are POΓSs, is said to be

homomorphism, if Ω(xγy) = Ω(x)γΩ(y), for all x, y ∈ S and γ ∈ Γ.

Definition 2.8 ([16]). Let S be a POΓS and µ, λ be two fuzzy subsets of S. Then
their anti product µΓλ of µ and λ is defined as

(µΓλ)(x) =

{
inf{max{µ(y), λ(z)}} if x = yαz for y, z ∈ S and α ∈ Γ,
1 otherwise.

Definition 2.9. Let f : X → Y be a function. For a fuzzy set µ in Y , we define
f−1(µ)(x) = µ(f(x)) for every x ∈ X. For a fuzzy set λ in X, f(λ) is defined by

(f(λ))(y) =

{
supλ(x) if f(x) = y, x ∈ X
0 if there is no such x,

for each y ∈ Y .

Definition 2.10 ([16]). Let Ψ be a fuzzy subset of X and α ∈ [0, 1− sup{µ(x) : x ∈
X}], β ∈ [0, 1]. A mapping Ψc

βα : S → [0, 1] is called a fuzzy magnified translation of
226
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Ψ, if Ψc
βα(x) = β.Ψ(x) + α for all x ∈ X. ΨT

α (obtained by putting β =1) and ΨT
β

(obtained by putting α = 0) are fuzzy translation and a fuzzy multiplication of Ψ.

Definition 2.11 ([16]). A PO-Γ-semigroup S is called left zero (right zero), if
xγy = x (resp. xγy = y), for all x, y ∈ S, γ ∈ Γ.

3. Anti fuzzy ideals

In this section we define an anti fuzzy sub Γ-semigroup, anti fuzzy left(right)
ideal, anti fuzzy bi-ideal, anti fuzzy interior ideal of Partially Ordered Γ-semigroup
and discuss an example of anti fuzzy ideal of Partially Ordered Γ-semigroup.

Definition 3.1. A fuzzy subset µ of a POΓS S is called an anti fuzzy sub Γ-
semigroup of S, if

µ(xαy) ≤ max{µ(x), µ(y)}, for all x, y ∈ S and α ∈ Γ.

Definition 3.2. A fuzzy subset µ of a POΓS S is called an anti fuzzy right(resp.
left) ideal of S, if

(i) x ≤ y ⇒ µ(x) ≤ µ(y) for all x, y ∈ S,
(ii) µ(xαy) ≤ µ(x) (resp. µ(xαy) ≤ µ(y)), for all x, y ∈ S and α ∈ Γ.
A fuzzy subset µ of a POΓS S is called an AFI of S, if it is both an anti fuzzy

left ideal and anti fuzzy right ideal.

Example 3.3. Let S =
{
∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}

}
and Γ =

{{a, b, c}}. If for all A,C ∈ S and B ∈ Γ, ABC = A ∩ B ∩ C and A ≤ C ⇔
A ⊆ C, then in [23] Subrahmanyeswara Rao etc shown that S is partial order Γ-
semigroup(shortly POΓS).

Now we find AFI of S. Let µ be fuzzy subset of S defined as follows:

µ(A) =

 0.6 if order of A=3
0.2 if order of A=2
0.1 otherwise,

for each A ∈ S.
It is easy to prove that µ is an AFI of the POΓS S.

Example 3.4. Let S be the set of all negative integers and Γ be the set of all negative
even integers. Then S is a Γ-semigroup where xαy denote the usual multiplication
of integers x, α, y with x, y ∈ S and α ∈ Γ. Then S is a POΓS. Let µ be fuzzy subset
of S defined as follows;

µ(x) =

 0.8 if x = 1
0.4 if x = −2
0.2 if x < −2,

for each x ∈ S.
It is easy to verify that µ is an AFI of a POΓS S.

Definition 3.5. A fuzzy sub Γ-semigroup µ of a POΓS S is called an anti fuzzy
bi-ideal of S, if

(i) x ≤ y ⇒ µ(x) ≤ µ(y), for all x, y ∈ S,
(ii) µ(xαyβz) ≤ max{µ(x), µ(z)} ,for all x, y, z ∈ S and α, β ∈ Γ.
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Definition 3.6. A fuzzy sub Γ-semigroup µ of a POΓS S is called an anti fuzzy
interior ideal of S, if

(i) x ≤ y ⇒ µ(x) ≤ µ(y), for all x, y ∈ S,
(ii) µ(xαaβy) ≤ µ(a), for all x, y, a ∈ S and α, β ∈ Γ.

Definition 3.7. An AFI µ of a POΓS S is said to be normal, if µ(0) = 1.

Definition 3.8. An AFI µ of a POΓS S is said to be complete, if it is normal and
there exist z ∈ S such that µ(z) = 0.

4. Main results

In this section we study several properties of partially ordered Γ-semigroups in
terms of AFIs.

Theorem 4.1. Every AFI of a POΓS is an anti fuzzy bi-ideal of a POΓS.

Proof. Let µ be AFI of a POΓS S. For any x, y ∈ S with x ≤ y, µ(x) ≤ µ(y).
case(i): Suppose µ is an anti fuzzy left ideal of a POΓS S. Then µ(xαy) ≤ µ(y),

for all x, y ∈ S and α ∈ Γ. Thus for any x, y, z ∈ S and α, β ∈ Γ, we have

µ(xαyβz) = µ(xα(yβz)) ≤ µ(yβz) ≤ µ(z).

Case(ii): Suppose µ is an anti fuzzy right ideal of a POΓS S. Then µ(xαy) ≤ µ(x),
for all x, y ∈ S and α ∈ Γ. Thus For any x, y, z ∈ S and α, β ∈ Γ, we have

µ(xαyβz) = µ(xα(yβz)) = µ((xαy)βz) ≤ µ(xαy) ≤ µ(x).

From the both cases,

µ(xαy) ≤ µ(x) ∨ µ(y) = max{µ(x), µ(y)}

and

µ(xαyβz) ≤ max{µ(x), µ(z)},
for all x, y, z ∈ S and α, β ∈ Γ. So µ is an anti fuzzy bi-ideal of S. �

Example 4.2. The examples 3.3 and 3.4 are AFIs of POΓS S. We can easily verify
that µ is an AFBI of a POΓS S.

Proposition 4.3 ([6]). Let S be a POΓS and {Ωi}i∈I a non-empty family of fuzzy
subsets of S. Then

∧
i∈I Ωi is a fuzzy subset of S.

Proposition 4.4. Let S be a POΓS and {Ωi}i∈I a non-empty family of fuzzy subsets
of S. Then

∨
i∈I Ωi is a fuzzy subset of S.

Proof. Let x ∈ S. Then the set {Ωi(x)}i∈I is a non-empty bounded above subset
of R. By the Completeness axiom, there exists the sup{Ωi(x)}i∈I in R. Since
0 ≤ Ωi(x) ≤ 1, for each i ∈ I, we have 0 ≤ sup{Ωi(x)}i∈I ≤ 1. Thus 0 ≤
(
∨
i∈I Ωi)(x) ≤ 1. If x, y ∈ S is such that x ≤ y, then {Ωi(x)}i∈I = {Ωi(y)}i∈I . Thus

sup{Ωi(x)}i∈I = sup{Ωi(y)}i∈I . So (
∨
i∈I Ωi)(x) = (

∨
i∈I Ωi)(y). Hence

∨
i∈I Ωi is

a fuzzy subset of S. �

Proposition 4.5. Let S be a POΓS and {Ωi}i∈I a family of anti fuzzy Γ-semigroup
of S. Then

∨
i∈I Ωi is an anti fuzzy sub Γ-semigroup of S.
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Proof. By the proposition 4.4, we have (
∨
i∈I

Ωi) is fuzzy subset of S. Let x, y ∈ S

and α ∈ Γ. Then

(
∨
i∈I

Ωi)(xαy) = sup{Ωi(xαy)}i∈I

≤ sup{max{Ωi(x),Ωi(y)}}i∈I
= max{sup{Ωi(x)}i∈I , sup{Ωi(y)}i∈I}
= max{(

∨
i∈I

Ωi)(x), (
∨
i∈I

Ωi)(y))}.

Thus
∨
i∈I

Ωi is anti fuzzy sub Γ-semigroup of S. �

Theorem 4.6. Let S be a POΓS. Then the following statements are true.
(1) For any collection {Ωi}i∈I of an anti fuzzy left (resp. right) ideals of S,∨
i∈I Ωi is an anti fuzzy left (resp. right) ideal of S.
(2) For any collection {Ωi}i∈I of an AFBIs of S,

∨
i∈I Ωi is an AFBI of S.

(3) For any collection {Ωi}i∈I of an anti fuzzy interior ideals of S,
∨
i∈I Ωi is an

anti fuzzy interior ideal of S.

Proof. (1) By proposition 4.4, we have
∨
i∈I Ωi is a fuzzy subset of S.

Now, let x, y ∈ S be such that x ≤ y. Since Ωi is a fuzzy left ideal of S,
Ωi(x) ≤ Ωi(y), for all i ∈ I. Then sup{Ωi(y)}i∈I ≥ Ωi(y) ≥ Ωi(x), for all i ∈ I. Thus
sup{Ωi(y)}i∈I is an upper bound of {Ωi(x)}i∈I . So sup{Ωi(y)}i∈I ≥ sup{Ωi(x)}i∈I .
Hence (

∨
i∈I Ωi)(x) ≤ (

∨
i∈I Ωi)(y).

Let x, y ∈ S and α ∈ Γ. Since Ωi is an anti fuzzy left ideal of S, we have
Ωi(xαy) ≤ Ωi(y), for all i ∈ I. Then

(
∨
i∈I

Ωi)(xαy) = sup{Ωi(xαy)}i∈I

≤ sup{Ωi(y)}i∈I
= (

∨
i∈I

Ωi)(y).

Thus
∨
i∈I

Ωi is an anti fuzzy left ideal of S.

(2) By proposition 4.5, we have
∨
i∈I Ωi is an anti fuzzy sub Γ-semigroup of S.

From (a), let x, y ∈ S be such that x ≤ y. Then (
∨
i∈I Ωi)(x) ≤ (

∨
i∈I Ωi)(y).

Let x, y, z ∈ S and α, β ∈ Γ. Since Ωi is an AFBI of S, we have Ωi(xαyβz) ≤
max{Ωi(x),Ωi(z)}, for all i ∈ I. Thus

(
∨
i∈I

Ωi)(xαyβz) = sup{Ωi(xαyβz)}i∈I

≤ sup{max{Ωi(x),Ωi(z)}}i∈I
= max{sup{Ωi(x)}i∈I , sup{Ωi(z)}i∈I}
= max{(

∨
i∈I

Ωi)(x), (
∨
i∈I

Ωi)(z))}.

So
∨
i∈I

Ωi is an AFBI of S.
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(3) By proposition 4.5, we have
∨
i∈I Ωi is an anti fuzzy sub Γ-semigroup of S.

From (1), let x, y ∈ S be such that x ≤ y. Then (
∨
i∈I Ωi)(x) ≤ (

∨
i∈I Ωi)(y).

Let x, y, a ∈ S and α, β ∈ Γ. Since Ωi is an anti fuzzy interior ideal of S, we have
Ωi(xαaβy) ≤ Ωi(a), for all i ∈ I. Thus

(
∨
i∈I

Ωi)(xαaβy) = sup{Ωi(xαaβy)}i∈I

≤ sup{Ωi(a)}i∈I
= (

∨
i∈I

Ωi)(a).

So
∨
i∈I

Ωi is an anti fuzzy interior ideal of S. �

Theorem 4.7. Let Ω : S → S
′

be an epimorphism on POΓSs S and S
′
. If µ is an

anti fuzzy sub Γ-semigroup of S
′
, then Ω−1(µ) is an anti fuzzy sub Γ-semigroup of

S, provided Ω−1(µ) is a non-empty.

Proof. Let x, y ∈ S. Then Ω(x),Ω(y) ∈ S′
. Since µ is an anti fuzzy sub Γ-semigroup

of S
′
,

µ((Ω(x))α(Ω(y))) ≤ max{µ(Ω(x)), µ(Ω(y))} = max{Ω−1(µ)(x),Ω−1(µ)(y)}.

Thus

Ω−1(µ)(xαy) = µ(Ω(xαy)) = µ(Ω(x)αΩ(y)) ≤ max{Ω−1(µ)(x),Ω−1(µ)(y)}.

So Ω−1(µ) is anti fuzzy sub Γ-semigroup of S. �

Theorem 4.8. Let Ω : S → S
′

be an epimorphism on POΓSs S and S
′
. If µ is an

anti fuzzy left (resp. right)ideal of S
′
, then Ω−1(µ) is an anti fuzzy left (resp. right)

of S, provided Ω−1(µ) is non-empty.

Proof. By theorem 4.7, we have, Ω−1(µ) is an anti fuzzy sub Γ-semigroup of S. Let

x, y ∈ S. Then Ω(x),Ω(y) ∈ S′
. For any α ∈ Γ, we have

Ω−1(µ)(xαy) = µ(Ω(xαy))
= µ(Ω(x)αΩ(y)))
≤ µ(Ω(y))
= Ω−1(µ)(y).

Let x, y ∈ S be such that x ≤ y. Then Ω(x),Ω(y) ∈ S′
with Ω(x) ≤ Ω(y). Since

µ is an anti fuzzy left ideal, µ(Ω(x)) ≤ µ(Ω(y)). Thus Ω−1(µ)(x) ≤ Ω−1(µ)(y). So
Ω−1(µ) is anti fuzzy left ideal of S. �

Theorem 4.9. Let Ω : S → S
′

be an epimorphism on POΓSs S and S
′
. If µ is an

AFBI of S
′
, then Ω−1(µ) is an AFBI of S, provided Ω−1(µ) is non-empty.

Proof. By theorem 4.7, we have Ω−1(µ) is an anti fuzzy sub Γ-semigroup of S.
230
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Let µ be an AFBI of S
′
. Let x, y ∈ S. Then Ω(x),Ω(y) ∈ S

′
. Thus for any

α, β ∈ Γ, we have

Ω−1(µ)(xαyβz) = µ(Ω(xαyβz))
= µ(Ω(x)αΩ(y)βΩ(z))
≤ max{µ(Ω(x)), µ(Ω(y))}
= max{Ω−1(µ)(x),Ω−1(µ)(y)}.

Let x, y ∈ S be such that x ≤ y. Then Ω(x),Ω(y) ∈ S′
with Ω(x) ≤ Ω(y). Since

µ is an AFBI, µ(Ω(x)) ≤ µ(Ω(y)). So Ω−1(µ)(x) ≤ Ω−1(µ)(y). Hence Ω−1(µ) is an
AFBI of S. �

Theorem 4.10. Let Ω : S → S
′

be an epimorphism on POΓSs S and S
′
. If µ is an

anti fuzzy interior ideal of S
′
, then Ω−1(µ) is anti fuzzy interior ideal in S, provided

Ω−1(µ) is non-empty.

Proof. Straight forward �

Theorem 4.11. Let Ψ be an anti fuzzy left (resp. anti fuzzy right, anti fuzzy)ideal
of a POΓS S. Then so is Ψα, for every real number α ≥ 0, where Ψα defined by
Ψα(x) = (Ψ(x))α, for all x ∈ S.

Proof. Let Ψ be an anti fuzzy left ideal of a POΓS S. For any x, y ∈ S and γ ∈ Γ,
we have Ψ(xγy) ≤ Ψ(y). Now Ψα(xγy) = (Ψ(xγy))α ≤ (Ψ(y))α = Ψα(y), for all
x, y ∈ S and γ ∈ Γ.

Let x, y ∈ S be such that x ≤ y. Since Ψ is anti fuzzy left ideal, Ψ(x) ≤ Ψ(y), for
all x, y ∈ S. Then (Ψ(x))α ≤ (Ψ(y))α, for all α ≥ 0. Thus Ψα(x) ≤ Ψα(y). So Ψα

is an anti fuzzy left ideal of S. �

Theorem 4.12. Let Ψ be an anti fuzzy interior ideal of a POΓS S. Then so is Ψα,
for every real number α ≥ 0, where Ψα defined by Ψα(x) = (Ψ(x))α, for all x ∈ S.

Proof. Let Ψ be an anti fuzzy interior ideal of a POΓS S. Let x, y ∈ S and γ, β ∈ Γ.
Then we have Ψ(xγaβy) ≤ Ψ(a). Thus

Ψα(xγaβy) = (Ψ(xγaβy))α ≤ (Ψ(a))α = Ψα(a),

for all x, y ∈ S and γ, β ∈ Γ.
Let x, y ∈ S be such that x ≤ y. Since Ψ is anti fuzzy interior ideal, Ψ(x) ≤ Ψ(y),

for all x, y ∈ S. So (Ψ(x))α ≤ (Ψ(y))α for all α ≥ 0. So Ψα(x) ≤ Ψα(y). Hence Ψα

is an anti fuzzy interior ideal of S. �

5. Composition of anti fuzzy ideals

In this section we prove equivalent statements on composition of AFIs using the
characteristic function and AFBI. Also we study the relationship between anti fuzzy
product and union of AFIs in a POΓSs.

Theorem 5.1. A fuzzy subset µ of a POΓS S is an anti fuzzy sub Γ-semigroup of
S if and only if µΓµ ⊇ µ.
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Proof. Let µ be an anti fuzzy sub Γ-semigroup of S. Then for any x ∈ S, we have

(µΓµ)(x) =

{
inf{max{µ(y), µ(z)}} if x = yαz for y, z ∈ S and α ∈ Γ,
1 otherwise.

≥
{

inf{µ(yαz)} if x = yαz for y, z ∈ S and α ∈ Γ,
1 otherwise.

=

{
µ(x)
1

≥ µ(x).

Thus µΓµ ⊇ µ.
Conversely, suppose that µ ⊆ µΓµ. Then for any x ∈ S, α ∈ Γ, we have

µ(xαy) ≤ µΓµ(xαy)

≤ max {µ(x), µ(y)}.
Thus µ is an anti fuzzy sub Γ-semigroup of S. �

Theorem 5.2. In a POΓS S, the following statements are equivalent:
(1) µ is an AFBI of S,
(1) µΓµ ⊇ µ, µΓλΓµ ⊇ µ, and for any x ∈ S, x ≤ y implies µ(x) ≤ µ(y), where

λ is the characteristic function of S.

Proof. Assume that µ is an AFBI of S. Then µ is an anti fuzzy sub Γ-semigroup of
S. So by a theorem µ ⊆ µΓµ. Let a ∈ S. Suppose there exists x, y, p, q ∈ S, α, β ∈ Γ
such that a = xαy and x = pβq. Since µ is an AFBI of S, we obtain µ(pβqαy) ≤
max{µ(x), µ(y)}. Then

(µΓλΓµ)(a) = inf
a=xαy

{max{(µΓλ)(x), µ(y)}}
= inf

a=xαy
{max[ inf

x=pβq
{max{µ(p), λ(q)}}], µ(y)}

= inf
a=xαy

{max[ inf
x=pβq

{max{µ(p), 0}}], µ(y)}

= inf
a=xαy

{max{µ(p), µ(y)}}
≥ µ(pβqαy) = µ(xαy) = µ(a).

Thus we have µΓλΓµ ⊇ µ. Otherwise (µΓλΓµ)(a) = 1. So µΓλΓµ ⊇ µ
Conversely, let us assume that (2) holds. Since µ ⊆ µΓµ, µ is an anti fuzzy sub

Γ-semigroup of S. Let x, y, z ∈ S and α, β ∈ Γ. Then we have

µ(xαyβz) = µ(a) ≤ (µΓλΓµ)(a)
= inf

a=xαyβz
{max{(µΓλ)(xαy), µ(z)}}

≤ max{(µΓλ)(p), µ(z)}(let p = xαy)
= max{ inf

p=xαy
{max{µ(x), λ(y)}}, µ(z)}

≤ max{max{µ(x), 0}, µ(z)}
= max{µ(x), µ(z)}.

Since any x, y ∈ S, x ≤ y implies µ(x) ≤ µ(y). Thus µ is an AFBI of S. �

Theorem 5.3. Let Ψ1 be an anti fuzzy right ideal and Ψ2 be an anti fuzzy left ideal
of a POΓSs of S. Then Ψ1ΓΨ2 ⊇ Ψ1 ∪Ψ2.
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Proof. Let Ψ1 be an anti fuzzy right ideal and Ψ2 be an anti fuzzy left ideal of S.
Then for any x ∈ S, we have

(Ψ1ΓΨ2)(x) =

{
inf{max{Ψ1(y),Ψ2(z)}} if x = yαz for y, z ∈ S and α ∈ Γ
1 otherwise

≥
{

inf{max{Ψ1(yαz),Ψ2(yαz)}} if x = yαz for y, z ∈ S and α ∈ Γ
1 otherwise

=

{
max{Ψ1(x),Ψ2(x)}
1

=

{
(Ψ1 ∪Ψ2)(x)
1.

Thus Ψ1ΓΨ2 ⊇ Ψ1 ∪Ψ2. �

6. Normal anti fuzzy ideal

In this section we study the normal, complete AFIs of partially ordered Γ-semigroups.
Also we characterize fuzzy magnified translation.

Theorem 6.1. Let Ψ be an anti fuzzy left ideal (resp. anti fuzzy right ideal, AFI)
of a POΓS of S and t be a fixed element of S such that Ψ(0) 6= Ψ(t). Define a fuzzy

set Ψ? in S by Ψ?(x) = Ψ(x)−Ψ(t)
Ψ(0)−Ψ(t) for all x ∈ S. Then Ψ? is a complete anti fuzzy

left ideal (resp. anti fuzzy right ideal, AFI) of S.

Proof. Let Ψ be an anti fuzzy left ideal of S and x, y ∈S, γ ∈ Γ. Then

Ψ?(xγy) = Ψ(xγy)−Ψ(t)
Ψ(0)−Ψ(t)

≤ Ψ(y)−Ψ(t)
Ψ(0)−Ψ(t)

= Ψ?(y).

Let x, y ∈ S be such that x ≤ y. Then Ψ(x) ≤ Ψ(y) implies Ψ(x) − Ψ(t) ≤
Ψ(y) − Ψ(t). Thus Ψ(x)−Ψ(t)

Ψ(0)−Ψ(t) ≤
Ψ(y)−Ψ(t)
Ψ(0)−Ψ(t) . So Ψ?(x) ≤ Ψ?(y). Hence Ψ? is an anti

fuzzy left ideal of S. Since Ψ?(0) = Ψ(0)−Ψ(t)
Ψ(0)−Ψ(t) = 1, Ψ? is normal anti fuzzy left ideal

of S. Since t ∈ S, Ψ?(t) = Ψ(t)−Ψ(t)
Ψ(0)−Ψ(t) = 0. Therefore Ψ? is a complete anti fuzzy left

ideal of S. �

Theorem 6.2. Let Ψ be an anti fuzzy left (resp. right)ideal of a POΓS of S and
Ψ+ be a fuzzy set in S given by Ψ+(x) = Ψ(x) + 1−Ψ(0), for all x ∈ S. Then Ψ+

is a normal anti fuzzy left (resp. right) ideal of S.

Proof. Let x, y ∈ S, α ∈ Γ and Ψ be anti fuzzy left ideal of S. Then Ψ+(xαy) =
Ψ(xαy) + 1−Ψ(0) ≤ Ψ(y) + 1−Ψ(0) = Ψ(y). Thus Ψ+ is anti fuzzy left ideal of S.
Also Ψ+(0) = Ψ(0) + 1−Ψ(0) = 1. So Ψ+ is normal anti fuzzy left ideal of S. �

Theorem 6.3. Let Ψ be an AFBI of a POΓS S and Ψ? be fuzzy subset of S, defined

by Ψ?(x) = Ψ(x)
Ψ(1) , for all x ∈ S. Then Ψ? an AFBI of S.
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Proof. Let Ψ be an AFBI of a POΓS. For any x, y ∈ S and α, β ∈ Γ. Then

Ψ?(xαyβz) = Ψ(xαyβz)
Ψ(1)

≤ max{Ψ(x),Ψ(z)}
Ψ(1)

= max{Ψ(x)
Ψ(1) ,

Ψ(y)
Ψ(1)}

= max{Ψ?(x),Ψ?(y)}.

Let x, y ∈ S be such that x ≤ y. Since Ψ is an AFBI, Ψ(x) ≤ Ψ(y), for all

x, y ∈ S. Thus Ψ(x)
Ψ(1) ≤

Ψ(y)
Ψ(1) . So Ψ?(x) ≤ Ψ?(y). Hence Ψ? is an AFBI of S. �

Proposition 6.4. Let Ψ be an anti fuzzy left (resp. anti fuzzy right, anti fuzzy)ideal
of a POΓS S. Then the fuzzy magnified translation Ψc

βα of Ψ is an anti fuzzy left

(resp. anti fuzzy right, anti fuzzy) ideal of S.

Proof. Let Ψ be an anti fuzzy left ideal of POΓS S. Let x, y ∈ S be such that
x ≤ y. Then Ψ(x) ≤ Ψ(y), for all x, y ∈ S. Since β ∈ [0, 1] β.Ψ(x) ≤ β.Ψ(y). Thus
β.Ψ(x)+α ≤ β.Ψ(y)+α, for all α ∈ [0, 1−sup{µ(x) : x ∈ S}]. So Ψc

βα(x) ≤ Ψc
βα(y).

Again let x, y ∈ S, γ ∈ Γ, we have

Ψc
βα(xγy) = β.Ψ(xγy) + α

≤ β. µ(y) + α
= Ψc

βα(y).

Hence Ψc
βα is an anti fuzzy left ideal of S. �

Proposition 6.5. Let Ψ be an anti fuzzy left ideal (anti fuzzy right ideal) of a left
zero (right zero) POΓS S. Then the fuzzy magnified translation Ψc

βα of Ψ is constant
function.

Proof. Let S be a left zero PO–Γ-semigroup S. Then xγy = x(resp. xγy = y), for
all x, y ∈ S, γ ∈ Γ. Thus for any x, y ∈ S, γ ∈ Γ, we have

Ψc
βα(x) = β. µ(x) + α

= β. µ(xγy) + α
≤ β. µ(y) + α
= Ψc

βα(y),

Ψc
βα(y) = β. µ(y) + α

= β. µ(yγx) + α
≤ β. µ(x) + α
= Ψc

βα(x).

Thus Ψc
βα(x) = Ψc

βα(y). Hence Ψc
βα is a constant function. �
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