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Abstract. The extension of the uniformity on the family of fuzzy sub-
sets LY to a uniformity on the family of fuzzy subsets LX ; Y ⊆ X and
the restriction of the uniformity on LY to a uniformity on LY are defined
and studied. The induced (fuzzy) quasi-uniformity on P ∗(L)X for each
given (fuzzy) quasi-uniformity on LX is defined. Moreover, the induced
(P ∗(L),M)−fuzzy quasi-uniformity on P ∗(L)X , for each (L,M)−fuzzy
quasi-uniformity on LX is studied. In each case, the relation between their
interior operators is obtained. Finally, the relation between the category
Qunif(L,M) of all (L,M)−fuzzy quasi uniformity spaces and all quasi-
uniformly continuous functions, and the category FQunif(P∗(L),M) of
all (P ∗(L),M)−fuzzy quasi uniformity spaces and quasi-uniformly contin-
uous fuzzy functions is outlined. It is remarked that all kinds of categories
of quasi-uniform spaces and quasi-uniformly continuous functions can be
derived from the category FQunif(P∗(L),M).
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1. Introduction

The notion of a uniform space was introduced by Andre Weil [23] in 1937. The
first systematic exposition of the theory of uniform spaces was given by Bourbaki
[2] in 1940. The quasi-uniformity is a very important concept and a convenient
tool for investigating topology. The L-quasi-uniformity, introduced by Hutton [11],
has been accepted by many authors and has attracted wide attention in the litera-
ture [9, 15, 16, 17, 18, 19, 27]. Rodabaugh in [20, 21] introduced a theory of fuzzy
uniformities with applications to the fuzzy real lines. The extension of Hutton’s
quasi-uniformities and [0, 1]−fuzzy uniformity were considered in [8]. Later, in [22],
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fuzzy uniformities for lattices more general than [0, 1], namely (L,M)−fuzzy uni-
formities were considered. Further, in [21], there is a significant extension of Hut-
ton’s approach for quasi-uniformities without using filters explicitly, without any
distributivity and with general tensor products generating the intersection axiom.
In [24, 25, 26], the relationship between (L,M)−fuzzy topologies and (L,M)−fuzzy
quasi-uniformities was investigated. The uniform operator approach of Rodabaugh

[21] as generalization of Hutton [11] is based on powersets of the form (LX)
LX

. In

[5], the (P ∗(L), 2)-fuzzy topology on the fuzzy space P ∗(L)
X

was studied, which is
induced by an (L, 2)-fuzzy topological space on LX , where the lattice P ∗(L) is de-
fined by P ∗(L) = {M ⊂ L : 0L ∈M}. Interesting relations between the (P ∗(L), 2)−
fuzzy topology on P ∗(L)X and the (L, 2)-fuzzy topology on LX were obtained. These

results have been a motivation to study the quasi-uniformity spaces on P ∗(L)
X

to
find out its relation with the quasi-uniformity spaces on LX , where L is a complete
lattice.

The outline of this paper is as follows: In section 2, the basic concepts and useful
results which will be used in the sequel are given. In section 3, the extension of the
uniformity on the fuzzy space LY to a uniformity on the fuzzy space LX ; Y ⊂ X
and the restriction of the fuzzy uniformity on LX to a fuzzy uniformity on LY

are defined and studied. In each case, the relation between their interior operators
is obtained.In section 4, the induced quasi-uniformity on P ∗(L)X for each given
quasi- uniformity on LX is defined and a fundamental relation between their interior
operators is obtained. In section 5, the induced (P ∗(L),M)−fuzzy quasi-uniformity

on P ∗(L)
X

for each given (L,M)−fuzzy quasi-uniformity on LX is studied and
the relation between their interior operators is obtained. Moreover, the relation
between the category Qunif(L,M) of all (L,M)−fuzzy quasi uniformity spaces and
all quasi-uniformly continuous functions, and the category FQunif(P∗(L),M) of
all (P ∗(L),M)−fuzzy quasi uniformity spaces and quasi-uniformly continuous fuzzy
functions is outlined. Finally, it is remarked that all kinds of categories of quasi-
uniform spaces and quasi-uniformly continuous functions can be derived from the
category FQunif(P∗(L),M).

2. Preliminaries

Let X be a given universal set and L be a given lattice. Denote the smallest
element of L by 0Land the greatest element of L by 1L. Also denote the smallest
fuzzy subset of LX by 0X and the greatest fuzzy subset of LX by 1X . In [4,
5, 6, 7], the lattice of the form P ∗(L) = {M ⊂ L : 0L ∈ M} was used. The
algebraic structure (P ∗ (L) ,∪,∩,′ ) forms a complemented, completely distributive
and complete lattice with 0P∗(L) = {0L} being the smallest element and 1P∗(L) = L
being the greatest element. The complementary operation is defined by ′ : P ∗(L)→
P ∗(L), where M ′ = (L−M)

⋃
{0L}

Definition 2.1 ([4, 5, 6, 7]). (Algebra of P ∗(L)−fuzzy subsets) Let V,U ∈ P ∗(L)X ,
then the operations on P ∗(L)−fuzzy subsets of X are defined as follows:

(i) V ⊂ U , if V (x) ⊆ U(x), for all x ∈ X,
(ii) (V ∩ U)(x) = V (x) ∩ U(x), for all x ∈ X,
(iii) (V ∪ U)(x) = V (x) ∪ U(x), for all x ∈ X,
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(iv) (V − U)(x) = (V (x)− U(x)) ∪ {0L}, for all x ∈ X,
(v) Co(V )(x) = (L− V (x)) ∪ {0L} , for all x ∈ X.

Remark 2.2. It is important to note that on the P ∗(L)−fuzzy subsets the difference
operation is defined. The difference operation does not depend on the existence of
any complementary operation on L. Moreover, the operations on the P ∗(L)−fuzzy
subsets are defined through the corresponding operations on the set of membership
values.

Definition 2.3 ([6, 7]). A P ∗(L)−fuzzy subset p(x0, λ) is said to be a fuzzy point
of X, if

p (x0, λ) (x) =

{
{0L, λ} , x = x0,
{0L} , x 6= x0,

where λ ∈ L− {0L} .
The fuzzy point p(x, λ) of X belongs to V ∈ P ∗(L)X , if x ∈ {x ∈ X : V (x) 6=

{0L}} and λ ∈ V (x).

The concept of fuzzy topology on a set X was introduced by C. L. Chang in [3]
as a collection of fuzzy subsets of IX (where I = [0, 1] is the closed unit interval
of real numbers), satisfying the known axioms of the topology. This definition is
extended to L−topology, where L is a complete lattice. Kubiak in [14] generalized
the L−topology by introducing the (L,M)−fuzzy topology.

Definition 2.4 ([14]). Let L,M be complete lattices. A mapping τ : LX → M is
called an (L,M)− fuzzy topology on X, if it satisfies the following conditions:

(i) τ(0X) = τ(1X) = 1M ,
(ii) τ(A ∧B) ≥ τ(A) ∧ τ(B), for every A,B ∈ LX ,
(iii) τ(

∨
iAi) ≥

∧
i τ(Ai), for every {Ai; i ∈ α} ⊆ LX .

In this case, τ is called (L,M)−fuzzy topology, (X,L,M, τ) is called fuzzy topolog-
ical space and τ(A) is called the degree of openness of A, for each A ∈ LX .

Uniformity is an important concept in topology, and the history of uniform spaces
goes back to the late thirties.
An important class of functions ϕ : LX → LX satisfing the following properties:

I. A ≤ ϕ(A), for all A ∈ LX ,
II. ϕ(

∨
i∈4Ai) =

∨
i∈4 ϕ(Ai), for all families {Ai; i ∈ 4} ⊆ LX .

In this article, the set of all mappings, satisfying conditions (I),(II) in LX will be
denoted by H(LX).

Definition 2.5 ([12]). An L−quasi uniformity on X is a subset D of H(LX) such
that

(LFU1) D 6= ∅,
(LFU2) ϕ ∈ D, ϕ ≤ ω ∈ H(LX) =⇒ ω ∈ D,
(LFU3) ϕ, ω ∈ D =⇒ ϕ

∧
ω ∈ D, where (ϕ

∧
ω)(A) =

∧
A1∨A2=A

(ϕ(A1)
∨
ω(A2)),

(LFU4) ϕ ∈ D =⇒ there exists ω ∈ D such that ωoω ≤ ϕ.
An L−quasi uniformity D on X is called L−uniformity, if it satisfies the condition:
(LFU5) ϕ ∈ D =⇒ ϕ−1 ∈ D, where ϕ−1(A) =

∧
{B : ϕ(B′) ≤ A′}.

The pair (X,D) is called an L−uniform space.

Proposition 2.6 ([12]). f ≤ g if and only if f−1 ≤ g−1.
145
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Remark 2.7 ([9]). Let (X,D) be an L−quasi-uniform space. The interior map is
defined as follows:

(1) Int : LX → LX , where

Int(V ) =
∨
{U ∈ LX : f(U) ≤ V for some f ∈ D}.

(2) If Int : LX → LX is an interior map, then τ = {V ∈ LX : Int(V ) = V } is a
fuzzy topology.

Definition 2.8 ([17, 26]). An L−fuzzy quasi-uniformity is a mapping
U : H(LX)→M such that

(FQU1) U(f1) = 1M , where f1 denotes the biggest element of H(LX), i.e.,

f1(A) =

{
0X : A = 0X ,
1X : otherwise,

(FQU2) U(f
∧
g) = U(f)

∧
U(g), for all f, g ∈ H(LX),

(FQU3) U(f) =
∨
g◦g≤f U(g), for all f ∈ H(LX).

The pair (LX ,U) is called an L−fuzzy quasi-uniform space. Then any L−fuzzy
quasi- uniformity is called an L−fuzzy uniformity if it also satisfies the following
condition:

(FQU4) U(f) =
∨
U(f−1), for all f ∈ H(LX).

The interior operator is defined as follows.

Definition 2.9 ([13]). Let (LX ,U) be an L−fuzzy quasi-uniform space.
Define ∀ r ∈ L− {1L}, A ∈ LX , the interior operator

IntU,r(A) =
∨
{B ∈ LX : f(B) ≤ A,U(f) > r}.

This interior operator given by Kim [13] is different from Höle and Šostak L−fuzzy
interior operator [10] in order to make it suitable to L−fuzzy uniformities.

Theorem 2.10 ([13]). Let (LX ,U) be an L− fuzzy quasi-uniform space. The func-
tion τU : LX → L is defined by: for all A ∈ LX ,

τU (A) = ∨{r ∈ L : IntU,r(A) ≥ A}

is an L− fuzzy topology on X.

3. Extended and restricted L-uniformities

LetX,Y be given ordinary sets, where Y ⊆ X and L be a complete and completely
distributive lattice. In this section, we discuss how to extend a given L−uniformity
on LY to an L−uniformity on LX . And conversely, we show that every L−uniformity
on LX induces an L−uniformity on LY . Through this article we shall consider only

the families D ⊆ (LX)L
X

which satisfy conditions (I) and (II).

Notation 3.1. Let X,Y be given ordinary sets, where Y ⊆ X and L be a given
lattice. In this article, we shall use the following notations:

(1) For every U ∈ LX , the restriction U↓Y of U on LY is defined by:

U↓Y (x) = U(x);x ∈ Y.
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(2) For every A ∈ LY the extension A↑X of A on LX is defined by:

A↑X(x) =

{
A(x), x ∈ Y,
0L, x ∈ X − Y.

It is easy to notice that if A↑X = U ∨ V for some U, V ∈ LX , then there exists
B,C ∈ LY such that B↑X = U and C↑X = V .

(3) For every f ∈ D ⊆ (LX)L
X

, the notation f↓Y ∈ (LY )L
Y

denotes the restric-
tion of f on LY which is defined by: f↓Y (A) = (f(A↑X))↓Y , A ∈ LY or simply
(f(A↑X))↓Y ≡ f (A↑X)↓Y . The function f↓Y is well defined, since f ∈ H(LX).

(4) For every g ∈ G ⊆ (LY )L
Y

, the notation g↑X ∈ (LX)L
X

denotes the extension
of g on LX which is defined by:

g↑X(U)(x) =

{
g(U↓Y )(x), x ∈ Y,
U(x), x ∈ X − Y.

It is clear that U ≤ g↑X(U).

Lemma 3.2. Let X,Y be given ordinary sets, where Y ⊆ X and L be a given lattice.
Then

(1) f ∈ H(LX)⇒ f↓Y ∈ H(LY ),
(2) g ∈ H(LY )⇒ g↑X ∈ H(LX).

Proof. (1) Let f ∈ H(LX). Then
(I) A↑X ≤ f(A↑X), implies A = (A↑X)↓Y ≤ (f(A↑X))↓Y = f↓Y (A).
(II) f↓Y (

∨
iAi) = (f((

∨
iAi)↑X))↓Y = (f(

∨
i(Ai)↑X))↓Y

= (
∨
i f((Ai)↑X))↓Y =

∨
i f↓Y (Ai).

(2) g ∈ H(LY ). Then
(I) It is clear that U ≤ g↑X(U).
(II)

g↑X(
∨
i

Ui)(x) =

{
g((
∨
i Ui)↓Y )(x), x ∈ Y,∨

i Ui(x), x ∈ X − Y

=

{ ∨
i(g(Ui)↓Y )(x), x ∈ Y,∨
i Ui(x), x ∈ X − Y

=
∨

i

{
(g(Ui)↓Y )(x), x ∈ Y,
Ui(x), x ∈ X − Y

=
∨
i

g↑X(Ui)(x).

�

Lemma 3.3. For every f, h ∈ (LX)L
X

and for every g, k ∈ (LY )L
Y

, the following
relations are true:

(1) g↑X
∧
k↑X = (g

∧
k)↑X , g↑X

∨
k↑X = (g

∨
k)↑X ,

(2) f↓Y
∧
h↓Y = (f

∧
h)↓Y , f↓Y

∨
h↓Y = (f

∨
h)↓Y ,

(3) g, k ∈ (L
Y

)L
Y

, g↑X = k↑X ⇒ g = k,
(4) (g↑X)↓Y = g,
(5) g↑X ◦ g↑X = (g ◦ g)↑X ,
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(6) f↓Y ◦ f↓Y = (f ◦ f)↓Y ,

(7) (g↑X)−1 = (g−1)↑X = g−1↑X ,

(8) (f↓Y )−1 = (f−1)↓Y = f−1↓Y .

Proof. (1)

(g↑X
∧
k↑X)(U)(x)

=
∧

U1
∨
U2=U

(g↑X(U1)
∨
k↑X(U2))(x)

=
∧

U1
∨
U2=U

(({
g
(
U1↓Y

)
(x), x ∈ Y,

U1 (x) , x ∈ X − Y

)∨({
k
(
U2↓Y

)
(x), x ∈ Y,

U2 (x) , x ∈ X − Y

))

=
∧

U1
∨
U2=U

{
(g
(
U1↓Y

)∨
k
(
U2↓Y

)
)(x), x ∈ Y,

(U1

∨
U2) (x) , x ∈ X − Y

=

{ ∧
U1↓Y

∨
U2↓Y =U↓Y

(g
(
U1↓Y

)∨
k
(
U2↓Y

)
)(x), x ∈ Y,

U (x) , x ∈ X − Y

=

{
(g
∧
k)(U↓Y )(x), x ∈ Y,

U (x) , x ∈ X − Y

= (g
∧
k)↑X(U)(x).

(2) (f↓Y
∧

h↓Y )(A) =
∧

A1
∨
A2=A

(
f↓Y (A1)

∨
h↓Y (A2)

)
=

∧
A1

∨
A2=A

(f(A1↑X)↓Y

∨
h(A2↑X)↓Y )

=
∧

A1↑X
∨
A2↑X=A↑X

(
(f
(
A1↑X

)∨
h
(
A2↑X

)
)
↓Y

)
= ((f

∧
h)(A↑X))

↓Y
= (f

∧
h)
↓Y

(A).

(3) The proof of (3) can be obtained directly.

(4) (g↑X)↓Y (A↑X) (x) = [g↑X (A↑X) (x)]↓Y

=

({
g
(

(A↑X)↓Y

)
(x) , x ∈ Y,

A↑X (x) , x ∈ X − Y

)
↓Y

=

({
g (A) (x) , x ∈ Y,
A↑X (x) , x ∈ X − Y

)
↓Y
.

(5) (g↑X ◦ g↑X) (U) (x) = g↑X (g↑X (U) (x))

= g↑X

({
g (U↓Y ) (x) , x ∈ Y,
U (x) , x ∈ X − Y

)
=

({
g (g (U↓Y )) (x) , x ∈ Y,
U (x) , x ∈ X − Y

)
=

({
(g ◦ g) (U↓Y ) (x) , x ∈ Y,
U (x) , x ∈ X − Y

)
148
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= (g ◦ g)↑X (U) (x) .

(6) (f↓Y ◦ f↓Y ) (A) = f↓Y (f↓Y (A)) = f↓Y

(
f (A↑X)↓Y

)
= [f((f(A↑X)↓Y )

↑X
)]
↓Y

≤ [f (f (A↑X))]↓Y = (f ◦ f)↓Y (A) .

(7) (g↑X)
−1

(U) (x)

=
∧
{V (x) : g↑X (V ′) ≤ U ′}

=
∧{

V (x) :

({
g (V ′↓Y ) (x) , x ∈ Y,
V ′(x), x ∈ X − Y

)
≤ U ′ (x)

}
=

{ ∧{
V (x) : g (V ′↓Y ) (x) ≤ U ′↓Y (x) = (U↓Y (x))

′}
, x ∈ Y,∧

{V (x) : V ′(x) ≤ U ′ (x)} , x ∈ X − Y

=

{
g−1 (U↓Y ) (x), x ∈ Y,∧
{V (x) : U(x) ≤ V (x)} , x ∈ X − Y

=

{
g−1 (U↓Y ) (x), x ∈ Y ;
U (x) , x ∈ X − Y

= g−1↑X (A) (x).

(8) f−1↓Y (A) = f−1(A↑X)↓Y

=
(∧{

U : f (U ′) ≤ (A↑X)
′})
↓Y

=
∧{

U↓Y : f (U ′) ≤ (A↑X)
′}

=
∧{

U↓Y : (A↑X) ≤ (f (U ′))
′
}

=
∧{

U↓Y : A = (A↑X)↓Y ≤ ((f (U ′))
′
)↓Y = (f (U ′)↓Y )

′
}

=
∧{

U↓Y : f
(

(U ′↓Y )↑X

)
↓Y
≤ f (U ′)↓Y ≤ A

′
}

= (f↓Y )
−1

(A) .

�

Theorem 3.4. Each L−uniformity D on LY ; Y ⊂ X can be extended to an
L−uniformity D∗ on LX as follows: D∗ = {f : f ≥ g↑X , g ∈ D}.

Proof. (i) Since D 6= ∅, there exists g ∈ D. Then g↑X ∈ U∗ 6= ∅.
(ii) Let f, h ∈ D∗. then there exists g, k ∈ D such that f ≥ g↑X and h ≥ k↑X .

Thus

(f
∧
h) (U) (x)

= (
∧

U1
∨
U2=U

(f(U1)
∨
h(U2)))(x)

≥ (
∧

U1

∨
U2=U

(g↑X(U1)
∨
k↑X(U2)))(x)

=

{
(
∧
U1↓Y

∨
U2↓Y =U↓Y

(g(U1↓Y )
∨
k(U2↓Y )))(x), x ∈ Y

(
∧
U1

∨
U2=U

(U1

∨
U2)(x), x ∈ X − Y
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=

{
(g
∧
k) (U↓Y ) (x), x ∈ Y,

U, x ∈ X − Y

= (g
∧
k)
↑X

(U)(x).

So g
∧
k ∈ D. Hence f

∧
h ∈ U∗.

(iii) Let h ≥ f ∈ D∗. Then there exists g ∈ D such that h ≥ f ≥ g↑X . Thus
h ∈ D∗.

(iv) If f ∈ D∗, then there exists g ∈ D and f ≥ g↑X . Since g−1 ∈ D and

f−1 ≥ (g↑X)
−1

= g−1↑X , f−1 ∈ D∗.
(v) Let f ∈ D∗. Then there exists g ∈ D and f ≥ g↑X . Thus there exists k ∈ D

such that k ◦ k ≤ g. It follows that k↑X ◦ k↑X = (k ◦ k))↑X ≤ g↑X ≤ f. �

Theorem 3.5. If IntD and IntD∗ are the interior operators on the L−uniformity
D on LY and the extended L−uniformity D∗ on LX respectively, then

(IntD∗(U))↓Y = IntD(U↓Y ); U ∈ LX .

Proof. Let B ∈
{
C ∈ LY : g(C) ≤ U↓Y ; for some g ∈ D

}
. Then there exists g ∈ D

such that g(B) ≤ U↓Y . Using the definition of extension of functions, we get

g↑X(B↑X)(x) =

{
g(B)(x), x ∈ Y,
0, x ∈ X − Y ≤ U(x).

Since g↑X ∈ D∗, B↑X ∈
{
V ∈ LX : f(V ) ≤ U ; for some f ∈ D∗

}
. Thus,

IntD(U↓Y ) ≤ (IntD∗(U))↓Y .

Conversely, let W ∈
{
V ∈ LX : f(V ) ≤ U ; for some f ∈ D∗

}
. Then there exists

f ∈ D∗ such that f(W ) ≤ U . And for every f ∈ D∗, there exists g ∈ D such that
f ≥ g↑X . Thus, if g↑X(W ) ≤ f(W ) ≤ U , then we have:

g↑X(W )(x) =

{
g(W↓Y )(x), x ∈ Y ;
W (x), x ∈ X − Y ≤ U(x).

So, we get g(W↓Y ) ≤ U↓Y which implies that

W↓Y ∈
{
C ∈ LY : g(C) ≤ U↓Y ; for some g ∈ U

}
.

Hence (IntD∗(U))↓Y ≤ IntD(U↓Y ). �

Theorem 3.6. Let D be an L−uniformity on LY and D∗ be the extended an
L−uniformity on LX . If U ∈ LX is D∗−open fuzzy subset, then U↓Y is D−open
fuzzy subset.

Corollary 3.7. Let D be the L−uniformity on LY , D∗ be the extended L−uniformity
on LX and Y ⊂ X. Then τD =

{
U↓Y ∈ LY : U ∈ τD∗

}
, where τD and τD∗ are

the induced topologies by L−uniformity D on LY and L−uniformity D∗ on LX ,
respectively.

Theorem 3.8. Each L−uniformity D on LX defines a restricted L−uniformity D∗
on LY as follows: D∗ = {f↓Y : f ∈ D}, where Y ⊂ X.
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Proof. (i) Since D 6= ∅, there exists f ∈ D such that g = f↓Y ∈ D∗ 6= ∅.
(ii) Let g, k ∈ D∗, then there exists f, h ∈ D such that

g = f↓Y ∈ D∗, k = h↓Y ∈ D∗.

Then, f
∧
h ∈ D. Thus

g
∧
k = f↓Y

∧
E↓Y = (f

∧
E)
↓Y
∈ D∗.

(iii) Let g ≥ k ∈ D∗. Then, there exists f ∈ D such that k = f↓Y .

Define h ∈ (LX)L
X

as follows:

h(U)(x) =

{
g(U↓Y )(x), x ∈ Y,
f(U)(x), x ∈ X − Y .

Then it is clear that h ≥ f ∈ D. Thus h ∈ D, g = (h)↓Y ∈ D∗.
(iv) If g ∈ D∗, then there exists f ∈ D such that g = f↓Y ∈ D∗. This implies

that f−1 ∈ D. Thus g−1 = (f↓Y )−1 = f−1↓Y ∈ D∗.
(v) Let g ∈ D∗ then there exists f ∈ D such that g = f↓Y ∈ D∗. Then there

exists h ∈ D such that h ◦ h ≤ f . Thus,

h↓Y ◦ h↓Y = (h ◦ h)↓Y ≤ f↓Y = g.

�

Theorem 3.9. If IntD and IntD∗ are the interior operators on the L−uniformity
D on LX and the restricted L−uniformity D∗ on LY , then

(IntD(U))↓Y = IntD∗(U↓Y ), U ∈ LX .

Proof. Let V ∈ {W : f(W ) ≤ U for some f ∈ D}. Then there exists f ∈ D such
that f(V ) ≤ U . It follows that

f↓Y (V↓Y ) ≤ (f(V ))↓Y ≤ U↓Y ; f↓Y ∈ D∗.

Thus

V↓Y ∈ {B : g(B) ≤ U↓Y for some g ∈ D∗} ,
where g = f↓Y . So, (IntD(U))↓Y ≤ IntD∗(U↓Y ).

Conversely, let

B ∈ {C : g(C) ≤ U↓Y for some g ∈ D∗} .

Then, there exists g ∈ D∗ such that g(B) ≤ U↓Y . Thus, there exists f ∈ D such that
g(B) = f↓Y (B) ≤ U↓Y . Using the definition of the restriction of functions, we get
(f(B↑X))↓Y ≤ U↓Y . So, f(B↑X) ≤ U, B↑X ≤ IntD(U). Hence B ≤ (IntD(U))↓Y .
Therefore, IntD∗(U↓Y ) ≤ (IntD(U))↓Y and the theorem is proved. �

Corollary 3.10. If IntD and IntD∗ are the interior operators on the L−uniformity
D on LX and the restricted L−uniformity D∗ on LY , then

(IntD(B↑X))↓Y = IntD∗(B), B ∈ LY .

Theorem 3.11. Let D be an L−uniformity on LX and D∗ be the restricted L−uniformity
on LY . If U ∈ LX is a D−open fuzzy subset, then U↓Y is a D∗−open fuzzy subset.
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Corollary 3.12. Let D be an L−uniformity on LX and D∗ be the restricted L−uniformity
on LY , Y ⊂ X. Then τD∗ =

{
U↓Y ∈ LY : U ∈ τD

}
,where τD and τD∗ are the in-

duced topologies by the L−uniformity D on LX and the L−uniformity D∗ on LY

.

4. The induced L−uniformity on the family P ∗(L)X due to a given
L−uniformity on the family LX

Let U, V ∈ P ∗(L)X and A,B ∈ LX . We shall say that A ∈ U , if A(x) ∈ U(x),
for every x ∈ X. It is clear that U = V , if A ∈ U if and only if A ∈ V .

Definition 4.1. Every A ∈ LX defines UA, UA[, UA] ∈ P ∗(L)X as follows:
(i) UA(x) = {0L, A(x)},
(ii) UA](x) = [0L, A(x)] = {r ∈ L : 0L ≤ r ≤ A(x)} which is equivalent to

UA] =
⋃
{UC : C ≤ A,C ∈ LX},

(iii) UA[(x) = [0L, A(x)[= {r ∈ L : 0L ≤ r < A(x)} which is equivalent to

UA[ =
⋃
{UC : C < A,C ∈ LX}.

One can show that the following lemma is valid.

Lemma 4.2. If A, Ai, B,Bi, C, Ci ∈ LX and U, V, Ui ∈ P ∗(L)X , then the following
properties are satisfied:

(1) A =
∨
{B : B ∈ UA},

(2) A ∨B ∈ UA
⋃
UB , A ∧B ∈ UA

⋃
UB,

(3) for every A ∈ U and B ∈ V, A ∨B ∈ U ∪ V ,
(4) if A ∈

⋃
i∈αUi, then A can be written in the form

A =
∨

i∈α
Ai, Ai ∈ Ui, for all i ∈ α,

where Ai(x) = A(x), if A(x) ∈ Ui(x) and Ai(x) = 0L, if A(x) /∈ Ui(x),
(5) if B ≤

∨
i∈αCi, then B can be written in the form

B =
∨
i∈α

Bi, Bi ≤ Ci, for all i ∈ α,

where Bi(x) = B(x), if B(x) ≤ Ci(x) and Bi(x) = 0L, if B(x) > Ci(x).

Definition 4.3. Every function f : LX → LX induces the function

Ff : P ∗(L)
X → P ∗(L)

X
; Ff (U) =

⋃
{UB : B ≤ f(A), A ∈ U}; U ∈ P ∗(L)

X
.

In this case, Ff is called the induced function by f in P ∗(L)
X

.

Lemma 4.4. If f ∈ H(LX), then

(1) The induced functions Ff ∈ H(P ∗(L)X),
(2) Ff ◦ Fg = Ff◦g,
(3) Ff ∩Gg = Nf∧g,

where Nf∧g is the induced functions by f ∧ g in P ∗(L)X .
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Proof. (1) (I) Ff satisfies property (I). Since A ≤ f(A), A ∈ LX . Then

U =
⋃
{UA : A ∈ U} ⊂ Ff (U) =

⋃
{UB : B ≤ f(A), A ∈ U}.

(II) Ff satisfies property (II). Since
Ff (
⋃
i∈α Ui) = ∪

{
UB : B ≤ f(A), A ∈

⋃
i∈α Ui

}
⊃
⋃
{UB : B ≤ f(A), A ∈ Ui}

= F ∗f (Ui), i ∈ α.
Then, Ff (

⋃
i∈α Ui) ⊃

⋃
i∈α F

∗
f (Ui).

On one hand, for every B ∈ Ff (
⋃
i∈α Ui), there exists A ∈ LX and B ≤ f(A), A ∈⋃

i∈α Ui. The fuzzy subset A can be written in the form

A =
∨
i∈α

Ai, Ai ∈ Ui, i ∈ α.

Then

f(A) ≤ f(
∨
i∈α

Ai) =
∨
i∈α

f(Ai), Ai ∈ Ui, i ∈ α.

Using Lemma 4.1, the fuzzy subset B can be written in the form

B =
∨
i∈α

Bi, Bi ≤ f(Ai), i ∈ α.

It is clear that Bi ∈ F (Ui), i ∈ α. Thus,

B =
∨
i∈α

Bi ∈
⋃
i∈α

F ∗f (Ui), Ff (
⋃

i∈α
Ui) ⊂

⋃
i∈α

Ff (U i).

So the first requirement is proved.
(2) (Ff ◦ Fg)(U) = Ff (Fg(U))

=
⋃
{UB : B ≤ f(A), A ∈ Fg(U)}

=
⋃
{UB : B ≤ f(A) and A ≤ g(D), D ∈ U}

=
⋃
{UB : B ≤ f(A) and f(A) ≤ f(g(D)), D ∈ U}

=
⋃
{UB : B ≤ f(g(D)), D ∈ U}

=
⋃
{UB : B ≤ (f ◦ g)(D), D ∈ U}

= Ff◦g(U).
(3) (Ff ∩Gg)(U)

=
⋂
U1∪U2=U

(Ff (U1)
⋃
Gg(U2))

=
⋂
U1∪U2=U

[
⋃
{UB : B ≤ f(A), A ∈ U1}

⋃
(
⋃
{VD : D ≤ g(C), C ∈ U2})]

=
⋂
U1∪U2=U

⋃
{UB : B ≤ f(A) ∨ g(C), A ∈ U1, C ∈ U2}

=
⋃
{UB : B ≤

∧
A∨C=D [f(A) ∨ g(C)] ; A ∈ U1, C ∈ U2, D ∈ U}

=
⋃
{UB : B ≤ (f ∧ g)(D); D ∈ U}

= Hf∧g(U), where Nf∧g : P ∗(L)X → P ∗(L)X is the induced map by f ∧ g.
If D ∈

⋂
U1∪U2=U

⋃
{UB : B ≤ f(A) ∨ g(C); A ∈ U1, C ∈ U2}, then for every A ∈

U1, C ∈ U2 and U1 ∪ U2 = U . It is valid that B ≤ f(A) ∨ g(C). Thus,

D ≤
∧

A∨C=D

[f(A) ∨ g(C)]
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and

D ∈
⋃{

UB : B ≤
∧

A∨C=D

[f(A) ∨ g(C)] ; A ∈ U1, C ∈ U2, D ∈ U

}
.

Conversely, If

D ∈
⋃{

UB : B ≤
∧

A∨C=D

[f(A) ∨ g(C)] ; A ∈ U1, C ∈ U2, D ∈ U

}
,

then D ≤ f(A) ∨ g(C), for every A ∈ U1, C ∈ U2 and U1 ∪ U2 = U . It follows that

D ∈
⋂

U1∪U2=U

⋃
{UB : B ≤ f(A) ∨ g(C); A ∈ U1, C ∈ U2} .

�

Theorem 4.5. Each L− quasi-uniformity D on a set LX induces L− quasi-uniformity
D∗ on P ∗(L)X , for every lattice L, where

D∗ = {G : G ≥ Ff where Ff is the induced function by f ; f ∈ D}.

Proof. (Q1) Since D 6= ∅, there exists f ∈ D and Ff ∈ D∗ 6= ∅.
(Q2) Let Φ,Ψ ∈ D∗. Then there exists f, g ∈ D such that

Φ(U) ≥ Ff (U) =
⋃
{UB : B ≤ f(A), A ∈ U} ,

Ψ(V ) ≥ Gg(V ) =
⋃
{VD : D ≤ g(A), A ∈ V } .

Thus, (Φ
⋂

Ψ)(U) =
⋂
U1∪U2=U

(Φ(U1)
⋃

Ψ(U2)

≥
⋂
U1∪U2=U

(Ff (U1)
⋃
Gg(U2))

= (Ff ∩Gg)(U) = Hf∧g(U).
Since (f ∧ g) ∈ D, Hf∧g and (Φ

⋂
Ψ) ∈ D∗.

(Q3) Let F ≥ G ∈ D∗. Then there exists k ∈ D such that F ≥ G ≥ Kk, where
Kk ∈ D∗ is the function, which is induced by the function k ∈ D. It follows that
F ∈ D∗.

(Q4) Let Ψ ∈ D∗. Then there exists Ff ∈ D∗ and Ψ ≥ Ff . Thus, there exists
g ∈ U such that g ◦ g ≤ f . It follows that

Ff (U) =
⋃
{UB : B ≤ f(A), A ∈ U}

⊇
⋃
{UB : B ≤ (g ◦ g)(A), A ∈ U}

=
⋃
{UB : B ≤ g(g(A)), A ∈ U}

=
⋃
{UB : B ≤ g(D), D = g(A) ∈ G(U)} = (Gg ◦Gg)(U). �

Theorem 4.6. If Int : LX → LX given by

Int(A) =
∨{

B ∈ LX : f(B) ≤ A, for some f ∈ D
}

is the interior map on the L-uniformity D on LX

and
Int∗ : P ∗(L)

X → P ∗(L)
X

given by

Int∗(U) =
⋃
{V ∈ P ∗(L)X : F (V ) ⊆ U ; for some F ∈ D∗}
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is the interior map on the induced P ∗(L)−uniformity D∗ on P ∗(L)
X

, then

Int∗(U) =
⋃
{UA : A ≤ Int(B), B ∈ U} .

Proof. Int∗(U) =
⋃
{V : Ff (V ) ⊆ U ; Ff ∈ D∗}

=
⋃
{V : A ∈ V then B ∈ U for B ≤ f(A), f ∈ D}

=
⋃
{UA : B ∈ U for B ≤ f(A), f ∈ D}

=
⋃
{UA : A ≤

∨
{C : f(C) ≤ B}; f ∈ D; B ∈ U}

=
⋃
{UA : A ≤ Int(B); B ∈ U} . �

Corollary 4.7. If Int : LX → LX is the interior map on the L−uniformity D on
LX and Int∗ : P ∗(L)X → P ∗(L)X is the interior map on the induced P ∗(L)−uniformity
D∗ on P ∗(L)X , then each D−open fuzzy subset C defines D∗−open fuzzy subsets UC]

and UC[ , since

Int∗(UC]) =
⋃{

UA : A ≤ Int(B); B ∈ UC]

}
=
⋃
{UA : A ≤ C} = UC]

Int∗(UC[) =
⋃{

UA : A ≤ Int(B); B ∈ UC[

}
=
⋃
{UA : A < C} = UC[.

Corollary 4.8. Each D−fuzzy topology τD on LX defines U∗−fuzzy topology τ∗D on
P ∗(L)X and τ∗D ⊃ {UC], UC[ : C ∈ τD}.

5. The induced (P ∗(L),M)−fuzzy uniformity on the family P ∗(L)X due
to a given (L,M)−fuzzy uniformity on the family LX

In this section, we define the induced (P ∗(L),M)−fuzzy uniformity on P ∗(L)X

for every (L,M)−fuzzy uniformity on LX .

Lemma 5.1. Let G ∈ H(P ∗(L)X). If G ≥ Ff for a function f ∈ H(LX), then there
exists a unique function hG ∈ H(LX) and G ≥ FhG

≥ Ff ,
(hG is called the greatest associated function with G).

Proof. Let G ≥ Ff , for some f . Consider the family of functions

F = {k : G ≥ Fk and k ∈ H(LX)}.
It is clear that F is not empty, since f ∈ F . Define the function hG : LX → LX ,
where hG(A) =

∨
k∈F k(A). It is also clear that the function hG ∈ H(LX). Since

A ≤ f(A), A ≤
∨
k∈F k(A) = hG(A). Moreover,

hG(
∨
i∈αAi) =

∨
k∈F k(

∨
i∈αAi) =

∨
k∈F (

∨
i∈α k(Ai))

=
∨
i∈α(

∨
k∈F k(Ai)) =

∨
i∈α hG(Ai).

The uniqueness of hG follows from its definition. �

Notation 5.2. In this section, we use the notation 1L,X for the greatest fuzzy subset

in LX , 1P∗(L),X for the greatest fuzzy subset in P ∗(L)
X

, 0L,X for the smallest subset

in LX and 0P∗(L),X for the smallest subset in P ∗(L)X .

Lemma 5.3. The associated function hF ∈ H(LX) with the function F ∈ H(P ∗(L)X)
satisfies the following properties:

(1) if f1 is the greatest element in H(LX), then Ff1 is the greatest element in
H(P ∗(L)X),

(2) hFf
= f,

155



K. A. Dib et al./Ann. Fuzzy Math. Inform. 14 (2017), No. 2, 143–160

(3) hG∩K = hG ∧ hK ,
(4) hFf

◦ hFg = hFf◦g .

Proof. (1) Since f1 is the greatest element in H(LX), f1(A) = 1L,X , for all A ∈ LX
and A 6= 0L,X . Then for U 6= 0P∗(L),X , we have that

Ff1(U) =
⋃
{UB : B ≤ f1(A); A ∈ U}

=
⋃{

UB : B ≤ 1L,X ; A ∈ U 6= 0P∗(L),X
}

= 1P∗(L),X .

(2) Since Ff (U) =
⋃
{UB : B ≤ f(A), A ∈ U} , U ∈ P ∗(L)X and Ff ≥ Ff ,

hFf
≥ f . But, if g > f , then there exists A ∈ LX such that g(A) > f(A) from which

it follows that Fg(UA) > Ff (UA). Thus hFf
= f .

(3) Let G,K ∈ H(P ∗(L)X). Then
(G ∩K)(U) =

⋂
U1∪U2=U

(G(U1) ∩K(U2))

≥
⋂
U1∪U2=U

(FhG
(U1) ∩ FhK

(U2))

= (FhG
∩ FhK

)(U) = FhG∧hK
(U).

It follows that hG∩K ≥ hG ∧ hK .
On the other hand, since G ⊇ G∩K and K ⊇ G∩K, hG ≥ hG∩K and hK ≥ hG∩K .

Thus, it follows that hG ∧ hK ≥ hG∩K . So hG∩K = hG ∧ hK .
(4) Since Ff ◦ Fg = Ff◦g, from hFf

= f and hFg
= g,

hFf
◦ hFg

= f ◦ g = hFf◦g .

�

Theorem 5.4. Each (L,M)−fuzzy quasi uniformity U : H(LX) → M on LX in-
duces (P ∗(L),M)−fuzzy quasi uniformity U∗ : H(P ∗(L)X)→M on P ∗(L)X , which
is defined as follows:

For every G ∈ H(P ∗(L)X); U∗(G) = U(hG),
if there exists the greatest function hG : LX → LX in H(LX) associated with G and
if such greatest function hG does not exist we put U∗(G) = 0M .

Proof. (FQU1) U∗(Ff1) = U(f1 = 1M , where f1 is the greatest element in H(LX).
(FQU2) Let G,K ∈ P ∗(L)X . Then we have

U∗(G ∩K) = U(hG∩K = U(hG ∧ hK
= U(hG)

∧
U(hK) = U∗(G)

∧
U∗(K).

(FQU3) Clearly, U∗(K) = U(hK) =
∨
g◦g≤hK

U(g) =
∨
Fg◦Fg≤FhK

U(hFg
). Let

G ∈ U∗ satisfying that G ◦ G ≤ FhK
. Then (Fg ◦ Fg)(U) ≤ (G ◦ G)(U) ≤ FhK

(U).
But hG = hFg . Thus we have

U∗(K) =
∨

G◦G≤FhK

U(hG) =
∨

G◦G≤K

U∗(G).

If G◦G ≤ FhK
≤ H ≤ K, then hH = hK . Otherwise, hK is not the greatest element

for K, which mean that if hH > hK , then K ≥ FhH
> FhK

which is a contradiction
with the definition of hK . It is known that if U∗: H(LX)→M is an (L,M)−fuzzy
uniformity, then the family U∗r = {f : U∗(f) ≥ r} is a uniformity on LX for every
r ∈M, r > 0M . �
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Theorem 5.5. If U : H(LX) → M is the (L,M)−fuzzy quasi uniformity on the

family LX and U∗ : H(P ∗(L)
X

) → M is the induced (P ∗(L),M)−fuzzy quasi uni-

formity on the family P ∗(L)
X

, then

IntU∗,r(U) =
⋃
{UA : A ≤ IntU,r(C), C ∈ U} .

Corollary 5.6. Let U : H(LX) → M be (L,M)−fuzzy quasi uniformity on the

family LX and U∗ : H(P ∗(L)
X

) → M be the induced (P ∗(L),M)−fuzzy quasi uni-
formity on the family P ∗(L)X . Then U∗ defines the (P ∗(L),M)−fuzzy topology on

P ∗(L)
X

by the relation:
τU∗(V ) =

∨
{r ∈M : IntU∗,r(V ) ⊇ V }

=
∨
{r ∈M :

⋃
{VA : A ≤ IntU,r(C), C ∈ V } ⊇ V } .

Corollary 5.7. If U : H(LX) → M is the (L,M)−fuzzy quasi uniformity on the

family LX and U∗ : H(P ∗(L)
X

) → M is the induced (P ∗(L),M)−fuzzy quasi uni-
formity on the family P ∗(L)X , then τU∗(UC ]) = τU (C), if τU (C) = r > 0.

Proof. τU∗(UC]) =
∨{

r ∈M : IntU∗,r(UC]) ⊇ UC]

}
=
∨{

r ∈M :
⋃{

UA : A ≤ IntU,r(B), B ∈ UC]

}
⊇ UC]

}
=
∨
{r ∈M :

⋃
{UA : A ≤ IntU,r(B), B ≤ C} ⊇ {UA : A ≤ C}}]

≥
∨
{r ∈M : IntU,r(C) ≥ C}

= τU (C) �

Definition 5.8 ([25, 26]). Let (X,U1), (Y,U2) be two (L,M)−fuzzy quasi-uniform
spaces. A function F : (X,U1) → (Y,U2) is said to be quasi-uniformly continuous
function, if for every g ∈ H(LY ), U2(g) ≤ FL⇐(g), where, for all A ∈ LX ,

FL
⇐(g)(A) = FL

←(g(FL
→(A))).

It is clear that the identity function Id : (X,U)→ (X,U) and the composition of
the quasi-uniformly continuous functions are quasi- uniformly continuous function.

Definition 5.9 ([4, 5, 6, 7]). Let X,Y be given nonempty sets and L,K be given
lattices. The fuzzy function F = (F, {fx}x∈X) from LX into KY or simply the
fuzzy function F = (F, fx) : X → Y is defined as an ordered pair (F, fx), where
F : X → Y , is a function from the set X to the set Y , and for all x ∈ X, fx : L→ K
is a function from the lattice L to the lattice K, satisfying the following conditions:

(i) fx(0L) = 0K and fx(1L) = 1K ,
(ii) fx is a non decreasing function, for all x ∈ X.

The action of the fuzzy function F = (F, fx) on the L−fuzzy subsets A of X and
the inverse image of the K−fuzzy subset B of Y are defined as follows:

F→L (A)(y) =

{ ∨
y=F (x) fx(A(x)), F−1(y) 6= ∅,

0K , F−1(y) = ∅ , y ∈ Y, and A ∈ LX ,

F←L (B)(x) =
∨
f−1x (B(F (x))), x ∈ X and B ∈ KY ,

where the supremum is taken over the set of values f−1x (B(F (x))).
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The fuzzy function F = (F, fx) from LX to LY is called a uniform fuzzy function, if
fx = f ; for all x ∈ X. The ordinary functions are embedded in the family of fuzzy
functions as uniform fuzzy functions in which fx = idL is the identity function.

Definition 5.10. Let (X,U1), (Y,U2) be two (L,M)−fuzzy quasi-uniform spaces.
A fuzzy function F = (F, fx) : (X,U1) → (Y,U2) is said to be quasi-uniformly
continuous fuzzy function if for every g ∈ H(LY ), U2(g) ≤ U1(F⇐(g)), where
F⇐(g) ∈ H(LX) is defined as: for all A ∈ LX , F⇐(g)(A) = F←L (g(F→L (A))).

The definitions of category and related topics can be found in [1].
The family of all (L,M)− fuzzy quasi-uniform spaces and quasi-uniformly con-

tinuous functions form a category that will be denoted by Qunif(L,M). While the
family of all (L,M)− fuzzy quasi-uniform spaces and quasi-uniformly continuous
fuzzy functions form a category that will be denoted by FQunif(L,M).
Then, the following functor R is well defined as follows:

R : Qunif(L,M)→ FQunif(P∗(L),M); R(U) = U∗, R(F) = (F, idL),

where U∗ is (P ∗(L),M)−fuzzy quasi uniformity on the fuzzy family P ∗(L)
X

which
is induced by (L,M)−fuzzy quasi uniformity U on the fuzzy family LX .

Theorem 5.11. The functor R embedded the category Qunif(L,M) in the category
FQunif(P∗(L),M).

Proof. Any lattice L can be embedded in the lattice P ∗(L) by the embedding func-
tion e : L→ P ∗(L), e(r) = {0L, r}, which implies that the family LX can be embed-

ded in the family P ∗(L)
X

by the embedding function i : LX → P ∗(L)
X
, i(A)(x) =

{0L, A(x)}. Then, the family |Qunif(L,M)| of all (L,M)− fuzzy quasi-uniform
spaces can be embedded in the family |FQunif(P∗(L),M)| of all (P ∗(L),M)− fuzzy
quasi-uniform spaces by the one to one correspondence between |Qunif(L,M)| and

|FQunif(L∗,M)|, where L∗ = {{oL, r} : r ∈ L}. Moreover, the family of Zadeh
′
s

functions {F→L : LX → LY } can be embedded in the family of all fuzzy functions
{F→P∗(L) : P ∗(L)X → P ∗(L)Y } by embedding (F → (F, idL)). This shows that the
functor R is embedded and the proof is obtained. �

Remark 5.12. All kinds of categories of quasi-uniform spaces and quasi-uniformly
continuous functions can be derived from the category FQunif(P∗(L),M) as fol-
lows:

(1) FQunif(P∗(L),M) derives the category Qunif of all ordinary quasi-uniform
spaces and ordinary quasi-uniformly continuous functions, whenever

P ∗(L) = P ∗({0, 1}),M = {o, 1}, F = (F, id{0,1})

(2) FQunif(P∗(L),M) derives the category fQunif of all fuzzifying quasi-uniform
spaces and quasi-uniformly continuous functions, whenever

P ∗(L) = P ∗({0, 1}), F = (F, idM ),

(3) FQunif(P∗(L),M) derives the category LQunif of all L−quasi-uniform
spaces and quasi-uniformly continuous functions, whenever

P ∗(L) = {{0, r} : r ∈ L}, M = L, F = (F, idL)
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(4) FQunif(P∗(L),M) derives the category Qunif(L,M) of all (L,M)−quasi-
uniform spaces and quasi-uniformly continuous fuzzy functions, whenever

P ∗(L) = {{0, r} : r ∈ L}, F = (F, idL).

6. Conclusion

From the study of (L,M)−quasi uniformity spaces and the (P ∗(L),M)−quasi
uniformity spaces we can advocate that every quasi uniformity in the category
Qunif(L,M) is isomorphic to at least one quasi uniformity in the category FQunif
(P∗(L),M). Moreover, all kinds of categories of quasi-uniform spaces and quasi-
uniformly continuous functions can be derived from the category FQunif(P∗(L),M).
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concept of a fuzzy L-uniform space, In: Topological and Algebraic Structures in Fuzzy Sets
(Eds. S. E. Rodabaugh and P. E. Klement), Kluwer Academic Publishers, Dordrecht (2003)

81–114.
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