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Abstract. The theme of this work is to investigate a new generalized
parametric directed divergence measure for intuitionistic fuzzy sets. For
it, the entire paper is divided into two folds. Firstly, a new measure has
been presented by incorporating the idea of convex linear combinations of
the degree of their membership functions. Some desirable properties of
the proposed measure have been also investigated. Secondly, divergence
measure based method for solving the decision making problem has been
presented. A ranking of the different attributes is based on the proposed
generalized divergence measure and the sensitivity analysis on the ranking
of the system has been done based on the decision-making parameters. An
illustrative examples have been studied to show that the proposed func-
tion is more reasonable in the decision-making process than other existing
functions.
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1. Introduction

Classical information theory has been widely used in the literature for representing
the uncertainties in the data in the form of classical measure theory. But these
measures are valid only for a precise data i.e., where the data related to the system
are precisely known. But due to the various constraints in day-today life, decision
makers may give their judgements under the uncertain and imprecise in nature.
Thus, there is always a degree of hesitancy between the preferences of the decision
making and hence, the analysis conducted under such circumstances are not ideal
and hence does not tell the exact information to the system analyst. To handle this,
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fuzzy set (FS) theory, developed by Zadeh [30], has received much attention over
the last decades due to its capability of handling the uncertainties in terms of their
membership function. After it, Attanassov [1] proposed the concept of intuitionistic
fuzzy set (IFS) which extend the theory of FS with the addition of degree of non-
membership. As IFS theory has widely been used by the researchers in the different
disciplines for handling the uncertainties in the data and hence their corresponding
analysis is more meaningful than their crisp analysis.

The degree of distance, similarity, divergence measures have received a great deal
of attention in the last decades for solving the decision-making, pattern recognition,
medical diagnosis problems. For this, Szmidt and Kacprzyk [22] proposed the set
of axioms for the entropy under the IFS environment. Later on, corresponding to
Deluca and Termini [5] fuzzy entropy measure, Vlachos and Sergiadis [24] extended
their measure in the IFS environment. Mitchell [19] presented the similarity measure
for IFSs based on statistical point of view. Moreover, Xu [28] introduced a series of
similarity measures for IFSs and applied them to multiple attribute decision making
problem based on intuitionistic fuzzy information. Xu and Chen [29] introduced
a series of distance and similarity measures, which are various combinations and
generalizations of the weighted Hamming distance, the weighted Euclidean distance
and the weighted Hausdorff distance. Szmidt and Kacprzyk [21] proposed a distance
measure for measuring the two IFSs. Vlachos and Sergiadis [24] forwarded the
notion of divergence from fuzzy set to IFS. Wei and Ye [26] discussed an extended
version of [24] divergence measure by incorporating the idea of mid-value of the
membership degrees of IFSs while Verma and Sharma [23] presented the generalized
intuitionistic fuzzy divergence measure which is an extension of [26] measure. Apart
from them, the various authors have incorporating the idea of IFS theory into the
measure theory and applied in many practically uncertain situations such as decision
making, pattern recognition, medical diagnosis by using similarity measures [3, 4,
6, 7, 16, 17, 19, 32], aggregation operators [8, 9, 10, 27], divergence measures [23,
24, 26], entropy measure [15, 25, 31] and many others [11, 12, 13, 14]. Thus, it
has been concluded that the distance/similarity or divergence measures are of key
importance in a number of theoretical and applied statistical inference and data
processing problems. Furthermore, it has been deduced from the studies that the
similarity, entropy and divergence measures could be induced by the normalized
distance measure of IFS based on their axiomatic definitions.

But it has been observed from the above studies that all their measures do not in-
corporate the idea of the decision-maker preferences into the measure. Furthermore,
the existing measure is in linear order, and hence it does not give the exact nature
of the alternative. Therefore, keeping the criteria of flexibility and efficiency of IFS,
this paper presents a new generalized parametric directed divergence measure for
measuring the fuzziness degree of a set. For this, a divergence measure of order
α and degree β has been presented which makes the decision makers more reliable
and flexible for the different values of these parameters. These measures have been
formulated by taking the convex linear combinations of the degree of membership
functions between the two IFSs. Based on these representations, some desirable
properties of these measures have been studied. It has been analyzed for the study
that the existing divergence measures are the special cases of the proposed measure
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and hence concluded that the proposed one is more suitable and generalized. A
numerical examples have been provided for demonstrating the performance of the
proposed measure. The rest of the text has been summarized as follows. Section 2
presents some definition of the IFS, divergence measure and some existing measures
on it. Section 3 proposed the generalized intuitionistic fuzzy directed and sym-
metric divergence measure of order α and degree β. Various properties of it have
also been investigated in details. Section 4 describes an approach for solving the
decision-making problems based on the proposed divergence measure followed by an
illustrative examples given in section 5. Finally, concrete conclusion and discussion
have been presented in section 6.

2. Preliminaries

In this section, some basic definitions related to IFS, divergence measures have
been stated in briefly.

2.1. Intuitionistic fuzzy set. An intuitionistic fuzzy set (IFS) A defined on uni-
versal set X is given by [1]

(2.1) A = {〈x, µA(x), νA(x)〉 | x ∈ X},

where µA, νA : X −→ [0, 1] represent, respectively, the membership and non-
membership degrees of the element x to the set A with the conditions 0 ≤ µA(x),
νA(x) ≤ 1, and µA(x) + νA(x) ≤ 1. For any x ∈ X, the intuitionistic index of x
to A is defined as πA(x) = 1 − µA(x) − νA(x), the complementary set Ac of A is
defined as Ac = {〈x, νA(x), µA(x)〉 | x ∈ X}. Usually, the pair 〈µA(x), νA(x)〉 is
called an intuitionistic fuzzy number (shorted by IFN), and it is often simplified as
α = 〈µA, νA〉 where µA ∈ [0, 1], νA ∈ [0, 1], µA + νA ≤ 1. Let α = 〈µα, να〉 and
β = 〈µβ , νβ〉 be the two IFNs defined on X then operations on IFNs are defined as
follows:

• Union: α ∪ β = 〈max{µα, µβ},min{να, νβ}〉,
• Intersection: α ∩ β = 〈min{µα, µβ},max{να, νβ}〉,
• Complement: αc = 〈να, µα〉,
• Containment: α ⊆ β iff µα ≤ µβ , να ≥ νβ and α ⊇ β iff µα ≥ µβ , να ≤ νβ .

2.2. Directed divergence measure. The directed divergence measure is nothing
but its a relative entropy measure and this provides a distance formula between the
two discrete probability distributions. First, Kullback and Leibler [18] proposed the
measure of directed divergence between the two distribution P = (p1, p2, . . . , pn)
Q = (q1, q2, . . . , qn) as:

(2.2) D(P |Q) =

n∑
i=1

pi ln
pi
qi

which satisfying the following conditions:

(i) D(P | Q) ≥ 0,
(ii) D(P | Q) = 0 if and only if P = Q.
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This idea of divergence measure was extended from probabilistic to fuzzy set the-
ory by Bhandari and Pal [2] by giving a fuzzy information measure for discrimination
of a fuzzy set B relative to some other fuzzy set A. Let A and B be two fuzzy sets
defined in discrete universe of discourse X = {x1, x2, . . . , xn} having the member-
ship values µA(xi) and µB(xi), i = 1, 2, . . . , n respectively, then Bhandari and Pal
[2] defined the fuzzy divergence measure of fuzzy set B relative to A by

D(A | B) =
1

n

n∑
i=1

[
µA(xi) log

(
µA(xi)

µB(xi)

)
+ (1− µA(xi)) log

(
1− µA(xi)

1− µB(xi)

)]
.(2.1)

The above measure tends towards infinity if µB approaches either to 0 or 1 and
hence they give an inaccurate result. To overcome this, Shang and Jiang [20] pre-
sented a modified measure of it given by

D(A | B) =
1

n

n∑
i=1

[
µA(xi) log

(
2µA(xi)

µA(xi) + µB(xi)

)
+ (1− µA(xi)) log

(
2(1− µA(xi))

2− µA(xi)− µB(xi)

)]
.

(2.2)

In 2007, Vlachos and Sergiadis [24] forwarded the notion of divergence from fuzzy
sets to intuitionistic fuzzy sets. Analogy to Shang and Jiang’s fuzzy divergence
measure in Eq. (2.2), they defined a measure of intuitionistic fuzzy divergence of
IFS B relative of IFS A by

D(A | B) =
1

n

n∑
i=1

[
µA(xi) log

(
2µA(xi)

µA(xi) + µB(xi)

)
+ νA(xi) log

(
2νA(xi)

νA(xi) + νB(xi)

)]
.(2.3)

Afterward, Wei and Ye [26] extended Vlachos and Sergiadis [24] intuitionistic
fuzzy divergence measure by

D(A | B) =
1

n

n∑
i=1

[
µA(xi) log

(
2µA(xi)

µA(xi) + µB(xi)

)
+νA(xi) log

(
2νA(xi)

νA(xi) + νB(xi)

)
+πA(xi) log

(
2πA(xi)

πA(xi) + πB(xi)

)]
.

(2.4)

Later on, Verma and Sharma [23] presented an improved version of Wei and Ye
[26] as

D(A | B) =
1

n

n∑
i=1

[
µA(xi) log

(
µA(xi)

λµA(xi) + (1− λ)µB(xi)

)
+νA(xi) log

(
νA(xi)

λνA(xi) + (1− λ)νB(xi)

)
+πA(xi) log

(
πA(xi)

λπA(xi) + (1− λ)πB(xi)

)]
.

(2.5)
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3. Proposed intuitionistic parametric divergence measure

In this section, we have proposed a flexible and generalized parametric divergence
measure of order α and degree β denoted as class of (α, β). Some desirable properties
of these are also being studied.

3.1. Parametric directed divergence measure for IFSs.

Definition 3.1. LetA andB be two IFSs defined on universal setX = {x1, x2, . . . , xn},
then a parametric directed divergence measure for IFSs based on the parameters α, β

and λ(0 ≤ λ ≤ 1) is denoted as Dβ
α{λ}(A|B) and defined as follows:

Dβ
α{λ}(A|B) =

α

n(2− β)

n∑
i=1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]
,

where µ, ν and π are the membership, non-membership and hesitancy functions
respectively and it is valid for α, β > 0 and except β 6= 2.

It is clearly seen from the definition that the Dβ
α{λ} is not symmetric, so to imbue

the measure with symmetry, a parametric Symmetric Divergence Measure for IFSs
has been defined as follows.

3.2. Parametric symmetric divergence measure for IFSs.

Definition 3.2. A parametric symmetric divergence measure for two IFSs A and

B based on α, β and λ is denoted as Dβ
α{λ}(A;B) defined as follows:

Dβ
α{λ}(A;B)

= Dβ
α{λ}(A|B) +Dβ

α{λ}(B|A)
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=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A (xi) log

µ
α

2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

+ ν
α

2−β
A (xi) log

ν
α

2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

+ π
α

2−β
A (xi) log

π
α

2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

]

+
α

n(2− β)

n∑
i=1

[
µ

α
2−β
B (xi) log

µ
α

2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

+ ν
α

2−β
B (xi) log

ν
α

2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

+ π
α

2−β
B (xi) log

π
α

2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

]
.

From the definition of Dβ
α{λ}(A | B) and Dβ

α{λ}(A;B), it has been observed that

(1) Dβ
α{λ}(A | B) ≥ 0 and Dβ

α{λ}(A;B) ≥ 0.

(2) When λ = 1 then Dβ
α{λ}(A | B) = 0 and Dβ

α{λ}(A;B) = 0.

(3) When λ 6= 1, then Dβ
α{λ}(A | B) = Dβ

α{λ}(A;B) iff A = B, i.e., when

µA(xi) = µB(xi) and νA(xi) = νB(xi).
Also it has been observed from the proposed divergence measure that some ex-

isting divergence measures [2, 20, 23, 26] are the particular cases of it and has been
seen as below.

(1) When α = β = 1 and λ = 0 with πA(xi) = 0 = πB(xi), then the proposed
measure reduces to [2] measures.

(2) When α = β = 1 and λ = 1
2 with πA(xi) = 0 = πB(xi), then the proposed

measure reduces to [20] measures.
(3) When α = 1 and β = 1, then the proposed measure reduces to [23] measures.
(4) When α = β = 1 and λ = 1

2 , then the proposed measure reduces to [26]
measures.
Thus it has been observed that the proposed measure is the more generalized than
the existing measures.

Divide the universe X into two parts X1 and X2, where
X1 = {xi : xi ∈ X,A(xi) ⊆ B(xi)}, i.e.,

µA(xi) ≤ µB(xi), νA(xi) ≥ νB(xi) ∀xi ∈ X1,
X2 = {xi : xi ∈ X,A(xi) ⊇ B(xi)}, i.e.,

µA(xi) ≥ µB(xi), νA(xi) ≤ νB(xi) ∀xi ∈ X2.

Now, we propose some properties based on the above considerations.

3.3. Some properties of parametric symmetric divergence measure for
IFSs.
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Property 3.1. If A and B be the two IFSs defined on universal set X, such that
they satisfy for any xi ∈ X either A ⊆ B or A ⊇ B, then

Dβ
α{λ}(A ∪B;A ∩B) = Dβ

α{λ}(A;B).

Proof. It is clear that

Dβ
α{λ}(A ∪B;A ∩B) = Dβ

α{λ}(A ∪B|A ∩B) +Dβ
α{λ}(A ∩B|A ∪B).

On the other hand,

Dβ
α{λ}(A ∪B|A ∩B)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A∪B(xi) log

(
µ

α
2−β
A∪B(xi)

λµ
α

2−β
A∪B(xi) + (1− λ)µ

α
2−β
A∩B(xi)

)

+ ν
α

2−β
A∪B(xi) log

(
ν

α
2−β
A∪B(xi)

λν
α

2−β
A∪B(xi) + (1− λ)ν

α
2−β
A∩B(xi)

)

+ π
α

2−β
A∪B(xi) log

(
π

α
2−β
A∪B(xi)

λπ
α

2−β
A∪B(xi) + (1− λ)π

α
2−β
A∩B(xi)

)]

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
B log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A log

(
π

α
2−β
B (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]
and

Dβ
α{λ}(A ∩B|A ∪B)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A∩B(xi) log

(
µ

α
2−β
A∩B(xi)

λµ
α

2−β
A∩B(xi) + (1− λ)µ

α
2−β
A∪B(xi)

)

+ ν
α

2−β
A∩B(xi) log

(
ν

α
2−β
A∩B(xi)

λν
α

2−β
A∩B(xi) + (1− λ)ν

α
2−β
A∪B(xi)

)
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+ π
α

2−β
A∩B(xi) log

(
π

α
2−β
A∩B(xi)

λπ
α

2−β
A∩B(xi) + (1− λ)π

α
2−β
A∪B(xi)

)]

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
B log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]
.

Then by adding the above equations, we get,

Dβ
α{λ}(A ∪B|A ∩B) +Dβ

α{λ}(A ∩B|A ∪B)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A (xi) log

π
α

2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]

+
α

n(2− β)

n∑
i=1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]
= Dβ

α{λ}(A|B) +Dβ
α{λ}(B|A)

= Dβ
α{λ}(A;B).

Thus the result holds. �
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Property 3.2. For any two IFSs A and B, we have

(1) Dβ
α{λ}(A;A ∪B) = Dβ

α{λ}(B;A ∩B),

(2) Dβ
α{λ}(A;A ∩B) = Dβ

α{λ}(B;A ∪B),

(3) Dβ
α{λ}(A;A ∪B) +Dβ

α{λ}(A;A ∩B) = Dβ
α{λ}(A;B),

(4) Dβ
α{λ}(B;A ∪B) +Dβ

α{λ}(B;A ∩B) = Dβ
α{λ}(A;B).

Proof. All can be proved similarly. So, we prove only the first one, i.e.,

Dβ
α{λ}(A|A ∪B) +Dβ

α{λ}(A ∪B|A)

= Dβ
α{λ}(B|A ∩B) +Dβ

α{λ}(A ∩B|B).
(3.1)

By the definition of the divergence, we have

Dβ
α{λ}(A|A ∪B)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
A∪B(xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
A∪B(xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
A∪B(xi)

)]

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
A (xi)

)]
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=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]

and

Dβ
α{λ}(A ∪B|A)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A∪B(xi) log

(
µ

α
2−β
A∪B(xi)

λµ
α

2−β
A∪B(xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
A∪B(xi) log

(
ν

α
2−β
A∪B(xi)

λν
α

2−β
A∪B(xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
A∪B(xi) log

(
π

α
2−β
A∪B(xi)

λπ
α

2−β
A∪B(xi) + (1− λ)π

α
2−β
A (xi)

)]

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
A (xi)

)]

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)
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+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]
.

Similarly,

Dβ
α{λ}(B|A ∩B)

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]
and

Dβ
α{λ}(A ∩B|B)

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]
.

Clearly, by using Eq. (3.1), we can say that both sides of the expression are same.
This proves the result. �

Property 3.3. If A and B be the two IFSs defined on universal set X, then

(1) Dβ
α{λ}(A;C) +Dβ

α{λ}(B;C)−Dβ
α{λ}(A ∪B;C) ≥ 0,

(2) Dβ
α{λ}(A;C) +Dβ

α{λ}(B;C)−Dβ
α{λ}(A ∩B;C) ≥ 0.

Proof. In this theorem, we prove only the first part because of having analogously
similar proofs.

Dβ
α{λ}(A;C)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
C (xi)

)]
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+
α

n(2− β)

n∑
i=1

[
µ

α
2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
A (xi)

)]
,

Dβ
α{λ}(B;C)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
C (xi)

)]

+
α

n(2− β)

n∑
i=1

[
µ

α
2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
C (xi) log

π
α

2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
B (xi)

)]

and

Dβ
α{λ}(A ∪B;C)

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A∪B(xi) log

(
µ

α
2−β
A∪B(xi)

λµ
α

2−β
A∪B(xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
A∪B(xi) log

(
ν

α
2−β
A∪B(xi)

λν
α

2−β
A∪B(xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
A∪B(xi) log

(
π

α
2−β
A∪B(xi)

λπ
α

2−β
A∪B(xi) + (1− λ)π

α
2−β
C (xi)

)]

+
α

n(2− β)

n∑
i=1

[
µ

α
2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
A∪B(xi)

)
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+ ν
α

2−β
C (xi) log

ν
α

2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
A∪B(xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
A∪B(xi)

)]

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
C (xi)

)

+ µ
α

2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
B (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
C (xi)

)

+ µ
α

2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
A (xi)

)]
.
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Then,

Dβ
α{λ}(A;C) +Dβ

α{λ}(B;C)−Dβ
α{λ}(A ∪B;C)

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
C (xi)

)

+ µ
α

2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
B (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
C (xi)

)

+ µ
α

2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
A (xi)

)]
.

Since, µ(xi), ν(xi), π(xi) ∈ [0, 1], ∀ xi ∈ X. This completes the proof. �

Property 3.4. For any two IFSs A and B, we have

Dβ
α{λ}(A ∩B;C) +Dβ

α{λ}(A ∪B;C) = Dβ
α{λ}(A;C) +Dβ

α{λ}(B;C).
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Proof.

Dβ
α{λ}(A ∩B|C)

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
C (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
C (xi)

)]
,

Dβ
α{λ}(C|A ∩B)

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
A (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
B (xi)

)]
,
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Dβ
α{λ}(A ∪B|C)

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
C (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
C (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
C (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
C (xi)

)]
and

Dβ
α{λ}(C|A ∪B)

=
α

n(2− β)

∑
x∈X1

[
µ

α
2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
B (xi)

)]

+
α

n(2− β)

∑
x∈X2

[
µ

α
2−β
C (xi) log

(
µ

α
2−β
C (xi)

λµ
α

2−β
C (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
C (xi) log

(
ν

α
2−β
C (xi)

λν
α

2−β
C (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
C (xi) log

(
π

α
2−β
C (xi)

λπ
α

2−β
C (xi) + (1− λ)π

α
2−β
A (xi)

)]
.

By adding all of the above equations, we get the required result and this completes
the proof. �

Property 3.5. If A and B be the two IFSs defined on universal set X, then

(1) Dβ
α{λ}(A;B) = Dβ

α{λ}(A
c;Bc),

(2) Dβ
α{λ}(A;Bc) = Dβ

α{λ}(A
c;B),
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(3) Dβ
α{λ}(A;B) +Dβ

α{λ}(A
c;B) = Dβ

α{λ}(A
c;Bc) +Dβ

α{λ}(A;Bc).

Proof. First and second parts are similar and third part can be proved by adding
first and second one. Then we prove only (1).

Dβ
α{λ}(A;B))

=
α

n(2− β)

n∑
i=1

[
µ

α
2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ ν
α

2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]

+
α

n(2− β)

n∑
i=1

[
µ

α
2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ ν
α

2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]
and

Dβ
α{λ}(A

c;Bc)

=
α

n(2− β)

n∑
i=1

[
ν

α
2−β
A (xi) log

(
ν

α
2−β
A (xi)

λν
α

2−β
A (xi) + (1− λ)ν

α
2−β
B (xi)

)

+ µ
α

2−β
A (xi) log

(
µ

α
2−β
A (xi)

λµ
α

2−β
A (xi) + (1− λ)µ

α
2−β
B (xi)

)

+ π
α

2−β
A (xi) log

(
π

α
2−β
A (xi)

λπ
α

2−β
A (xi) + (1− λ)π

α
2−β
B (xi)

)]

+
α

n(2− β)

n∑
i=1

[
ν

α
2−β
B (xi) log

(
ν

α
2−β
B (xi)

λν
α

2−β
B (xi) + (1− λ)ν

α
2−β
A (xi)

)

+ µ
α

2−β
B (xi) log

(
µ

α
2−β
B (xi)

λµ
α

2−β
B (xi) + (1− λ)µ

α
2−β
A (xi)

)

+ π
α

2−β
B (xi) log

(
π

α
2−β
B (xi)

λπ
α

2−β
B (xi) + (1− λ)π

α
2−β
A (xi)

)]
.

Then (1) holds. �
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4. Decision-making method based on proposed directed divergence
measure

In this section, we shall investigate the decision making problems based on the

proposed divergence measure Dβ
α{λ} in which the attribute values are evaluated by

the expert which give their preferences in terms of IFNs. Assume that a set of ‘m’
alternatives A = {A1, A2, . . . , Am} to be considered under the set of ‘n’ criteria
G = {G1, G2, . . . , Gn}. An expert have evaluated these ‘m’ alternative under each
criterion and give their rating values in the form of IFNs. Then we have the following
steps for computing the best alternative(s) based on the proposed measure.

Step 1: Construction of decision-making matrix : Suppose Dm×n(xij) = 〈µij , νij〉 be
the intuitionistic fuzzy decision matrix, where µij represents the degree that
the alternative Ai satisfies the criteria Gj and νij indicates the degree that
the alternative Ai doesn’t satisfy the criteria Gj given by the decision maker
such that µij ∈ [0, 1], νij ∈ [0, 1] such that µij + νij ≤ 1, i = 1, 2, . . . ,m; j =
1, 2, . . . , n. So, the intuitionistic fuzzy decision matrix is constructed as
follows:

Dm×n(xij) =


〈µ11, ν11〉 〈µ12, ν12〉 . . . 〈µ1n, ν1n〉
〈µ21, ν21〉 〈µ22, ν22〉 . . . 〈µ2n, ν2n〉

...
...

. . .
...

〈µm1, νm1〉 〈µm2, νm2〉 . . . 〈µmn, νmn〉



Step 2: Compute the ideal alternative: Ideal alternative is denoted as A∗ and given
as:

A∗ = {〈µ∗1, ν∗1 〉, 〈µ∗2, ν∗2 〉, . . . , 〈µ∗n, ν∗n〉}

where, µ∗j =
m

max
i=1

(µij) and ν∗j =
m

min
i=1

(νij)

Step 3: Evaluation of Proposed Symmetric Divergence Measure: Now we calculate

Dβ
α{λ}(Ai;A

∗), i = 1, 2, . . . ,m by the given formula:

Dβ
α{λ}(Ai;A

∗) =
α

n(2− β)

n∑
j=1

[
µ

α
2−β
ij (xij) log

(
µ

α
2−β
ij (xij)

λµ
α

2−β
ij (xij) + (1− λ)µ

α
2−β
j∗ (xij)

)

+ν
α

2−β
ij (xij) log

(
ν

α
2−β
ij (xij)

λν
α

2−β
ij (xij) + (1− λ)ν

α
2−β
j∗ (xij)

)

+π
α

2−β
ij (xij) log

(
π

α
2−β
ij (xij)

λπ
α

2−β
ij (xij) + (1− λ)π

α
2−β
j∗ (xij)

)]
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+
α

n(2− β)

n∑
j=1

[
µ

α
2−β
j∗ (xij) log

(
µ

α
2−β
j∗ (xij)

λµ
α

2−β
j∗ (xij) + (1− λ)µ

α
2−β
ij (xij)

)

+ν
α

2−β
j∗ (xij) log

(
ν

α
2−β
j∗ (xij)

λν
α

2−β
j∗ (xij) + (1− λ)ν

α
2−β
ij (xij)

)

+π
α

2−β
j∗ (xij) log

(
π

α
2−β
j∗ (xij)

λπ
α

2−β
j∗ (xij) + (1− λ)π

α
2−β
ij (xij)

)]

Step 4: Ranking the alternative: Rank all the alternative according to indexing as

obtained from k = arg min
1≤i≤m

{Dβ
α{λ}(Ai;A

∗)}.
Step 5: Sensitivity analysis: Do the sensitivity analysis on the parameter α, β and

λ according to the decision makers’ preferences.

5. Illustrative example

In this section, two illustrative examples, one from the field of decision-making and
other from the pattern recognition, have been taken for demonstrating the proposed
approach.

5.1. Example 1: Decision-making problem. Consider the field of investment,
where a person wants to invest some sort of money. As in these days, more and
more companies have attracted the customers by reducing price and giving some
other kinds of benefits, so it is difficult for the investor to choose the best market for
investment. In order to avoid the risk factor in the market and to make the decision
more clear, they constitute a committee to invest the money in five major compa-
nies, namely retail, food, computer, petrochemical and a car company respectively
denoted by A1, A2, A3, A4 and A5. An expert has been hire which gave their pref-
erences of each alternative under the set of four major analysis namely, the growth
(G1), the risk (G2), the social-political impact (G3) and the environmental impact
(G4). The rating value of each alternative Ai(i = 1, 2, . . . , 5) under each factor has
been assessed in terms of IFNs αij = 〈µij , νij〉5×4 and are summarized as below.

D =

G1 G2 G3 G4


A1 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.3, 0.6〉 〈0.2, 0.7〉
A2 〈0.7, 0.3〉 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.5〉
A3 〈0.6, 0.4〉 〈0.5, 0.4〉 〈0.5, 0.3〉 〈0.6, 0.3〉
A4 〈0.8, 0.1〉 〈0.6, 0.3〉 〈0.3, 0.4〉 〈0.2, 0.6〉
A5 〈0.6, 0.2〉 〈0.4, 0.3〉 〈0.7, 0.1〉 〈0.5, 0.3〉

By using these normalized data, the ideal value for all the criteria is given by

A∗ = {〈0.8, 0.1〉, 〈0.7, 0.2〉, 〈0.7, 0.1〉, 〈0.6, 0.3〉}.

Thus, based on it, the directed divergence measure from ideal alternative to each
alternative is computed by taking α = 1, β = 0.5, λ = 0.3 and their corresponding
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measures are summarized as below;

Dβ
α{λ}(A1;A∗) = 0.1939;Dβ

α{λ}(A2;A∗) = 0.1089;Dβ
α{λ}(A3;A∗) = 0.1385

Dβ
α{λ}(A4;A∗) = 0.1159;Dβ

α{λ}(A5;A∗) = 0.0586.

So, the ranking of these alternatives is of order A5 � A2 � A4 � A3 � A1 where
“�” means preferred to”. Hence, the best alternative is A5, i.e. a person has to be
invest car company.

The influence of the parameter α, β and λ on the decision making has been an-
alyzed by using the different values of it in step 3 of the proposed approach. Their
corresponding divergence values and their ranking order are summarized in Table 1.
From this table, it has observed that if we fix value of λ say λ = 0.3 and by varying
the value of α, β then the value of directed divergence measure corresponding to each
alternative is increasing. On the other hand, if we fix the value of α and β and by
varying the value of λ from 0.1 to 0.9 then the value of divergence measure of each
alternative is decreased. The complete analysis of the variations of α, β and λ on
the ranking of the alternatives Ai(i = 1, 2, . . . , 5) are observed and are summarized
in Table 1. From this analysis, it has been concluded that the ranking of the given
alternative is symmetric and found that the most desirable attribute is A1 and A5

is the least one for different values of λ’s corresponding to different operators. For
α = β = 1 the generalized directed divergence measure reduces to existing measures.
Clearly, the most preferable alternative among the five alternatives is A5 and the
most disfavored is A1. Here, ranking order differs due to change in α, β and λ and
this shows the importance of parameters in our divergence measure.

In order to compare the performance of the proposed measure with the exist-
ing divergence measure, analysis has been conducted with the existing divergence
measures [23, 24, 26] and their corresponding results are summarized in Table 2.

5.2. Example 2: Pattern recognition. Consider a three known IFSs pattern
C1, C2 and C3 in a given finite universe X = {x1, x2, x3} as

C1 = {(x1, 1.0, 0.0), (x2, 0.8, 0.0), (x3, 0.7, 0.1)},
C2 = {(x1, 0.8, 0.1), (x2, 1.0, 0.0), (x3, 0.9, 0.1)},
C3 = {(x1, 0.6, 0.2), (x2, 0.8, 0.0), (x3, 1.0, 0.0)}.

Consider an unknown IFS pattern P which will be recognized, where

P = {(x1, 0.5, 0.3), (x2, 0.6, 0.2), (x3, 0.8, 0.1)}.
The target of this problem is to classify the pattern P in one of the classes C1, C2

and C3. For it, the proposed divergence measure has been computed corresponding
to α = 1, β = 0.5 and λ = 0.3 from P to Ck(k = 1, 2, 3) and their corresponding
results are summarized as

Dβ
α{λ}(C1, P ) = 0.4762;Dβ

α{λ}(C2, P ) = 0.4097;Dβ
α{λ}(C3, P ) = 0.3071.

Thus, based on the recognition principle of the maximum degree of index, we observe
that the pattern P should be classified in C3.

On the other hand, if we apply [23] approach to the considered data, then their
corresponding results are D(C1;P ) = 0.5173; D(C2;P ) = 0.4371 and D(C3;P ) =
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Table 1. Effect of α, β and λ on each alternative: Example 1

(α, β) λ Dβ
α{λ}(A1;A∗) Dβ

α{λ}(A2;A∗) Dβ
α{λ}(A3;A∗) Dβ

α{λ}(A4;A∗) Dβ
α{λ}(A5;A∗) Ranking

0.1 0.0157 0.1085 0.1026 0.0093 0.0054 (54132)
0.3 0.0095 0.0571 0.0545 0.0056 0.0033 (54132)

(0.3,0.5) 0.5 0.0048 0.0326 0.0304 0.0029 0.0017 (54132)
0.7 0.0017 0.0165 0.0145 0.0010 0.0006 (54132)
0.9 0.0002 0.0047 0.0034 0.0001 0.0001 (54132)
0.1 0.0884 0.1549 0.1681 0.0525 0.0288 (54123)
0.3 0.0531 0.0828 0.0908 0.0316 0.0174 (54123)

(0.5, 0.7) 0.5 0.0272 0.0468 0.0508 0.0162 0.0089 (54123)
0.7 0.0099 0.0230 0.0244 0.0059 0.0032 (54123)
0.9 0.0011 0.0063 0.0064 0.0007 0.0004 (54123)
0.1 0.5789 0.2249 0.3132 0.3434 0.1630 (52341)
0.3 0.3397 0.1271 0.1787 0.2035 0.0974 (52341)

(0.7,1.2) 0.5 0.1761 0.0684 0.0952 0.1049 0.0500 (52341)
0.7 0.0673 0.0295 0.0399 0.0393 0.0184 (52431)
0.9 0.0084 0.0061 0.0074 0.0047 0.0021 (52431)
0.1 0.7487 0.2421 0.3559 0.4440 0.2044 (52341)
0.3 0.4363 0.1381 0.2041 0.2618 0.1219 (52341)

(1,1) 0.5 0.2271 0.0737 0.1081 0.1353 0.0626 (52341)
0.7 0.0880 0.0310 0.0444 0.0513 0.0232 (52341)
0.9 0.0114 0.0059 0.0077 0.0063 0.0027 (52431)
0.1 2.0746 0.3610 0.6724 1.2165 0.5063 (25341)
0.3 1.1572 0.2090 0.3845 0.6866 0.2956 (25341)

(1, 1.5) 0.5 0.6195 0.1094 0.2028 0.3642 0.1537 (25341)
0.7 0.2635 0.0432 0.0822 0.1505 0.0594 (25341)
0.9 0.0440 0.0061 0.0124 0.0227 0.0077 (25341)

Table 2. Comparison with the existing methodologies for Example 1

Divergence measure values Ranking
D(A1, A

∗) D(A2, A
∗) D(A3, A

∗) D(A4, A
∗) D(A5, A

∗)
Verma and Sharma [23] 0.4363 0.1381 0.2041 0.2618 0.1219 A5 � A2 � A3 � A4 � A1

Vlachos and Sergiadis [24] 0.2209 0.0426 0.0831 0.1256 0.0315 A5 � A2 � A3 � A4 � A1

Wei and Ye [26] 0.2271 0.0737 0.1081 0.1353 0.0626 A5 � A2 � A3 � A4 � A1

0.2689. Again, if we apply [26] approach, then the measure corresponding to each
pattern is observed as D(C1, P ) = 0.2908, D(C2, P ) = 0.2425 and D(C3, P ) =
0.1522 while if we utilize [24] approach than their corresponding values areD(C1, P ) =
0.2160, D(C2, P ) = 0.1343 and D(C3, P ) = 0.1189. Finally, if we utilize [20] ap-
proach to compute the corresponding divergence measure, then their values are
D(C1, P ) = 0.2372, D(C2, P ) = 0.2160 and D(C3, P ) = 0.1001. Therefore, it has
been concluded that pattern P belongs to the pattern C3 to and the results is coin-
cides with the existing divergence measures result.

Moreover, it is possible to analyze how the different parameter values of α, β and
λ plays a role in the aggregation results, in this case, we consider different values of
these parameters which are provided by the decision makers. The collective values of
all the classifiers are summarized in Table 3. From this analysis, it has been observed
that the best classifier for pattern P should be C3 under all the cases. Also, it has
been analyzed that the depending on the particular values of the parameter’s value
used, the orderings of the classifier is different, thus leading to different decisions.
However, it seems that C3 is the best choice while C2 or C1 are the worst choice in
some cases.
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Table 3. Effect of α, β and λ on the divergence measure: Example 2

(α, β) λ Dβ
α{λ}(C1;P ) Dβ

α{λ}(C2;P ) Dβ
α{λ}(C3;P ) Ranking

0.1 0.3129 0.3764 0.2681 C3 � C1 � C2

0.3 0.1728 0.2017 0.1474 C3 � C1 � C2

(0.3, 0.5) 0.5 0.0929 0.1112 0.0796 C3 � C1 � C2

0.7 0.0400 0.0515 0.0347 C3 � C1 � C2

0.9 0.0066 0.0106 0.0060 C3 � C1 � C2

0.1 0.6924 0.6514 0.5211 C3 � C2 � C1

0.3 0.3649 0.3428 0.2758 C3 � C2 � C1

(0.5, 0.7) 0.5 0.2054 0.1950 0.1548 C3 � C2 � C1

0.7 0.1003 0.0976 0.0750 C3 � C2 � C1

0.9 0.0246 0.0267 0.0182 C3 � C1 � C2

0.1 0.9465 0.7910 0.5384 C3 � C2 � C1

0.3 0.5053 0.4277 0.2851 C3 � C2 � C1

(0.7, 1.2) 0.5 0.2857 0.2392 0.1621 C3 � C2 � C1

0.7 0.1408 0.1147 0.0810 C3 � C2 � C1

0.9 0.0387 0.0301 0.0226 C3 � C2 � C1

0.1 0.9624 0.8011 0.5047 C3 � C2 � C1

0.3 0.5173 0.4371 0.2689 C3 � C2 � C1

(1, 1) 0.5 0.2908 0.2425 0.1522 C3 � C2 � C1

0.7 0.1412 0.1139 0.0753 C3 � C2 � C1

0.9 0.0379 0.0286 0.0208 C3 � C2 � C1

0.1 1.3290 1.1531 0.4438 C3 � C2 � C1

0.3 0.7519 0.6633 0.2562 C3 � C2 � C1

(1, 1.5) 0.5 0.4021 0.3500 0.1356 C3 � C2 � C1

0.7 0.1702 0.1421 0.0555 C3 � C2 � C1

0.9 0.0316 0.0232 0.0101 C3 � C2 � C1

Furthermore, in order to demonstrate the reasonability of the proposed divergence
measure, we use different cases of the similarity as stated by the various researchers
[3, 4, 6, 7, 16, 17, 19, 32] for IFSs A and B listed as below.

(i) SC(A,B) = 1−
n∑
i=1
|µA(xi)−νA(xi)−µB(xi)+νB(xi)|

2n .

(ii) SH(A,B) = 1−
n∑
i=1

(|µA(xi)−µB(xi)|)+(|νA(xi)−νB(xi)|)

2n .

(iii) SL(A,B) = 1−
n∑
i=1
|SA(xi)−SB(xi)|

4n −
n∑
i=1
|µA(xi)−µB(xi)|+|νA(xi)−νB(xi)|

4n .

(iv) SO(A,B) = 1−

√
n∑
i=1

(µA(xi)−µB(xi))2+(νA(xi)−νB(xi))2

2n .

(v) SDC(A,B) = 1−
p

√
n∑
i=1
|µA(xi)−νA(xi)+µB(xi)−νB(xi)

2 |p

n .

(vi) SHB(A,B) = SDC(µA(xi),µB(xi))+SDC(1−νA(xi),1−νB(xi))
2 .
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(vii) Spe (A,B) = 1−
p

√
n∑
i=1

(φµ(xi)+φν(xi))p

n ,

where φµ(A,B) = |µA(xi)−µB(xi)|
2 ; φν(xi) = |νB(xi)−νA(xi)|

2 .

(viii) Sps (A,B) = 1−
p

√
n∑
i=1

(φs1(xi)+φs2(xi))p

n ,

where φs1(xi) = |mA1(xi)−mB1(xi)|
2 , φs2(xi) = |mA2(xi)−mB2(xi)|

2 ,

mA1(xi) = µA(xi)+mA(xi)
2 , mB1(xi) = µB(xi)+mB(xi)

2 ,

mA2(xi) = mA(xi)+1−νA(xi)
2 , mB2(xi) = mB(xi)+1−νB(xi)

2 ,

mA(xi) = µA(xi)+1−νA(xi)
2 and mB(xi) = µB(xi)+1−νB(xi)

2 .

(ix) S1
HY (A,B) = 1− dH(A,B),

where dH(A,B) = 1
n

n∑
i=1

max(| µA(xi)− µB(xi) |, | νA(xi)− νB(xi) |).

(x) S2
HY (A,B) = (e−dH(A,B) − e−1)/(1− e−1), for the same dH(A,B)

(xi) S3
HY (A,B) = (1− dH(A,B))/(1 + dH(A,B)), for the same dH(A,B).

The complete analysis has been given in Table 4 and hence concluded that the
pattern P should be classifier with C3 which is in accordance with the proposed
technique ordering. Thus, we can say that the proposed divergence measure can
suitably solve the problem in real-life situation and can be found as an alternative
place than of the existing operators or measures.

Table 4. Similarity measure comparison for example Pattern recognition

(C1, P ) (C2, P ) (C3, P )
SC [3, 4] 0.7500 0.7667 0.9000
SH [16] 0.7500 0.7667 0.9000
SL [7] 0.7500 0.7667 0.9000
SO [7] 0.7142 0.7551 0.8845
SDC [6] 0.7500 0.7667 0.9000
SHB [19] 0.7500 0.7667 0.9000
Spe [32] 0.7500 0.7667 0.9000
Sps [32] 0.7500 0.7667 0.9000
S1
HY [17] 0.7000 0.7333 0.8667
S2
HY [17] 0.5900 0.6297 0.8025
S3
HY [17] 0.5385 0.5789 0.7647

6. Conclusion

In this paper, a novel generalized directed divergence measure of order α and
degree β has been presented under the IFS environment by considering the degrees
of membership, non-membership and hesitation between the sets. Some desirable
properties of the proposed measure have been discussed. It has been concluded from
the proposed measure that the various existing divergence measures [2, 20, 23, 26] can
deduce from it and hence the proposed measure is a more generalized one than others.
Based on the proposed measure, a decision-making method has been proposed for
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finding the best alternative under the decision set. To demonstrate the proposed
approach, two illustrative examples have been taken, one from finding the best
alternative for investing a money and other one is from the pattern recognition field.
Furthermore, in order to demonstrate the reasonability of the proposed measure, we
use different cases of the similarity measures as stated by the various researchers
and compared their results with the proposed measure. As the parameters of the
measures provides the flexibility to the decision makers so a sensitivity analysis has
also been addressed for showing the influence of these parameters on the performance
of the decision making. Thus, we conclude that the proposed divergence measure can
suitably solve the problem in real-life situation and can be found as an alternative
place than of the existing operators or measures. In our further research will focus
on adopting this approach to some more complicated applications in the field of
medical diagnosis, fuzzy cluster analysis, uncertain programming and mathematical
programming .
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