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1. Introduction

The extensive treatment of general n-metrics was made by K. Menger in 1928.
The notions of 2-norm and n-norm on a linear space were introduced by Gähler, see
[1, 2, 4, 13, 15]. In 1962, A. N. Serstnev introduced the concept of random normed
linear space [14]. In 2003, I. Jebril and R. Ali, studied bounded linear operators in
probabilistic normed linear spaces [8]. In 2009, I. Jebril and R. Hatamleh introduced
the concept of random n-normed linear space [9] as a generalization of n-normed
space already introduced by Gunawan and Mashadi [10]. For more results in this
subject, we refer the reader to [5, 11, 12, 16] for instance.

We now state some basic notions that will be needed later.

Definition 1.1 ([13]). A t-norm is a binary operation on unit interval [0, 1], that is,
a function T : [0, 1]× [0, 1]→ [0, 1] such that for all x, y, z ∈ [0, 1] , the four following
axioms are satisfied:

(T1) (Commutativity) T (x, y) = T (y, x) ,
(T2) (Associativity) T (x, T (y, z)) = T (T (x, y) , z) ,
(T3) (Boundary condition) T (x, 1) = x,
(T4) (Monotonicity) T (x, y) ≤ T (x, z) , whenever y ≤ z.
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Definition 1.2 ([4] ). Let n ∈ N and L be a real vector space of dimension d ≥ n.
If a real valued function ‖•, •, . . . , •‖ on L×L× · · ·×L = Ln, satisfies the following
properties:

(i) ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly dependent,
(ii) ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn,
(iii) ‖x1, x2, . . . , αxn‖ = |α| ‖x1, x2, . . . , xn‖ , where α ∈ R,
(iv) ‖x1, x2, . . . , xn−1, y + z‖ ≤ ‖x1, x2, . . . , xn−1, y‖+ ‖x1, x2, . . . , xn−1, z‖ ,

then ‖•, •, . . . , •‖ is called an n-norm on L and the pair (L, ‖•, •, . . . , •‖) is called
an n-normed linear space.

Definition 1.3 ([4]). Let (L, ‖•, •, . . . , •‖) be a n-normed space. The sequence (xk)
in L is said to be n-convergent to l ∈ L (with respect to the n-norm), whenever

lim
k→∞

‖x1, x2, . . . , xn−1, xk − l‖ = 0,

for every x1, x2, . . . , xn−1 ∈ L.

Definition 1.4 ([4]). Let (L, ‖•, •, . . . , •‖) be a n-normed space, the sequence (xk)
in L is said to be n-Cauchy (with respect to the n-norm), whenever

lim
k,l→∞

‖x1, x2, . . . , xn−1, xk − xl‖ = 0,

for every x1, x2, . . . , xn−1 ∈ L.

Definition 1.5 ([4]). Let (L, ‖•, •, . . . , •‖) be a n-normed space.
If every Cauchy sequence converges to an l ∈ L, then (L, ‖•, •, . . . , •‖) is said to

be n-complete.
A n-complete n-normed space is called an n-Banach space.

Definition 1.6 ([13]). A function f :R → R+
0 is called a distribution function, if it

is a non-decreasing and left continuous with supt∈Rf (t) = 1.
By D+, we denote the set of all distribution functions such that f (0) = 0.
If a ∈ R+

0 , then a ∈ D+, where

Ha (t) =

{
0, if t ≤ a
1, if t > a.

It is obvious that H0 ≥ f for all f ∈ D+.

The notion of random normed space was introduced as follows:

Definition 1.7 ([10]). A random normed space is a triple (V, v, T ), where V is a
vector space, T is a continuous t-norm, and v is a mapping from V into D+ such
that the following conditions hold: for all p, q, r in V ,

(i) ε0 = vp if and only if p = θ, θ being the null vector in V ,
(ii) vp+q ≥ T (vp, vq) ,

(iii) vλp = vp

(
x
|λ|

)
, for all x and λ in R.

The notion of random n-normed space was introduced in [9] and [7] as itemized
in the following:
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Definition 1.8 ([9]). Let L be a linear space of dimension greater than one over a
real field, T be continuous t-norm and let v be a mapping from L×L×· · ·×L = Ln

into D+. If the following conditions are satisfied for all x1, x2, . . . , xn ∈ L and t ∈ R,
(i) vx1,x2,...,xn(t) = H0(t)⇔ x1, x2, . . . , xn are linearly dependent, where vx1,x2,...,xn(t)

denotes the value of vx1,x2,...,xn ,
(ii) vx1,x2,...,xn (t) 6= H0 (t) , if x1, x2, . . . , xn are linearly independent,
(iii) vx1,x2,...,xn is invariant under any permutation of x1, x2, . . . , xn ∈ Ln,
(iv) vx1,x2,...,αxn (t) = vx1,x2,...,xn

(
t
|α|

)
, for every t > 0, α 6= 0, α ∈ R,

(v) vx1,x2,...,xn+x′n
(s+ t) ≥ T

(
vx1,x2,...,xn (s) , vx1,x2,...,x′n

(t)
)
,

for all x′n ∈ L and s ∈ R,
then (Ln, v, T ) is called a random n-normed linear space (briefly R-n-NLS).

Definition 1.9. Let (L, v, T ) be a R-n-NLS. Assume further that
(R− n−N6) For all t ∈ (0,∞), vx1,x2,...,xn (t) > 0 implies that x1, x2, . . . , xn are

linearly dependent.

The following examples give us a R-n-NLS satisfying condition (R− n−N6) .

Example 1.10. Let (L, ‖•, •, . . . , •‖) be a n-normed space. We can made a random
n-normed space in a natural way, by setting

1. vx1,x2,...,xn (t) = H0 (t− ‖x1, x2, . . . , xn‖) , for every x1, x2, . . . , xn ∈ L, t > 0
and T (a, b) = min (a, b) , a, b ∈ L;

2. vx1,x2,...,xn (t) =

{ t
t+‖x1,x2,...,xn‖ , when t > 0, t ∈ R,

0, when t ≤ 0,
for every x1, x2, . . . , xn ∈ L, t > 0 and T (a, b) = ab, for a, b ∈ L.

2. n-Banach random space

Let (L, v, T ) be a R-n-NLS. Since T is continuous t-norm, then (L, v, T ) becomes
a Hausdorff linear topological space having as a fundamental system of neighborhood
of the null vector θ the family

{Nθ (ε, λ) : ε > 0, λ ∈ (0, 1)} ,
where

Nθ (ε, λ) =
{
x1, x2, . . . , xn−1 ∈ L : vx1,x2,...,xn−1

(ε) > 1− λ
}
.

The Nθ (ε, λ) neighborhood determines a first countable Hausdorff topology. F-
topology of sequences, i.e., x1, x2, . . . , xn−1−y∈Nθ (ε, λ) means that y ∈ Nx1,x2,...,xn−1

and vice versa.
A sequence x = (xk)k∈N in L is said to have F-convergence to l ∈ L, if for every

ε > 0, λ ∈ (0, 1) and for each nonzero x1, x2, . . . , xn−1 ∈ L there exist a positive
integer k0 ∈ N such that

x1, x2, . . . , xn−1, xk − l ∈ N θ (ε, λ) for each n ≥ k0.
Or equivalently,

x1, x2, . . . , xn−1, xk ∈ N l (ε, λ) for each n ≥ k0.
In this case, we write F − limx1, x2, . . . , xn−1, xk = l.
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Definition 2.1 ([6]). Let (L, v, T ) be R-n-NLS. A sequence (xk) in L is said to be
random n-convergent to l ∈ L, if

lim
k→∞

vx1,x2,...,xn−1,xk−l (t) = 1,

for every x1, x2, . . . , xn−1 ∈ L.
Or equivalently, for every ε > 0, λ ∈ (0, 1) and x1, x2, . . . , xn−1 ∈ L, there exists
k0 ∈ N such that

vx1,x2,...,xn−1,xk−l (ε) > 1− λ,
for all k ≥ k0.

Theorem 2.2. Let (L, v, T ) be a R-n-NLS. If a sequence (xk) is random n-convergent
to l with respect to the random n-norm v, then l is unique.

Proof. Suppose that there exist elements l1, l2 (l1 6= l2) in L such that

lim
k→∞

vx1,x2,...,xn−1,xk−l1 (t) = 1,

lim k→∞vx1,x2,...,xn−1,xk−l2 (t) = 1.

Let ε > 0 choose T ((1− λ) , (1− λ)) > 1−ε, and for each nonzero x1, x2, . . . , xn−1 ∈
L such that Nl1 (ε, λ) and Nl2 (ε, λ) are disjoint neighborhoods of l1and l2.

Since (xk) is random n-convergent to l1and l2, for any t > 0 there exist k0 ∈ N
such that

vx1,x2,...,xn−1,xk−l1

(
t

2

)
> 1− λ, ∀k ≥ k0,

vx1,x2,...,xn−1,xk−l2

(
t

2

)
> 1− λ, ∀k ≥ k0.

Now let

vx1,x2,...,xn−1,l1−l2 (t) ≥ vx1,x2,...,xn−1,l1−xn+xn−l2

(
t

2
+
t

2

)
≥ T

(
vx1,x2,...,xn−1,xn−l1

(
t

2

)
, vx1,x2,...,xn−1,xn−l2

(
t

2

))
> T ((1− λ) , (1− λ)) .

It follows that

vx1,x2,...,xn−1,l1−l2 (t) > 1− ε.
Since ε > 0 was arbitrary, we get

vx1,x2,...,xn−1,l1−l2 (t) = 1,

for all t > 0, and non-zero element x1, x2, . . . , xn−1 ∈ L. Hence l1 = l2. �

Lemma 2.3. Let (L, ‖•, •, . . . , •‖) be a real n-normed space, and let (L, v, T ) be a
R-n-NLS induced by

vx1,x2,...,xn (t) =
t

t+ ‖x1, x2, . . . , xn‖
,

where x1, x2, . . . , xn ∈ L and T > 0. If the sequence (xk) is n-convergent to l ∈ L
and nonzero x1, x2, . . . , xn−1 ∈ L, then (xk) is random n-convergent to l ∈ L.
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Proof. Suppose that (xk) is n-convergent to l ∈ Ln. Then

lim
k→∞

‖x1, x2, . . . , , xn−1, xk − l‖ = 0.

Then, for every t > 0 and for every x1, x2, . . . , , xn−1, xk ∈ L, ∃k0 = k0(t) such that

‖x1, x2, . . . , , xn−1, xk − l‖ < t, ∀k > k0.

For every given ε > 0,

ε+ ‖x1, x2, . . . , , xn−1, xk − l‖
ε

<
ε+ t

ε
,

ε

ε+ ‖x1, x2, . . . , , xn−1, xk − l‖
>

ε

ε+ t
,

ε

ε+ ‖x1, x2, . . . , , xn−1, xk − l‖
> 1− t

ε+ 1
.

Thus, by letting λ = t
ε+t ∈ (0, 1) , we have

vx1,x2,...,,xn−1,xk−l (t) ≥ 1− λ, ∀k > k0.

So (xk) is random n-convergent to l ∈ L. �

Definition 2.4 ([6]). Let (L, v, T ) be R-n-NLS. A sequence (xk) in L is said to be
random n- Cauchy, if

lim
k,m→∞

vx1,x2,...,xn−1,xk−xm(t) = 1,

for every x1, x2, . . . , xn−1 ∈ L.
Or equivalent, for every ε > 0, λ ∈ (0, 1) and x1, x2, . . . , xn−1 ∈ L, there exists
k0 ∈ N such that

vx1,x2,...,xn−1,xk−xm (ε) > 1− λ,

for all k,m ≥ k0.

Proposition 2.5 ([6]). In R-n-NLS (L, v, T ), every random n-convergent sequence
is a random n-Cauchy sequence.

If every random n-Cauchy sequence in L converges to an l ∈ L, then (L, v, T ) is
called a complete random n-normed space. A complete random n-normed space is
then called a random n-Banach space.

3. Main results

In this section, we have discussed n-bounded linear operator, (strong boundedness
and weak boundedness) in R-n-NLS. Then study α-n-norms, α-n-convergent, α-n-
Cauchy in R-n-NLS. Also, study the notion of n-compact linear operator in R-n-NLS.
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3.1. Boundedness linear operator in R-n-NLS. Definition of bounded linear
operator in probabilistic normed space introduced by B. L. Guillén, J. A. R. Lallena
and C. Sempi [3] then studied by Jebril and Ali in [8]. In this section, we introduce
the definition of n-bounded linear operator in R-n-NLS. By virtue of this definition,
we describe the boundedness linear operator in R-n-NLS and we prove some related
results.

Let (L1, ‖•, •, . . . , •‖) be n-normed space and (L2, ‖•‖) be a normed space. Fol-
lowing is an extension of the notion of random n-bounded linear operator. In [15],
S. M. Gozali et al. introduced the notion of n-bounded linear operator.

Definition 3.1 ([15]). An operator T : (L1, ‖•, •, . . . , •‖)→ (L2, ‖•‖) is an n-linear
operator on L1, if T is linear in each variable.

An n-linear operator is called n-bounded of type I, if there is a constant k such
that for all (x1, x2, . . . , xn) ∈ Ln1 ,

‖T (x1, x2, . . . , xn)‖ ≤ k ‖x1, x2, . . . , xn‖ .
Note that when n = 1, the above is reduced to the usual notion of bounded linear
operator in normed space.

In the following, we will generalize the definition of n-bounded linear operator in
n-normed space introduced in [15] by starting the definition of random n-bounded
linear operator of type I in R-n-NLS.

Definition 3.2. Let T : (L1, v, T )→ (L2, µ,Q) be a linear operator, where (L1, v, T )
is R-n-NLS and (L2, µ,Q) is R-NLS.

(i) The operator T is called weak random n-bounded of type I on L1, if for every
α ∈ (0, 1), there exist kα > 0 such that

vx1,x2,...,xn

(
t

kα

)
≥ α⇒ µT (x1,x2,...,xn) (t) ≥ α,

for all (x1, x2, . . . , xn) ∈ Ln1 and t ∈ R.
(ii) The operator T is called strong random n-bounded of type I on L1 if there

exist a positive real number k such that

µT (x1,x2,...,xn) (t) ≥ v
x1,x2,...,xn

(
t

k

)
,

for all (x1, x2, . . . , xn) ∈ Ln1 and t ∈ R.

Theorem 3.3. Let T : (L1, v, T )→ (L2, µ,Q) be a linear operator, where (L1, v, T )
is R-n-NLS and (L2, µ,Q) is R-NLS. For all (L2, µ,Q) . If T is strong random n-
bounded, then it is weak random n-bounded.

Proof. Suppose that T is strong random n-bounded of type I. Then there exists k
such that

µT (x1,x2,...,xn) (t) ≥ v
x1,x2,...,xn

(
t

k

)
,

for all (x1, x2, . . . , xn) ∈ Ln1 and t ∈ R. Thus, for every α ∈ (0, 1), there exist kα > 0
such that

vx1,x2,...,xn

(
t

kα

)
≥ α⇒ µT (x1,x2,...,xn) (t) ≥ α,
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for all (x1, x2, . . . , xn) ∈ Ln1 and t ∈ R. So T is weakly random n-bounded of type
I. �

Let (L1, ‖•, •, . . . , •‖) and (L2, ‖•, •, . . . , •‖) be n-normed spaces. Following is
an extension of the notion of random n-bounded linear operator. In [15], A. L.
Soenjaya introduced the notion of n-bounded linear operator of type II. Motivated
by this paper, we will generalize this concept in R-n-NLS.

Definition 3.4 ([15]). An operator T : (L1, ‖•, •, . . . , •‖) → (L2, ‖•, •, . . . , •‖) is
called n-bounded of type II, if there is a constant k such that for all x1, x2, . . . , xn ∈
L1,

‖T (x1) , T (x2) , . . . , T (xn)‖ ≤ k ‖x1, x2, . . . , xn‖ .
Definition 3.5. Let T : (L1, v, T )→ (L2, µ,Q) be a linear operator, where (L1, v, T )
and (L2, µ,Q) are R-n-NLS.

(i) The operator T is called weakly random n-bounded of type II on L1, if for
every α ∈ (0, 1), there exist kα > 0 such that

vx1,x2,...,xn

(
t

kα

)
≥ α⇒ µT (x1),T (x2),...,T (xn) (t) ≥ α,

for all x1, x2, . . . , xn ∈ L1 and t ∈ R.
(ii) The operator T is called strong random n-bounded of type II on L1, if there

exist a positive real number k such that

µT (x1),T (x2),...,T (xn) (t) ≥ v
x1,x2,...,xn

(
t

k

)
,

for all x1, x2, . . . , xn ∈ L1 and t ∈ R.

Theorem 3.6. Let T : (L1, v, T )→ (L2, µ,Q) be a linear operator, where (L1, v, T )
and (L2, µ,Q) are R-n-NLS. If T is strong random n-bounded of type II, then it is
weakly random n-bounded of type II.

Proof. Suppose that T is strong random n-bounded of type II. Then there exists k
such that

µT (x1),T (x2),...,T (xn) (t) ≥ v
x1,x2,...,xn

(
t

k

)
,

for all x1, x2, . . . , xn ∈ L1 and t ∈ R.
Thus, for every α ∈ (0, 1), there exist kα > 0 such that

vx1,x2,...,xn

(
t

kα

)
≥ α⇒ µT (x1),T (x2),...,T (xn) (t) ≥ α,

for all x1, x2, . . . , xn ∈ L1 and t ∈ R.
So T is weakly random n-bounded of type II. �

The converse of previous theorem is not true as confirmed by the following counter
example.

Example 3.7. Let (L, ‖•, •, . . . , •‖) be n-normed space. Define T (a, b) = min (a, b)
and Q (a, b) = max (a, b) for all a, b ∈ [0, 1] . Now we define

vx1,x2,...,xn (t) =
t2 − ‖x1, x2, . . . , xn‖2

t2 + ‖x1, x2, . . . , xn‖2
and µT (x1,x2,...,xn) (t) =

t

t+ ‖x1, x2, . . . , xn‖
,
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where t > ‖x1, x2, . . . , xn‖ . Let T : (L, v, T )→ (L, µ,Q) defined by T (x) = x for all
x ∈ L. We choose kα = 1

1−α , ∀α ∈ (0, 1) . Then for t > ‖x1, x2, . . . , xn‖ . Then

vx1,x2,...,xn

(
t
kα

)
≥ α

⇒
t2

k2α
−‖x1,x2,...,xn‖2

t2

k2α
+‖x1,x2,...,xn‖2

≥ α

⇒ t2(1−α)2−‖x1,x2,...,xn‖2

t2(1−α)2+‖x1,x2,...,xn‖2
≥ α

⇒ t2(1− α)
2 − ‖x1, x2, . . . , xn‖2 ≥ αt2(1− α)

2
+ α‖x1, x2, . . . , xn‖2

⇒ ‖x1, x2, . . . , xn‖2 ≤ t2(1−α)3
1+α

⇒ ‖x1, x2, . . . , xn‖ ≤ t(1−α)(1−α)
1
2

(1+α)
1
2

⇒ t+ ‖x1, x2, . . . , xn‖ ≤
t
(
(1−α)(1−α)

1
2 +(1+α)

1
2

)
(1+α)

1
2

⇒ t
t+‖x1,x2,...,xn‖ ≤

(1+α)
1
2

(1−α)(1−α)
1
2 +(1+α)

1
2

.

Now,

(1 + α)
1
2

(1− α) (1− α)
1
2 + (1 + α)

1
2

≥ α⇒ 1 + α+ α3 ≥ α2.

Thus, we have
t

t+ ‖x1, x2, . . . , xn‖
≥ α, ∀t ∈ (0, 1) .

So,

vx1,x2,...,xn

(
t

kα

)
≥ α⇒ µT (x1,x2,...,xn) (t) ≥ α⇒ µx1,x2,...,xn (t) ≥ α.

Hence T is weakly random n-bounded of type II.
Now, for t > ‖x1, x2, . . . , xn‖ ,

µT(x1),T (x2),...,T (xn) (t) ≥ vx1,x2,...,xn

(
t
k

)
⇔ t

t+‖T(x1),T (x2),...,T (xn)‖ ≥
( tk )

2−‖x1,x2,...,xn‖2

( tk )
2
+‖x1,x2,...,xn‖2

⇔ t
t+‖x1,x2,...,xn‖ ≥

t2−k2‖x1,x2,...,xn‖2

t2+k2‖x1,x2,...,xn‖2

⇔ k2 ≥
(

t2

2t‖(x1,x2,...,xn)‖+‖x1,x2,...,xn‖2

) 1
2

⇔ k =∞ as t→∞.
Then T is not strongly random n-bounded of type II.

3.2. α-n-norms in R-n-NLS.

Definition 3.8. Let (L, v, T ) be a R-n-NLS satisfying (R− n−N6). Define

‖x1, x2, . . . , xn‖α = inf {t : vx1,x2,...,xn(t) ≥ α} , α ∈ (0, 1) .

Then {‖x1, x2, . . . , xn‖α : α ∈ (0, 1)} is an ascending family of n-norms on L.
These n-norms are called α-n-norms on L corresponding to R-n-NLS on L.
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Definition 3.9. Let (L, v, T ) be a R-n-NLS and α ∈ (0, 1). A sequence (xk) in L
is said to be α-n-convergent to l, if

lim
k→∞

vx1,x2,...,xn−1,xk−l(t) > α, ∀t > 0,

for every x1, x2, . . . , xn−1 ∈ L.
Theorem 3.10. Let (L, v, T ) be a R-n-NLS satisfying (R− n−N6). If (xn) is
α-n-convergent sequence in (L, v, T ), then

lim
n→∞

‖x1, x2, . . . , xn−1, xk − l‖α = 0, ∀α ∈ (0, 1) .

Proof. Let (xk) be an α-n-convergent sequence in (L, v, T ) and suppose that it be
α-n-convergent to l. For every t > 0 and x1, x2, . . . , xn−1 ∈ L, choose α ∈ (0, 1) .
Then

lim
k→∞

vx1,x2,...,xn−1,xk−l (t) > α.

Thus, for all t > 0, there exist k0(t) ∈ N such that

vx1,x2,...,xn−1,xk−l (t) > α, ∀t ≥ 0.

So
‖x1, x2, . . . , xn−1, xk − l‖α < t, ∀k ≥ k0 (t) .

Hence, since t > 0 is arbitrary,

lim
k→∞

‖x1, x2, . . . , xn−1, xk − l‖α = 0, ∀α ∈ (0, 1) .

�

Theorem 3.11. Let (L, v, T ) be a R-n-NLS satisfying (R− n−N6) and (xk) be
a sequence in L. Then (xk) is random n-convergent to l in (L, v, T ) iff (xk) is
n-convergent to l in (L, ‖•, •, . . . , •‖α) , for each α ∈ (0, 1).

Proof. Suppose that (xk) is a convergent sequence in (L, v, T ) to l. For every t > 0
and x1, x2, . . . , xn−1 ∈ L, choose α ∈ (0, 1). Then there exist k0 ∈ N such that

vx1,x2,...,xn−1,xk−l (t) > 1− α, ∀n ≥ k0.
Thus

‖x1, x2, . . . , xn−1, xk − l‖1−α ≤ t, ∀n ≥ k0.
So

lim
n→∞

‖x1, x2, . . . , xn−1, xk − l‖1−α = 0, ∀α ∈ (0, 1) .

Conversely, choose x1, x2, . . . , xn−1 ∈ Ln. Let

lim
n→∞

‖x1, x2, . . . , xn−1, xk − l‖α = 0, ∀α ∈ (0, 1) .

Fix α ∈ (0, 1) and r > 0. Then there exist k0 ∈ N such that

inf
{
r > 0 : vx1,x2,...,,xn−1,xk−l (r) ≥ 1− α

}
< t,

for all k ≥ k0. Thus, for all k ≥ k0, there exist 0 < tn < t such that

vx1,x2,...,,xn−1,xk−l (tn) ≥ 1− α.
This implies that

vx1,x2,...,,xn−1,xk−l (t) ≥ 1− α,
for all k ≥ k0. So the sequence (xk) is convergent to l in (L, v, T ) . �
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Theorem 3.12. Let (L1, v, T ) and (L2, µ,Q) are R-n-NLS satisfying (R− n−N6).
If the linear operator T : (L1, ‖•, •, . . . , •‖α) → (L2, ‖•, •, . . . , •‖α) is bounded with
respect to α-n-norms corresponding to v and µ, for each α ∈ (0, 1) , then
T : (L1, v, T )→ (L2, µ,Q) is weakly random n-bounded on L1 of type II.

Proof. Choose x1, x2, . . . , xn ∈ L1. For any α ∈ (0, 1), there exist kα such that for
all x1, x2, . . . , xn ∈ L1,

‖T (x1), T (x2), . . . , T (xn)‖
α
≤ kα ‖x1, x2, . . . , xn‖α.

Then for non zero x1, x2, . . . , xn and t > 0,

‖x1, x2, . . . , kαxn‖α ≤ t⇒ ‖T (x1), T (x2), . . . , T (xn)‖
α
≤ t.

inf {r : vx1,x2,...,kαxn (r) ≥ α} ≤ t⇒ inf
{
r : µT (x1),T (x2),...,T (xn)

(r) ≥ α
}
≤ t.

i.e.,

inf {r : vx1,x2,...,kαxn (r) ≥ α} ≤ t⇔ vx1,x2,...,kαxn (t) ≥ α,
inf

{
r : µT (x1),T (x2),...,T (xn)

(r) ≥ α
}
≤ t⇔ µT (x1),T (x2),...,T (xn)

(t) ≥ α.
Thus, for any α ∈ (0, 1) , there exist kα > 0 such that for all t ∈ R, x1, x2, . . . , xn ∈
L1,

vx1,x2,...,kαxn

(
t

kα

)
≥ α⇒ µT (x1),T (x2),...,T (xn)

(t) ≥ α,

that is, T is weakly random n-bounded on L1 of type II. �

Definition 3.13. Let (L, v, T ) be a R-n-NLS and α ∈ (0, 1). A sequence (xk) in L
is said to be α−n-Cauchy, if

lim
k→∞

vx1,x2,...,xn−1,xk−xk+p(t) ≥ α,

for all t > 0, p = 1, 2, . . . .

Theorem 3.14. Let (L, v, T ) be a R-n-NLS satisfying (R− n−N6). Then every
n-Cauchy sequence in (L, ) is an α-n-Cauchy sequence in (L, v, T ).

Proof. Let α0 ∈ (0, 1) and (xk) be a n-Cauchy sequence in
(
L, ‖•, •, . . . , •‖α0

)
. Then

lim
k→∞

‖x1, x2, . . . , xn−1, xk − xk+p‖α0
= 0, p = 1, 2, 3, . . . .

Thus for a given ε > 0, there exist a positive integer N (ε) such that

‖x1, x2, . . . , xn−1, xk − xk+p‖α0
< α, ∀n ≥ N (ε) , p = 1, 2, 3, . . . .

It follows that

inf
{
t > 0 : vx1,x2,...,xn−1,xk−xk+p (t) ≥ α0

}
< ε, ∀n ≥ N (ε) , p = 1, 2, 3, . . . .

So, for all n ≥ N (ε) , p = 1, 2, 3, . . . there exists t (n, p, ε) < ε such that

vx1,x2,...,xn−1,xk−xk+p (t (n, p, ε)) ≥ α0.

Hence,

vx1,x2,...,xn−1,xk−xk+p (ε) ≥ α0, for all n ≥ N (ε) , p = 1, 2, 3, . . . .

Therefore, since ε > 0 is arbitrary,

lim
k→∞

vx1,x2,...,xn−1,xk−xk+p(ε) ≥ α0 for all t > 0.
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This means that (xk) is an α0-n-Cauchy sequence in (L, v, T ). Since α0 ∈ (0, 1) is
arbitrary, every n-Cauchy sequence in (L, ‖•, •, . . . , •‖α) is an α-n-Cauchy sequence
in (L, v, T ) , for each α ∈ (0, 1). �

Theorem 3.15. In R-n-NLS (L, v, T ). Every α-n-convergent sequence is an α-n-
Cauchy sequence.

Proof. Assume that (xk) is α−n-convergent to l and α ∈ (0, 1). Then we have

lim
k→∞

vx1,x2,...,xn−1,xk−xk−l(t) ≥ α for all t > 0.

Now, for all p = 1, 2, 3, . . . ,
vx1,x2,...,xn−1,xk−xk+p (t)

= vx1,x2,...,xn−1,xk−x+x−xk+p
(
t
2 + t

2

)
≥ T

(
vx1,x2,...,xn−1,xk−x

(
t
2

)
, vx1,x2,...,xn−1,x−xk+p

(
t
2

))
.

Thus
limk→∞ vx1,x2,...,xn−1,xk−xk+p(t)

≥ T
(
limk→∞ vx1,x2,...,xn−1,xk−x

(
t
2

)
, limk→∞ vx1,x2,...,xn−1,x−xk+p

(
t
2

) )
.

So (xk) is an α-n-cauchy sequence in (L, v, T ). �

The converse of the previous theorem is in general not true as explained by the
following example.

Example 3.16. Let (L, ‖•, •, . . . , •‖) be an n-normed space and defined T (a, b) =
min {a, b}, for all a, b ∈ [0, 1]. Define

vx1,x2,...,xn (t) =

{ t
t+r‖x1,x2,...,xn‖ , t > 0, t ∈ R

0, t ≤ 0,

where r > 0. Then (L, v, T ) is an R-n-NLS. Also,
(1) (xk) is a n-Cauchy sequence in (L, ‖•, •, . . . , •‖) if and only if (xk) is an

α−n-Cauchy sequence in (L, v, T ).
(2) (xk) is a n-convergent sequence in (L, ‖•, •, . . . , •‖) if and only if (xk) is an

α−n-convergent sequence in (L, v, T ).

3.3. n-compact linear operator in R-n-NLS.

Definition 3.17. A subsetD of a R-n-NLS (L, v, T ) is said to be n-random bounded,
if there exist t > 0 and 0 < r < 1

vx1,x2,...,xn (t) ≥ 1− r,

for all x1, x2, . . . , xn ∈ D.

Definition 3.18. A subset D of a R-n-NLS (L, v, T ) is said to be n-compact, if
every sequence (xk) in D has a subsequence converging to an element of D.

Definition 3.19. Let (L1, v, T ) and (L2, µ,Q) are R-n-NLS. A linear operator
T : (L1, v, T ) → (L2, µ,Q) is called a compact, if it maps every n-bounded ran-
dom sequence (xk) in L1 onto a sequence (T (xk)) in L2 which has a convergent
subsequence.
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Example 3.20. Let (L1, ‖•, •, . . . , •‖1) and (L2, ‖•, •, . . . , •‖2) be two n-normed
linear spaces and T : (L1, ‖•, •, . . . , •‖1) → (L2, ‖•, •, . . . , •‖2) be a compact opera-
tor, where v and µ are n-random norms induced by norms (L1, ‖•, •, . . . , •‖1) and
(L2, ‖•, •, . . . , •‖2) , respectively defined by

vx1,x2,...,xn (t) =

{ t
t+‖x1,x2,...,xn‖ , t > 0,

0, t ≤ 0,

µT(x1),T (x2),...,T (xn) (t) =

{
t

t+‖T(x1),T (x2),...,T (xn)‖ , t > 0,

0, t ≤ 0.

Lemma 3.21. Let (L1, v, T ) and (L2, µ,Q) be R-n-NLS. Let a linear operator T :
(L1, v, T ) → (L2, µ,Q) be a n-compact operator satisfying (R− n−N6) . If the n-

norms ‖•, •, . . . , •‖1α and ‖•, •, . . . , •‖2α are α-n-norms induced v and µ respectively,

then T :
(
L1, ‖•, •, . . . , •‖1α

)
→
(
L2, ‖•, •, . . . , •‖2α

)
is a n-compact operator for

α ∈ (0, 1) .

Proof. We will show that for each bounded sequence (xk) in
(
L1, ‖•, •, . . . , •‖1α

)
,

the sequence (T (xnk)) has a convergent subsequence in
(
L2, ‖•, •, . . . , •‖2α

)
.

It is clear that there exists t > 0 such that

‖x1, x2, . . . , xn−1, xk‖1α < t, for all k ∈ N.
Then

vx1,x2,...,xn−1,xk (t) ≥ α, for all k.

Thus (xk) is random n-bounded in (L1, v, T ). So (T (xk)) has a convergent subse-
quence (T (xnk)) in (L2, µ,Q). Hence by Theorem 3.3, (T (xnk)) is convergent under

‖•, •, . . . , •‖2α . The proof is completed. �
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