Annals of Fuzzy Mathematics and Informatics Volume 13, No. 6, (June 2017), pp. 743–747 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Some characterizations of fuzzy g'''- irresolute functions

M. JEYARAMAN, J. RAJALAKSHMI, R. MUTHURAJ, O. RAVI

Received 17 March 2016; Revised 6 May 2016; Accepted 5 July 2016

ABSTRACT. The main purpose of this paper is to investigate characterization of fuzzy g'''-irresolute functions.

2010 AMS Classification: 54C10, 54C08, 54C05

Keywords: Fuzzy Topological space, Fuzzy g''-closed set, Fuzzy g''-continuous function, Fuzzy g'''-irresolute function.

Corresponding Author: M.Jeyaraman (jeya.math@gmail.com)

1. INTRODUCTION

In the classical paper [15] of 1965, Zadeh generalized the usual notion of a set and introduced the important and useful notion of fuzzy sets. Several authors [1, 2, 3, 13] working in the field of fuzzy topology have shown more interest in studying the concepts of generalizations of fuzzy continuous functions. A weak form of fuzzy continuous functions called fuzzy g-continuous functions were introduced by Sundaram [12]. Recently Sudha et al [11] have introduced and studied another form of fuzzy generalized continuous functions called fuzzy ω -continuous functions respectively.

In this paper, we investigate characterization of fuzzy g'''-irresolute functions.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, η) (or X, Y and Z) represent fuzzy topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a fuzzy subset A of a space (X, τ) , cl(A), int(A) and A^c denote the closure of A, the interior of A and the complement of A, respectively.

We recall the following Definitions which are useful in the sequel.

Definition 2.1. A fuzzy subset A of a space (X, τ) is called:

(i) a fuzzy semi-open set [1], if $A \leq cl(int(A))$,

(ii) a fuzzy α -open set [3], if $A \leq int(cl(int(A)))$,

(iii) a fuzzy β -open set [13] (=semi-preopen set), if $A \leq cl(int(cl(A)))$.

The complements of the above mentioned open sets are called their respective closed sets. The fuzzy semi-closure [14] (resp. fuzzy α -closure [9], fuzzy semi-preclosure [13]) of a fuzzy subset A of X, denoted by scl(A) (resp. $\alpha cl(A)$, spcl(A)) is defined to be the intersection of all fuzzy semi-closed (resp. fuzzy α -closed, fuzzy semi-preclosed) sets of (X, τ) containing A.

It is known that scl(A) (resp. $\alpha cl(A)$, spcl(A)) is a fuzzy semi-closed (resp. fuzzy α -closed, fuzzy semi-preclosed) set.

Definition 2.2. A fuzzy subset A of a space (X, τ) is called:

(i) a fuzzy generalized closed (briefly, fuzzy g-closed) set [2], if $cl(A) \leq U$, whenever $A \leq U$ and U is fuzzy open in (X, τ) . The complement of fuzzy g-closed set is called fuzzy g-open set,

(ii) a fuzzy generalized semi-closed (briefly fgs-closed) set [10], if $scl(A) \leq U$, whenever $A \leq U$ and U is fuzzy open in (X, τ) . The complement of fgs-closed set is called fgs-open set,

(iii) a fuzzy g'''-closed (briefly fg'''-closed)set [5], if $cl(A) \leq U$, whenever $A \leq U$ and U is fgs-open in (X, τ) . The complement of fg'''-closed set is called fg'''-open set.

Definition 2.3. A fuzzy function $f: (X, \tau) \to (Y, \sigma)$ is called:

(i) fuzzy g'''-continuous [7], if $f^{-1}(V)$ is a fuzzy g'''-closed set in (X, τ) , for every fuzzy closed set V of (Y, σ) ,

(ii) fuzzy g-continuous [2], if $f^{-1}(V)$ is a fuzzy g-closed set in (X, τ) , for every fuzzy closed set V of (Y, σ) ,

(iii) fuzzy gs-continuous [10], if $f^{-1}(V)$ is a fuzzy gs-closed set in (X, τ) , for every fuzzy closed set V of (Y, σ) ,

(iv) fuzzy g'''-closed [8], if the image of every fuzzy closed set in (X, τ) is fuzzy g'''-closed in (Y, σ) ,

(v) fuzzy g'''-open [8], if the image of every fuzzy open set in (X, τ) is fuzzy g'''-open in (Y, σ) .

Definition 2.4. A fuzzy function $f : (X, \tau) \to (Y, \sigma)$ is called fuzzy *gs*-irresolute function [6], if the inverse image of every fuzzy *gs*-closed (resp. fuzzy *gs*-open) set in (Y, σ) is fuzzy *gs*-closed (resp. fuzzy *gs*-open) in (X, τ) .

Definition 2.5. A fuzzy topological space (X, τ) is called:

(i) fuzzy Tg'''-space [6], if every fuzzy g'''-closed set in it is fuzzy closed.

(ii) fuzzy $T_{1/2}$ -space [2] if every fuzzy g-closed set in it is fuzzy closed.

Definition 2.6 ([6]). A fuzzy function $f : (X, \tau) \to (Y, \sigma)$ is called fuzzy pre-gsopen, if f(U) is fuzzy gs-open in (Y, σ) , for each fuzzy gs-open set U in (X, τ) .

Lemma 2.7 ([4]). Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy function. For the fuzzy sets A and B of X and Y respectively, the following statements hold:

(1) $ff^{-1}(B) \le B$,

- $(2) f^{-1}f(A) \ge A,$
- $(3) f(A^c) \ge (f(A))^c,$
- (4) $f^{-1}(B^c) = (f^{-1}(B))^c$,
- (5) if f is injective, then $f^{-1}(f(A)) = A$,
- (6) if f is surjective, then $ff^{-1}(B) = B$,
- (7) if f is bijective, then $f(A^c) = (f(A))^c$.

3. Fuzzy g'''-irresolute functions

We introduce the following definition:

Definition 3.1 ([6]). A fuzzy function $f : (X, \tau) \to (Y, \sigma)$ is called a fuzzy g'''irresolute function, if the inverse image of every fuzzy g'''-closed set in (Y, σ) is fuzzy g'''-closed in (X, τ) .

Remark 3.2. The following examples show that the notions of fuzzy gs-irresolute functions and fuzzy g''-irresolute functions are independent.

Example 3.3. Let $X = Y = \{a, b\}$ and $\tau = \{0_X, \alpha, 1_X\}$, where α is fuzzy set in X defined by $\alpha(a) = 1$, $\alpha(b) = 0$ and $\sigma = \{0_X, \beta, 1_X\}$, where β is fuzzy set in Y defined by $\beta(a) = 0.5$, $\beta(b) = 0$. Then (X, τ) and (Y, σ) are fuzzy topological spaces.

Let $f: (X, \tau) \to (Y, \sigma)$ be the identity fuzzy function. Then clearly, f is fuzzy g'''-irresolute but it is not fuzzy gs-irresolute.

Example 3.4. Let $X = Y = \{a, b\}$ and $\tau = \{0_X, \gamma, 1_X\}$, where γ is fuzzy set in X defined by $\gamma(a) = 0.4$, $\gamma(b) = 0.5$ and $\sigma = \{0_X, \delta, 1_X\}$, where δ is fuzzy set in Y defined by $\delta(a) = 0.6$, $\delta(b) = 0.5$. Then (X, τ) and (Y, σ) are fuzzy topological spaces.

Let $f: (X, \tau) \to (Y, \sigma)$ be the identity fuzzy function. Then clearly, f is fuzzy gs-irresolute but it is not g''-irresolute.

Proposition 3.5. A fuzzy function $f : (X, \tau) \to (Y, \sigma)$ is fuzzy g^{'''}-continuous if and only if $f^{-1}(U)$ is fuzzy g^{'''}-open in (X, τ) , for every fuzzy open set U in (Y, σ) .

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be fuzzy g'''-continuous and U be an fuzzy open set in (Y, σ) . Then U^c is fuzzy closed in (Y, σ) . Since f is fuzzy g'''-continuous, $f^{-1}(U^c)$ is fuzzy g'''-closed in (X, τ) . But $f^{-1}(U^c) = (f^{-1}(U))^c$. Thus $f^{-1}(U)$ is fuzzy g'''-open in (X, τ) .

Conversely, assume that $f^{-1}(U)$ is fuzzy g'''-open in (X, τ) , for each fuzzy open set U in (Y, σ) . Let F be a fuzzy closed set in (Y, σ) . Then F^c is fuzzy open in (Y, σ) . Thus by assumption, $f^{-1}(F^c)$ is fuzzy g'''-open in (X, τ) . Since $f^{-1}(F^c) = (f^{-1}(F))^c$, $f^{-1}(F)$ is fuzzy g'''-closed in (X, τ) . So f is fuzzy g'''-continuous. \Box

Proposition 3.6. A fuzzy function $f : (X, \tau) \to (Y, \sigma)$ is fuzzy g'''-irresolute if and only if the inverse of every fuzzy g'''-open set in (Y, σ) is fuzzy g'''-open in (X, τ) .

Proof. The proof is similar to Proposition 3.5.

Proposition 3.7. If a fuzzy function $f : (X, \tau) \to (Y, \sigma)$ is fuzzy g'''-irresolute, then it is fuzzy g'''-continuous but not conversely.

Example 3.8. Let $X = Y = \{a, b\}$ and $\tau = \{0_X, \alpha, \beta, 1_X\}$, where α and β are fuzzy set in X defined by $\alpha(a) = 0.5$, $\alpha(b) = 0$, $\beta(a) = 1$, $\beta(b) = 0$ and $\sigma = \{0_X, \beta, 1_X\}$, where β is fuzzy set in Y defined by $\beta(a) = 1$, $\beta(b) = 0$. Then (X, τ) and (Y, σ) are fuzzy topological spaces.

Let $f: (X, \tau) \to (Y, \sigma)$ be the identity fuzzy function. Then clearly, f is fuzzy g'''-continuous but it is not fuzzy g'''-irresolute.

Proposition 3.9. Let (X, τ) be any fuzzy topological space, (Y, σ) be a fuzzy $T_{g'''}$ -space and $f:(X, \tau) \rightarrow (Y, \sigma)$ be a fuzzy function. Then the following are equivalent:

(1) f is fuzzy g'''-irresolute.

(2) f is fuzzy g'''-continuous.

Proof. $(1) \Rightarrow (2)$: The proof follows from Proposition 3.7.

 $(2) \Rightarrow (1)$: Let F be a fuzzy g'''-closed set in (Y, σ) . Since (Y, σ) is a fuzzy $T_{g'''}$ -space, F is a fuzzy closed set in (Y, σ) . Then by hypothesis, $f^{-1}(F)$ is fuzzy g'''-closed in (X, τ) . Thus f is fuzzy g'''-irresolute.

Proposition 3.10. If $f:(X, \tau) \rightarrow (Y, \sigma)$ is bijective fuzzy pre-gs-open and fuzzy g'''-continuous then f is fuzzy g'''-irresolute.

Proof. Let A be fuzzy g'''-closed set in (Y, σ) . Let U be any fuzzy gs-open set in (X, τ) such that $f^{-1}(A) \leq U$. Then $A \leq f(U)$. Since A is fuzzy g'''-closed and f(U) is fuzzy gs-open in (Y, σ) , $cl(A) \leq f(U)$. Thus $f^{-1}(cl(A)) \leq U$. Since f is fuzzy g'''-continuous and cl(A) is fuzzy closed in (Y, σ) , $f^{-1}(cl(A))$ is fuzzy g'''-closed. So $cl(f^{-1}(cl(A))) \leq U$ and thus $cl(f^{-1}(A)) \leq U$. Hence, $f^{-1}(A)$ is fuzzy g'''-closed in (X, τ) . Therefore f is fuzzy g'''-irresolute.

The following examples show that no assumption of Proposition 3.10 can be removed.

Example 3.11. The fuzzy identity function in Example 3.8 is fuzzy g'''-continuous and fuzzy bijective but not fuzzy pre-*gs*-open and thus f is not fuzzy g'''-irresolute.

Example 3.12. Let $X = Y = \{a, b\}$ and $\tau = \{0_X, \gamma, 1_X\}$, where γ is fuzzy set in X defined by $\gamma(a) = 0.6$, $\gamma(b) = 0.5$ and $\sigma = \{0_X, \delta, 1_X\}$, where δ is fuzzy set in Y defined by $\delta(a) = 0.4$, $\delta(b) = 0.5$. Then (X, τ) and (Y, σ) are fuzzy topological spaces.

Let $f: (X, \tau) \to (Y, \sigma)$ be the identity fuzzy function. Then clearly, f is fuzzy bijective and fuzzy pre-gs-open but not fuzzy g'''-continuous. Thus f is not g'''-irresolute.

Proposition 3.13. If $f:(X, \tau) \to (Y, \sigma)$ is fuzzy bijective closed and fuzzy gs-irresolute then the inverse function $f^{-1}:(Y, \sigma) \to (X, \tau)$ is fuzzy g'''-irresolute.

Proof. Let A be fuzzy g'''-closed in (X, τ) . Let $(f^{-1})^{-1}(A) = f(A) \leq U$, where U is fuzzy gs-open in (Y, σ) . Then $A \leq f^{-1}(U)$. Since $f^{-1}(U)$ is fuzzy gs-open in (X, τ) and A is fuzzy g'''-closed in (X, τ) , $cl(A) \leq f^{-1}(U)$. Thus $f(cl(A)) \leq U$. Since f is fuzzy closed and cl(A) is fuzzy closed in (X, τ) , f(cl(A)) is fuzzy closed in (Y, σ) . So f(cl(A)) is fuzzy g'''-closed in (Y, σ) . Hence $cl(f(cl(A))) \leq U$ and thus $cl(f(A)) \leq U$. Therefore f(A) is fuzzy g'''-closed in (Y, σ) and hence f^{-1} is fuzzy g'''-irresolute.

Acknowlegement

The authors thank the referee(s) for his/her/their suggestions and comments for the improvement of this paper.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems 86 (1997) 93–100.
- [3] A. S. Bin shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991) 303–308.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [5] M. Jeyaraman, J. Rajalakshmi and O. Ravi, Another generalization of closed sets in fuzzy topological spaces, Int.Journal of Math.Arc 4 (8) (2013) 187–192.
- [6] M. Jeyaraman, J. Rajalakshmi and R. Muthuraj, Some Characterizations Of Weakly fuzzy g^{'''}-closed sets, Bulletin of Mathematics and Statistics Research 2 (4) (2014) 434–438.
- [7] M. Jeyaraman, J. Rajalakshmi and R. Muthuraj, Decomposition of g^{'''}-Continuity in fuzzy topological spaces, SSRG Int. Journal of Math.Trends and Tech Special issue (2014) 19–21.
- [8] M. Jeyaraman, J. Rajalakshmi and R. Muthuraj, g^{'''}-Closed and g^{'''}-Open Maps in fuzzy topological spaces, Int. Journal of Engg.Research and Tech Conference issue (2014) 18–22.
- [9] R. Prasad, S. S. Thakur and R. K. Saraf, Fuzzy α-irresolute mappings, J. Fuzzy Math. 2 (2) (1994) 335–339.
- [10] R. K. Saraf and M. Khanna, On gs-closed sets in fuzzy topology, J. Indian Acad. Math. 25 (1) (2003) 133–143.
- [11] M. Sudha , E. Roja and M. K. Uma, Slightly fuzzy ω-continuous mappings, Int. Journal of Math. Analysis 5 (16) (2011) 779–787.
- [12] P. Sundaram, Generalized continuity in fuzzy topology (preprint).
- [13] S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems 98 (1998) 383–391.
- [14] T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math.Anal. Appl. 132 (1988) 356–364.
- [15] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.

<u>M. JEYARAMAN</u> (jeya.math@gmail.com.)

PG and Research Department of Mathematics, Raja Dorai Singam Govt.Arts College, Sivagangai-630561, Sivagangai District, TamilNadu, India

<u>J. RAJALAKSHMI</u> (jrjrjrjr82@yahoo.com.)

Department of Mathematics, St.Michael College of engineering and Technology, Kalayarkovil-630551, Sivagangai District, TamilNadu, India

<u>R. MUTHURAJ</u> (rmr1973@yahoo.co.in.)

PG and Research Department of Mathematics, H. H. The Rajah's College, Pudukottai-622001, TamilNadu, India

<u>O. RAVI</u> (siingam@yahoo.com.)

Department of Mathematics, P. M. Thevar College, Usilampatti-625532, Madurai District, TamilNadu, India