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1. INTRODUCTION

The extensive treatment of general n-metrics was made by K. Menger in 1928.
The notions of 2-norm and n-norm on a linear space were introduced by Gahler, see
[1, 2,4, 13, 15]. In 1962, A. N. Serstnev introduced the concept of random normed
linear space [14]. In 2003, I. Jebril and R. Ali, studied bounded linear operators in
probabilistic normed linear spaces [8]. In 2009, I. Jebril and R. Hatamleh introduced
the concept of random n-normed linear space [9] as a generalization of n-normed
space already introduced by Gunawan and Mashadi [10]. For more results in this
subject, we refer the reader to [5, 11, 12, 10] for instance.

We now state some basic notions that will be needed later.

Definition 1.1 ([13]). A t-norm is a binary operation on unit interval [0, 1], that is,
a function T : [0,1] x [0,1] — [0, 1] such that for all z,y, z € [0, 1], the four following
axioms are satisfied:

(T'1) (Commutativity) T (z,y) =T (y,x),

(T2) (Associativity) T(z,T(y,2)) =T (T (z,y),2),
(T'3) (Boundary condition) T (z,1) = x,

(T'4) (Monotonicity) T (z,y) < T (z,z), whenever y < z.
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Definition 1.2 ([1] ). Let n € N and L be a real vector space of dimension d > n.

If a real valued function ||e,e,... | on L x L x ---x L = L™, satisfies the following
properties:

(i) ||x1,x2, ..., 2, = 0 if and only if 21, za, ..., 2, are linearly dependent,

(ii) ||z1, 22, ..., @y is invariant under any permutation of 1, xa, ..., Ty,

(iil) ||lz1, z2, .- - azs|| = || |x1, 22, . . ., 2s|| , where a € R,

(iv) |lz1, @, -« oy Tpn—1,y + 2|| < |21, 22, Tpe1, Yyl + |21, 22, - - -, 201, 2|,
then ||e,e,... | is called an n-norm on L and the pair (L, |e,e, ... e|) is called

an n-normed linear space.

Definition 1.3 ([1]). Let (L, ||e,e,..., ¢||) be a n-normed space. The sequence (zy)
in L is said to be n-convergent to [ € L (with respect to the n-norm), whenever

lim ||z, 22,...,2p—1,2k — || =0,
k—o0
for every z1,x9,..., 2,1 € L.
Definition 1.4 ([1]). Let (L, ||e,e,...,o|) be a n-normed space, the sequence (zy)

in L is said to be n-Cauchy (with respect to the n-norm), whenever

lm ||z1,29,...,Zn-1,2 — x| =0,
k,l—o0

for every x1,x9,...,0n_1 € L.

Definition 1.5 ([1]). Let (L, |/e,e,..., ¢|) be a n-normed space.

If every Cauchy sequence converges to an [ € L, then (L, ||e,e,..., ] is said to
be n-complete.

A n-complete n-normed space is called an n-Banach space.

Definition 1.6 ([13]). A function f:R — R{ is called a distribution function, if it
is a non-decreasing and left continuous with sup,cp f (t) = 1.

By D", we denote the set of all distribution functions such that f (0) = 0.

If a € R{, then a € DT, where

0, if t <a
H“(t)_{ 1, if t > a.

It is obvious that Hy > f for all f € D™.

The notion of random normed space was introduced as follows:

Definition 1.7 ([10]). A random normed space is a triple (V,v,T'), where V is a
vector space, T' is a continuous t-norm, and v is a mapping from V into DT such
that the following conditions hold: for all p,q,r in V,

(1) g0 = vy if and only if p = 6, 6 being the null vector in V/,

(i) vpsq = T (vp,vg),

(ill) vap = vp (‘IT') , for all z and A in R.

The notion of random n-normed space was introduced in [9] and [7] as itemized
in the following:
194
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Definition 1.8 ([9]). Let L be a linear space of dimension greater than one over a
real field, T be continuous t-norm and let v be a mapping from L X L x ---x L =L"
into D*. If the following conditions are satisfied for all 1, zs,...,7, € L and t € R,

(1) Yoy mp,....an (t) = Ho(t) & 1,2, ..., z, are linearly dependent, where vy, 4, 4., (£)
denotes the value of vy, 25, . 20,

(i) Vgy,w0...0n (t) # Ho (t), if 21,29, ...,2, are linearly independent,

ill) vz, s,...,3, 1S invariant under any permutation of x1, z2,...,z, € L",

(
(iV) Vgy ma,.0mn (E) = Vo oz (i), for every t > 0, a #0, a € R,
(

]

V) Vr1, 22,0y Tn+a], (s+t)>T (”rl,m,---,xn (s) y Vzq,@a,...,2), (t));
for all ), € L and s € R,
then (L™, v,T) is called a random n-normed linear space (briefly R-n-NLS).

Definition 1.9. Let (L,v,T) be a R-n-NLS. Assume further that
(R—mn— Ng) For all t € (0,00), Vg, ...z, (t) > 0 implies that x1, 2o, ..., x, are
linearly dependent.

The following examples give us a R-n-NLS satisfying condition (R —n — Ng) .

Example 1.10. Let (L, ||e,e,...,o|) be a n-normed space. We can made a random
n-normed space in a natural way, by setting
1. Vg aown () = Ho (t — ||z1,22,...,24]]), for every x1,29,...,2, € L, t >0

and T (a,b) = min (a,b) , a,b € L;
—_ i hent>0,t € R
9. o . (1) = t+[z1,22,....z0 | ? W ’ ’
Varazsen () { 0, when t <0,
for every z1,2a,...,2, € L,t > 0 and T (a,b) = ab, for a,b € L.

2. N-BANACH RANDOM SPACE

Let (L,v,T) be a R-n-NLS. Since T is continuous t-norm, then (L,v,T') becomes
a Hausdorff linear topological space having as a fundamental system of neighborhood
of the null vector 0 the family

{NH(Ev)‘) te> Oa)‘ € (Oal)}7
where
No(e,N) ={z1,@2,...,Bn1 € L: Vg, gy, (€) > 1= A},

The N (€, A) neighborhood determines a first countable Hausdorff topology. F-
topology of sequences, i.e., &1, T2, ..., Tn—1—YyENy (¢, \) means that y € Ny, 4y a0y
and vice versa.

A sequence z = (73,),cy in L is said to have F-convergence to [ € L, if for every
e > 0,A€(0,1) and for each nonzero x1,xs,...,z,—1 € L there exist a positive
integer ko € N such that

T1,%2, ..., Tn_1,Zk — | € Ny (e, A) for each n > k.
Or equivalently,
T1,%2, ..., Tn_1,2k € N, (e, \) for each n > k.
In this case, we write F' — limx1, T2, ..., Tpn_1,xr = L.
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Definition 2.1 ([6]). Let (L,v,T) be R-n-NLS. A sequence (x)) in L is said to be
random n-convergent to | € L, if

lim Vzi,22,.sn—1,2, 1 t) =1,
k—o0
for every z1,x9,...,2,-1 € L.
Or equivalently, for every ¢ > 0, A € (0,1) and =1, 22,...,2,—1 € L, there exists

ko € N such that
Vzy,@0,..., 00 —1,2, —1 (6) >1— A,
for all & > k.

Theorem 2.2. Let (L,v,T) be a R-n-NLS. If a sequence (x) is random n-convergent
to I with respect to the random n-norm v, then [ is unique.

Proof. Suppose that there exist elements l1,ly (I3 # l2) in L such that

lim Vgy,@a,..@n_1,0k—l1 (t) =1,
k—o0

lim k—ooVxy,xa,....x0_1,Tp—12 (t) =1
Let € > 0 choose T ((1 — X\), (1 — X)) > 1—¢, and for each nonzero x1,xa, ..., Tn_1 €
L such that NV, (e,\) and Ny, (¢, A) are disjoint neighborhoods of l;and lo.
Since (z) is random n-convergent to ljand Iy, for any ¢ > 0 there exist kg € N
such that

t
Vay,@o,..;¢n—1,26—l1 (2) >1- A, Vk > ko,

t

Vzy,22,...,8n—1,2% —l2 (2) >1- )" Vk > ko.

Now let

t t
Vay,@a,..;en_1,l1—l2 (t) > Vi wa,e@n 1,01 —2,+@n—l2 (2 + 5

t t
T Vz1,20,.,Tn—1,2n—l1 5 s Vg, 2o, @p—1,80n —la 5

> T((1=X),(1=X).

Y

It follows that
Vzy,w9,.tn_1,l1—l2 (t) >1—e.
Since € > 0 was arbitrary, we get
Vi w0, tn—1,l1—l2 (t) =1,
for all £ > 0, and non-zero element x1,x2,...,2,_1 € L. Hence I; = l5. O
Lemma 2.3. Let (L,||e,e,...,e|) be a real n-normed space, and let (L,v,T) be a
R-n-NLS induced by
t

o t+ |z, 22, x|

’le,lmqun (t)

where T1,%a,...,2, € L and T > 0. If the sequence (xy)1is n-convergent tol € L
and nonzero x1,%a,-..,Tn_1 € L, then (xy) is random n-convergent to l € L.
196
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Proof. Suppose that (z)is n-convergent to [ € L™. Then

lim ||z1,22,...,,Zn-1,25 — ]| = 0.
k—o0
Then, for every ¢ > 0 and for every x1,xa,...,,Zn_1,2k € L, Fko = ko(t) such that
||x17x27"~77xn717$k_l” <t, Yk > k.
For every given € > 0,
e+ ||z, 22,0y Tno1,xp — ] - e+t
€ g’
€ €
> )
e+ ||z, 22, oy, X1,k — 1| e+t
t
: > 1-—.
e+ ||z, 22, oy, X1,k — 1| e+1

Thus, by letting A = E%_t € (0,1), we have
Vg, @, Tn 1,2k —1 (t) >1- >‘v vk > kO'

So (z) is random n-convergent to ! € L. O

Definition 2.4 ([6]). Let (L,v,T") be R-n-NLS. A sequence (zj) in L is said to be
random n- Cauchy, if

lim V), 02,0y Tn—1,Tk—Tom (t) =1,
k,m— 00
for every z1,x9,..., 2,1 € L.
Or equivalent, for every ¢ > 0, A € (0,1) and x1,22,...,2,-1 € L, there exists

ko € N such that
Va2, @ 1,8, — T, (5) >1-=A,

for all k,m > k.

Proposition 2.5 ([6]). In R-n-NLS (L,v,T), every random n-convergent sequence
is a random n-Cauchy sequence.

If every random n-Cauchy sequence in L converges to an [ € L, then (L,v,T) is
called a complete random n-normed space. A complete random n-normed space is
then called a random n-Banach space.

3. MAIN RESULTS

In this section, we have discussed n-bounded linear operator, (strong boundedness
and weak boundedness) in R-n-NLS. Then study a-n-norms, a-n-convergent, a-n-
Cauchy in R-n-NLS. Also, study the notion of n-compact linear operator in R-n-NLS.
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3.1. Boundedness linear operator in R-n-NLS. Definition of bounded linear
operator in probabilistic normed space introduced by B. L. Guillén, J. A. R. Lallena
and C. Sempi [3] then studied by Jebril and Ali in [8]. In this section, we introduce
the definition of n-bounded linear operator in R-n-NLS. By virtue of this definition,
we describe the boundedness linear operator in R-n-NLS and we prove some related
results.

Let (Ly,]|e,e,...,e|]) be n-normed space and (Ls, ||e||) be a normed space. Fol-
lowing is an extension of the notion of random n-bounded linear operator. In [15],
S. M. Gozali et al. introduced the notion of n-bounded linear operator.

Definition 3.1 ([15]). An operator T : (L, ||e,e,...,o|) = (L2,]| ®]) is an n-linear
operator on Ly, if T is linear in each variable.

An n-linear operator is called n-bounded of type I, if there is a constant k such
that for all (z1,zo,...,2z,) € LY,

1T (z1, 22, ... zp)|| < k|21, 22, ... 20|
Note that when n = 1, the above is reduced to the usual notion of bounded linear

operator in normed space.

In the following, we will generalize the definition of n-bounded linear operator in
n-normed space introduced in [15] by starting the definition of random n-bounded
linear operator of type I in R-n-NLS.

Definition 3.2. Let T': (L1,v,T) — (Lo, i, Q) be a linear operator, where (L1, v, T)
is R-n-NLS and (Ls, i, @) is R-NLS.
(i) The operator T is called weak random n-bounded of type I on L, if for every
€ (0,1), there exist k, > 0 such that

t
Vz1,22,...,Tn <k’> za= HT(xy,22,...,0) (t) > a,

(o3

for all (x1,22,...,2,) € LT and t € R.
(ii) The operator T is called strong random n-bounded of type I on L; if there
exist a positive real number k£ such that

t
HT (@1 ,22,enn) (B) 2 Ut T2 )

for all (x1,23,...,2,) € LT and t € R.

Theorem 3.3. Let T : (L1,v,T) — (L2, p, Q) be a linear operator, where (Ly,v,T)
is R-n-NLS and (Lo, 1, Q) is R-NLS. For all (Lo, 1, Q). If T is strong random n-
bounded, then it is weak random n-bounded.

Proof. Suppose that T is strong random n-bounded of type I. Then there exists k
such that

t
it @20, 1 (1)

for all (z1,x2,...,2,) € LY and ¢t € R. Thus, for every a € (0, 1), there exist ko > 0
such that

t

Vey,xa,...,Tn (k) Z a = ,U/T(zl,mg,...,zn) (t) Z «,
o

198
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for all (z1,22,...,2,) € L} and t € R. So T is weakly random n-bounded of type

L. O
Let (Lq,]||e,e,...,o|]) and (Lo, ||e,e,...,e]]) be n-normed spaces. Following is
an extension of the notion of random n-bounded linear operator. In [15], A. L.

Soenjaya introduced the notion of n-bounded linear operator of type II. Motivated
by this paper, we will generalize this concept in R-n-NLS.
Definition 3.4 ([15]). An operator T : (L1, |e,e,...,0]) — (Lo, |[e,e, ... e|) is
called n-bounded of type II, if there is a constant k such that for all z1,29,..., 2z, €
Lla
||T(1'1) 7T(x2) g aT(xn)|| <k ||£C1,IE2, cee 71'774” .

Definition 3.5. Let T': (L1,v,T) — (L2, i, Q) be a linear operator, where (Lq,v,T)
and (Lo, i, Q) are R-n-NLS.

(i) The operator T is called weakly random n-bounded of type II on Ly, if for
every a € (0,1), there exist ko > 0 such that

t
Vzy,22,...,Tn <k’> za= HT(21),T(x2),....T(xn) (t) > a,
for all x1,zs9,...,2, € L1 and t € R.

(ii) The operator T is called strong random n-bounded of type II on Ly, if there
exist a positive real number k£ such that

t
IT(21),T (23),.... T(zn) () > LR S
for all z1,x2,...,2, € L1 and t € R.

Theorem 3.6. Let T : (L1,v,T) — (La, 1, Q) be a linear operator, where (L1,v,T)
and (Lo, 1, Q) are R-n-NLS. If T is strong random n-bounded of type II, then it is
weakly random n-bounded of type II.

Proof. Suppose that T is strong random n-bounded of type II. Then there exists k
such that

t
UT(wl),T(zg),...7T(wn)(t)val’ZQ _____ e\ 7)o

for all z1,x2,...,2, € L1 and t € R.
Thus, for every « € (0, 1), there exist k, > 0 such that

t
Vey,xa,...,Tn (k) > o= ILLT(II),T(IQ),.A.,T(Z;TL) (t) > «,
for all z1,x2,...,2, € L1 and t € R.

So T' is weakly random n-bounded of type II. O

The converse of previous theorem is not true as confirmed by the following counter
example.

Example 3.7. Let (L, ||e,e,... ¢|) be n-normed space. Define T' (a,b) = min (a, b)
and Q (a,b) = max (a,b) for all a,b € [0,1]. Now we define

2 — |lzy, x9,..., 2 2 t
: "Hz and pr (e, @, wn) (£) =

199

Vay w3,z (1) =
FLER® 2 + |21, @2, . . ., T
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where ¢t > |21, 22, ..., 2y . Let T : (L,v,T) — (L, p, Q) defined by T (x) = « for all
x € L. We choose ko, = ——, Va € (0,1). Then for t > ||z1,22,...,7,| . Then

1-a?

t
V1,22, .0 (E) e

2
o —ller,@z,.enll®
H

= Q

2 il
L tllz,ao,. e |?
z

(=)’ —|z1,20,....wn | > o

Ty L P
2 2 2 2
=t2(1-a)” — ||x1,x2,;. . ,x,§|| > at?)(1—a)” +allry, z2, ..., 2,
2 1—
= ||I1,x2,...,$n|| < % )
= |21, 22, ... 20| < t1-a)d-a)?
(14+0)3
1 1
I ol < t((l—a)(l—a)§+(1+a)§)
) AR | n — (1+a)%
1
t < (1+a)2
I T T I PR SVEHVRL
Now,
(1+a)?

T l204:>1+0Hr0432042.
l-a)(l-a)2+(1+4+a)2

Thus, we have
t

t+ ||z1, 22, .., 5]

>a, Vte (0,1).

So,

t
Vzy,x0,..., 2 <k’> Z a = /-‘T(a:l,ﬁz,...,zn) (t) 2 a = By xo0,...;zp (t) 2 .
«
Hence T is weakly random n-bounded of type II.
Now, for ¢ > ||z1,z2,...,Znl|,
¢
MT(I1),T(12),...,T(.T”) (t) Z Vgy,@a,...,mn (E)
(%)27“:”1712 1111 mn”Z

2
(%) +H171;132>~'7$n”2

>

t
T () () T, )

o ' 2k 2123, |
t+”11>12)'“7wn” - t2+k2‘|$1,$2,...,$n”2
1
2 t? 2
& k>
- 2t“(Ilaaj2a~-~’wn)H+HI17$27-~~:CE””2

S k=oc0ast— 0.
Then T is not strongly random n-bounded of type II.

3.2. a-n-norms in R-n-NLS.
Definition 3.8. Let (L,v,T) be a R-n-NLS satisfying (R — n — Ng). Define
1,22, ... xp|l, =Inf {t : Vg, 40,2, (t) > a},a € (0,1).

Then {||z1,22,..., 25, : @ € (0,1)} is an ascending family of n-norms on L.
These n-norms are called a-n-norms on L corresponding to R-n-NLS on L.
200
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Definition 3.9. Let (L,v,T) be a R-n-NLS and o € (0,1). A sequence (xy) in L
is said to be a-n-convergent to [, if

Hm vy 4wy wn—i1(t) >, VI >0,

k— o0

for every z1,x9,..., 2,1 € L.

Theorem 3.10. Let (L,v,T) be a R-n-NLS satisfying (R —n — Ng). If (zy) is
a-n-convergent sequence in (L,v,T), then

HILH;O lz1, 22, ..., &n_1, 2 — ]|, =0, Vae(0,1).
Proof. Let (x1) be an a-n-convergent sequence in (L,v,T) and suppose that it be
a-n-convergent to I. For every t > 0 and x1,%2,...,2,—1 € L, choose a € (0,1).
Then

hm Il}mlym27“'vzn—17mk_l (t) > .
k—oc0

Thus, for all ¢ > 0, there exist ko(t) € N such that
Uz, @2, s 1,2, —1 (t) >a, Vt > 0.
So
||£L’1,JJ27 ey L1, Tl — l”a < t, Yk > ko (t) .

Hence, since t > 0 is arbitrary,

lim ||z1,22,...,2p-1, 2k — ||, =0, Ya € (0,1).

k—o0

U

Theorem 3.11. Let (L,v,T) be a R-n-NLS satisfying (R —n — Ng) and (xy) be

a sequence in L. Then (xy) is random n-convergent to 1 in (L,v,T) iff (zk) is
n-convergent to l in (L, ||e,e,... 0| ), for each o € (0,1).

Proof. Suppose that (zy) is a convergent sequence in (L,v,T) to l. For every ¢ > 0
and x1,9,...,2,-1 € L, choose a € (0,1). Then there exist ky € N such that

vzl,mg,...,zn_l,mkfl (t) >1-— «, Vn Z ko.

Thus
1, 2, .. ep—1, 2 —1|,_, < t, VR 2> ko.
So
nh_)rgo z1,22,...,2n_1, 2 —1||;_, =0, Vaoe (0,1).
Conversely, choose x1,zs,...,2,_1 € L™. Let
nh_)rréo llz1,20,...,&n_1,2, = 1|, =0, Yae(0,1).

Fix @ € (0,1) and 7 > 0. Then there exist ko € N such that
inf {r > 0: Vg, 29,.onsau—t (1) =1 —a} <t
for all k > kq. Thus, for all k£ > kg, there exist 0 < ¢,, < t such that
Vay w9, im1,zn—l (tn) = 1 — au.
This implies that
Vary waenyin 1 a—1 (1) = 1 —

for all k > kq. So the sequence (xy) is convergent to I in (L,v,T). O
201
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Theorem 3.12. Let (Ly,v,T) and (La, 1, Q) are R-n-NLS satisfying (R —n — Ng).
If the linear operator T : (Ly, ||e,e,... 0| ) — (Lo, |e,e, ..., 0|.) is bounded with
respect to a-n-norms corresponding to v and u, for each a € (0,1), then
T:(Ly,v,T) = (Lo, p, Q) is weakly random n-bounded on Ly of type II.

Proof. Choose x1,xa,...,x, € L. For any « € (0,1), there exist k, such that for
all z1,x9,..., 2, € Ly,

||T($1),T(J}2)7 o 7T(In)Ha < kOt Hxhx% o a‘rn”a'
Then for non zero x1,x2,...,x, and t > 0,
lz1, 22, . kaxy|l, < t=||T(21), T(z2),...,T(x,)|l, <t

inf{r:ve eo,.. ko, (r)>a} < t=inf {r AT (1), T (22),... Tz, ) (r) > a} <t.
ie.,
an {r : Uw17w27~~~akawn (T) Z a} S t A5 vw17w27"'3kawn (t) Z Q,
inf{r: pr@) @), @, (1) = a} < S fr@) T@),.. T, () = a
Thus, for any a € (0,1), there exist k, > 0 such that for all t € R, z1,22,...,2, €
Lla
t
Vzy,x9,....kaTy F > o= NT(zl),T($2) ..... T(z,) (t) > «,
[
that is, T is weakly random n-bounded on Lq of type II. O

Definition 3.13. Let (L,v,T) be a R-n-NLS and « € (0,1). A sequence () in L
is said to be a—n-Cauchy, if
kILH;o vwlﬁfz,m,wnfl,mk*mc-;-p (t) 2 Q,

forallt >0,p=1,2,....
Theorem 3.14. Let (L,v,T) be a R-n-NLS satisfying (R —n — Ng). Then every

n-Cauchy sequence in (L,) is an a-n-Cauchy sequence in (L,v,T).
Proof. Let a € (0,1) and (z,) be a n-Cauchy sequence in (L, e, e, ..., 0||a0). Then

klirgo|\x1,x2,...,xn_1,zk *xk+pHa0 =0, p=1,2,3,....

Thus for a given € > 0, there exist a positive integer N (&) such that

lz1, 22, Tp1, Tk — xkﬂ?”ao <a,Vn>N(), p=1,2,3,....
It follows that

nf {t >0 Vg wg,ozn1,zp—zisy (1) = ozo} <e, Vn>N(), p=1,2,3,....
So, for all n > N (¢),p=1,2,3,... there exists t (n,p,e) < & such that
Vay @en1yzk—ziyp (E (D, €)) 2 o

Hence,

Uiy 2oyt 1,0n—anyp (€) = Qo, foralln > N(e),p=1,2,3,....
Therefore, since € > 0 is arbitrary,

lim vy, 4,
k— o0

En1,zn—z0sp (E) = g for all £ > 0.
202

.....



Igbal H. Jebril /Ann. Fuzzy Math. Inform. 14 (2017), No. 2, 193-205

This means that (zy) is an ag-n-Cauchy sequence in (L,v,T'). Since ag € (0,1) is
arbitrary, every n-Cauchy sequence in (L, ||e,e, ..., o] ) is an a-n-Cauchy sequence
in (L,v,T), for each a € (0,1). O

Theorem 3.15. In R-n-NLS (L,v,T). Every a-n-convergent sequence is an a-n-
Cauchy sequence.

Proof. Assume that (zy) is a—n-convergent to [ and a € (0,1). Then we have

Im vy 2y 20 1.ze—azk, (t) > o for all t > 0.
k—o00 .

Now, for all p=1,2,3,...,
Uw1,x2,...,xn71,xk—xk;+p (t)
_ t 12
= Vzy,@0,.., 1,k —T+T—Thip (2 + 2)

t 3
>T (’Uwhl?w--;xnfhlk_w (§ y Vz,22,0 01,8 — T g p (5)) :

Thus
hmk—)oo le,xg,...,mn_l,xk—szrp (t)
2 T (hmk—wO V1,20, .00 —1,06 — (%) 7limk—>oo Vz1,22,.p—1,2—Thtp (%) ) :
So (z) is an a-n-cauchy sequence in (L, v, T). O

The converse of the previous theorem is in general not true as explained by the
following example.

Example 3.16. Let (L, ||e,e,... ¢|) be an n-normed space and defined T (a,b) =
min {a, b}, for all a,b € [0,1]. Define

et t>0,teR
— t+rllz, e, xnll? ’
UIl,ZL’z,...,In (t) { O7 t S O,
where > 0. Then (L,v,T) is an R-n-NLS. Also,
(1) (zx) is a n-Cauchy sequence in (L, |e,e,... e]) if and only if (z3) is an
a—n-Cauchy sequence in (L,v,T).
(2) (x) is a n-convergent sequence in (L, ||e,e,... e||) if and only if (zj) is an

a—n-convergent sequence in (L,v,T).

3.3. n-compact linear operator in R-n-NLS.

Definition 3.17. A subset D of a R-n-NLS (L, v, T) is said to be n-random bounded,
if there exist t >0 and 0 <7 < 1

Vzy,20,...,05 (t) 2 1- T,
for all z1,x5,...,2, € D.

Definition 3.18. A subset D of a R-n-NLS (L,v,T) is said to be n-compact, if
every sequence () in D has a subsequence converging to an element of D.

Definition 3.19. Let (L1,v,T) and (Lo, u,Q) are R-n-NLS. A linear operator
T : (L1,v,T) = (Lo, u, Q) is called a compact, if it maps every n-bounded ran-
dom sequence (z) in L; onto a sequence (T (xf)) in Lo which has a convergent

subsequence.
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Example 3.20. Let (Ly,|/e,e,...,0|,) and (Lo, ||e,e,...,e|,) be two n-normed

linear spaces and T': (L1, ||e,e,...,o[;) = (La2,|/e,e,..., e],) be a compact opera-
tor, where v and p are n-random norms induced by norms (L, ||e,e,...,e|;) and
(L2, ||e,e,...,|,), respectively defined by
¢
e, t >0,
'Ul’l,CD2,...,93n (t) = { t-‘erl,"tg,O..’,:CnH . S 0’
¢
t>0
_ t+||T(21),T(zy),-...T(z,)||’ ’
o e itey (0= | FPEOTL T (2

Lemma 3.21. Let (Ly,v,T) and (Lo, u, Q) be R-n-NLS. Let a linear operator T :
(L1,v,T) = (L2, 1, Q) be a n-compact operator satisfying (R —n — Ng). If the n-
norms ||e, e, ..., oH; and ||e,e, ..., o||i are a-n-norms induced v and | respectively,

then T (Ll,u.,.,... !

o) — (Lg,”.,.,...,.”i) is a m-compact operator for
a€(0,1).

)

«

Proof. We will show that for each bounded sequence (zy) in (Ll, o 0, ..., o||1) ,

the sequence (7' (x,, )) has a convergent subsequence in (Lg, lo e, ..., 'Hi) .
It is clear that there exists ¢ > 0 such that

|21, T, .., Tp1, 2k < t, for all k € N.

Then
Vgy wosoam 1oy (£) >, for all k.

Thus (z) is random n-bounded in (L1,v,T). So (T (zx)) has a convergent subse-
quence (T (x,,)) in (L2, p, Q). Hence by Theorem 3.3, (T (x5, )) is convergent under
[o,0,..., 0||Z . The proof is completed. O
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