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Abstract. In this paper, we study the concept of fuzzifying soft set
called fuzzy parameterized fuzzy soft sets (FPFS-sets) and some results
which holds in crisp set theory but does not hold in FPFS-set theory. We
study FPFS-topology on FPFS-sets. We introduce closure, interior, fron-
tier and exterior in the context of FPFS-topological spaces. We also discuss
some properties of quasi-coincidence and Q-neighborhood for FPFS-sets.
Furthermore, we present an application of FPFS-topology to find the aggre-
gate of every FPFS-open set in FPFS-topology by using some algorithms
for decision-making.
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1. Introduction

Fuzzy set theory was introduced by Zadeh [43] as a generalization of crisp or
classical set theory. Molodtsov [26] proposed the idea of soft set theory. Fuzzy soft
set theory has many applications in various fields such as social sciences, physics, en-
gineering, economics, computer science and medical sciences. Akram et al. [1, 2, 3, 4]
introduced various concepts including Bipolar Fuzzy Soft Lie algebras, Fuzzy soft
K-algebras, Fuzzy soft Lie algebras and Fuzzy soft graphs. Ali et al. [5] suggested
some operations on soft sets which became very useful in the field of soft set theory.
Borah and Hazarika [6] studied some properties of mixed FS-topology and appli-
cations in Chemistry. Cagman et al. [7, 8, 9] proposed soft topology, FPFS-set
theory and presented some applications of decision-making problems. Chang [10]
studied the notion of fuzzy topological spaces. Chen et al. [11] established pa-
rameterized reduction of soft sets. Samanta and Das [12, 13, 14] introduced some
basic properties of soft real sets and soft real numbers. They also gave the idea of
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soft elements with soft points in soft sets and discussed soft metric spaces. Feng
et al. studied soft sets and soft rough sets and they established some applications
based on decision-making (See [15, 16, 17, 18]). In [19, 20] Hur et al. studied Fuzzy
equivalence relations, fuzzy partitions, fuzzy functions and fuzzy partially ordered
sets. Jun et al. [21] introduced various studied fuzzy subgroups based on fuzzy
points. Kharal and Ahmad [22] defined mappings on soft classes, the images of soft
sets and the inverse soft images. Maji et al. [23, 24, 33] used soft sets theory in
decision-making problems and defined some operations on soft sets. Samanta and
Majumdar [25] introduced soft groups and discussed the soft images and inverse soft
images. Peyghan and Varol [27, 41] gave some intrusting results on FS-topological
spaces. Pei and Miao [28] discussed the connection of soft sets with information
systems. Riaz et al. [29, 30, 31] discussed various concepts including soft σ-algebra,
measurable soft set, measurable soft mappings and soft metric spaces. In [32] Rong
proposed the countability of soft topology, discussed soft separable and soft Lindölof
spaces and prove some important results using these terms. In [34, 35] the idea
of soft topology, fuzzy soft point and FS quasi-coincident with Q-neighborhood has
studied. Aslihan et al. [36, 37] introduced some operations on soft set. They studied
various concepts including soft intersection semigroups, ideals and bi-Ideals. Shabir
and Naz [38] introduced soft topology and soft topological spaces. In [39] some ap-
plications of fuzzy soft relation in decision making problems was presented. In [40]
Subhashinin and Sekar used soft pre-open set to define the soft pre-topology, soft
pre-sub-maximal and also investigated various interesting properties. Yildirim et al.
[42] presented the notion of soft ideal for a soft topology and defined soft Ĩ-Baire
spaces for a soft ideal topological space as well. Zorlutuna and Çakir [44] proposed
soft continuity, soft openness, soft closeness of soft mappings in soft set theory. Zor-
lutuna and Atmaca [45] introduced the notion of FPFS topological space. Soft set
theory and fuzzy soft set theory has studied by many explorers in the last decade
(See [7, 8, 12, 13, 15, 23, 26, 38, 41, 45]).

2. Preliminaries

Definition 2.1 ([7, 41]). A fuzzy soft set (FS-set) is a mapping λ : R→ P̃ (X) such
that λA(ζ) = φ, if ζ 6∈ A, where X is the set of universe and A ⊆ R, R is the set of
parameters or attributes.

It is denoted as (λ,A) given by

(λ,A) = {(ζ, λA(ζ)) : ζ ∈ R, λA(ζ) ∈ P̃ (X)}.
The value λA(ζ) is a fuzzy set known as ζ-approximate element of FS-set (λ,A)
∀ ζ ∈ R.

The degree of membership of elements is taken in the interval [0, 1].

Definition 2.2 ([7]). Let X be the universal set and let R be the set of parameters

or attributes. Then the pair (̃X,R) represents the family of all FS-sets on X with
parameters from R and is known as FS-class.

Example 2.3. Let X={islamabad, lahore, murree, naraan, multan, karachi,
rahim yar khan } be a set of some cities of pakistan and let R = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}
be the set of attributes, where
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ζ1 is the parameter which stands for beautiful,
ζ2 is the parameter which stands for green surroundings,
ζ3 is the parameter which stands for having historical places,
ζ4 is the parameter which stands for nice weather,
ζ5 is the parameter which stands for clean,
ζ6 is the parameter which stands for low crime rate.

Let A = {ζ1, ζ2, ζ3, ζ6} ⊆ R, then the FS-set (λ,A) is a mapping λ : R → P̃ (X),

where P̃ (X) is the collection of all FS-sets of X written as,
(λ,A) = {(ζ1, {(islamabad, 0.7), (lahore, 0.5), (murree, 0.8), (naraan, 0.9),

(multan, 0.6), (karachi, 0.4), (rahim yar khan, 0.4)}),
(ζ2, {(islamabad, 0.6), (lahore, 0.4), (murree, 0.9), (naraan, 1),

(multan, 0.4), (karachi, 0.2), (rahim yar khan, 0.1),
(ζ3, {(islamabad, 0.4), (lahore, 0.7), (murree, 0.4), (naraan, 0.5),

(multan, 0.8), (karachi, 0.7), (rahim yar khan, 0.5),
(ζ6, {(islamabad, 0.7), (lahore, 0.6), (murree, 0.6), (naraan, 0.7),

(multan, 0.4), (karachi, 0.1), (rahim yar khan, 0.8)}.

We can also represent the FS-set in tabular form as,

X ζ1 ζ2 ζ3 ζ6
islamabad 0.7 0.6 0.4 0.7

lahore 0.5 0.4 0.7 0.6
murree 0.8 0.9 0.4 0.6
naraan 0.9 1 0.5 0.7
multan 0.6 0.4 0.3 0.4
karachi 0.4 0.2 0.7 0.1

rahim yar khan 0.4 0.1 0.5 0.8

Definition 2.4 ([7, 44]). A fuzzy parameterized fuzzy soft set (FPFS-set) is a

mapping γ : R → P̃ (X) such that γA(ζ) = φ, if µA(ζ) = 0 ,where X is the initial
universe and A ⊆ R, R is the set of parameters or attributes. It is denoted as FA,
where

FA = {(µA(ζ)/ζ, γA(ζ)) : ζ ∈ R, γA(ζ) ∈ P̃ (X);µA(ζ), γA(ξ) ∈ [0, 1], ξ ∈ X}.
The value γA(ζ) is a fuzzy set known as ζ-element of FPFS-set FA ∀ ζ ∈ R.

Example 2.5. Let a factory wants to fill a place for a highly qualified engineer.There
are eight applicants who apply for this job. The set of candidates represented by

X = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8}.
The hiring committee consider the set of attributes, R = {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6}, where
ζ1 = hard working, ζ2 = five years experienced ,
ζ3 = computer knowledge,
ζ4 = good speaking,
ζ5 = punctual and regular,
ζ6 = friendly.

Each applicant is selected according to the goals and constraint with the help of
subset A = {0.5/ζ1.0.8/ζ2, 0.6/ζ3, 0.3/ζ5}.
At last, the panel form the given FPFS-set
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FA = {(0.5/ζ1, {0.1/σ3, 0.3/σ5, 0.6/σ7}), (0.8/ζ2, {0.7/σ1, 0.5/σ4, 0.3/σ8}),
(0.6/ζ3, {0.4/σ3, 0.2/σ5, 1/σ7}), (0.3/ζ5, {0.4/σ1, 1/σ4, 0.2/σ6})}.
In tabular form, the FPFS-set can be represented as,

X 0.5/ζ1 0.8/ζ2 0.6/ζ3 0/ζ4 0.3/ζ5 0/ζ6
σ1 0 0.7 0 0 0.4 0
σ2 0 0 0 0 0 0
σ3 0.1 0 0.4 0 0 0
σ4 0 0.5 0 0 1 0
σ5 0.3 0 0.2 0 0 0
σ6 0 0 0 0 0.2 0
σ7 0.6 0 1 0 0 0
σ8 0 0.3 0 0 0 0

Definition 2.6 ([7, 44]). Let FA be a FPFS-set over X. If λA(ζ) = φ ∀ ζ ∈ R, then
FA is called an A-empty FPFS-set. It is represented as FφA

.
If A = φ, then A-empty FPFS-set is called empty FPFS-set denoted as Fφ.

Definition 2.7 ([7, 44]). Let FA be a FPFS-set over X. If γA(ζ) = X and µA(ζ) = 1
∀ ζ ∈ R, then FA is known as A-universal FPFS-set. It is represented as FÃ.

If A = R, then A-universal FPFS-set is said to be universal or absolute FPFS-set
written as FR̃.

Example 2.8. Molodtsov’s soft set considered as a special case of FPFS-set, this
means we can write every soft set as FPFS-set.

Let (λ,A) be a soft set given as,

(λ,A) = {(ζ1, {σ1, σ2}), (ζ2, {σ2, σ3})},
where X = {σ1, σ2, σ3} and A ={ζ1, ζ2} ⊆ R = {ζ1, ζ2, ζ3}.
Now we write the soft set (λ,A) in the form of FPFS-set as,

(FA) = {(1/ζ1, {(σ1, 1), (σ2, 1), (σ3, 0)}), (1/ζ2, {(σ1, 0), (σ2, 1), (σ3, 1)})}.
In tabular form,

X l/ζ1 1/ζ2
σ1 1 0
σ2 1 1
σ3 0 1

Definition 2.9 ([44]). Let FA and FB be two FPFS-sets. Then FA is called FPFS-

subset of FB , denoted by FA⊆̃FB , if
(i) µA(ζ) ≤ µB(ζ),
(ii) γA(ζ) ⊆ γB(ζ) ∀ ζ ∈ R.

Definition 2.10 ([7, 44]). Let FA and FB be two FPFS-sets. The union of two
FPFS-sets FA and FB , written as FA∪̃FB , is defined by

µA∪̃B(ζ) = max{µA(ζ), µB(ζ)}, γA∪̃B(ζ) = {γA(ζ) ∪ γB(ζ)}∀ ζ ∈ R.

Definition 2.11 ([7, 44]). Let FA and FB be two FPFS-sets. The intersection of
two FPFS-sets FA and FB , written as FA∩̃FB is defined by

µA∩̃B(ζ) = min{µA(ζ), µB(ζ)}, γA∩̃B(ζ) = {γA(ζ) ∩ γB(ζ)}∀ ζ ∈ R.
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3. Fuzzy parameterized fuzzy soft topology

Definition 3.1 ([44]). Let FR̃ be a absolute FPFS-set and FPFS(FR̃) is the family
of all FPFS-subsets of FR̃. Let τ̃ be a subfamily of FPFS(FR̃) and A,B,C ⊆ R.
Then τ̃ is known as FPFS-topology on FR̃, if the given conditions are satisfied:

(i) Fφ, FR̃ ∈̃τ̃ ,

(ii) FA, FB∈̃τ̃ then FA∩̃FB ∈̃τ̃ ,
(iii) if (FC)λ∈̃τ̃ , ∀ λ∈J , then ∪̃λ∈J(FC)λ ∈̃τ̃ .
Members of τ̃ are known as FPFS-open sets and FPFS-complement of FPFS-open

sets are called FPFS-closed sets.

Example 3.2. Let X = {σ1, σ2, σ3} be the set of universe and let R = {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.3/ζ1, 0.5/ζ2, 0.7/ζ4} ⊆ R, B = {0.2/ζ1, 0.6/ζ4} ⊆
R with FPFS-sets,

FA={(0.3/ζ1, {0.1/σ1, 0.3/σ2, 0.6/σ3}), (0.5/ζ2, {0.7/σ1, 0.3/σ2, 0.5/σ3}),
(0.7/ζ4, {0.4/σ1, 1/σ2, 0.2/σ3})}

and
FB = {(0.2/ζ1, {0.1/σ1, 0.2/σ2, 0.2/σ3}), (0.6/ζ4, {0.3/σ1, 0.8/σ2, 0.2/σ3})},

then τ̃ = {Fφ, FR̃, FA, FB} is a FPFS-topology on X. In fact, FB ⊆ FA. For
(i)Fφ, FR̃ ∈ τ̃ .

(ii)Fφ∩̃FA = Fφ: Fφ∩̃FB = Fφ, Fφ∩̃FR̃ = Fφ, FR̃∩̃FA = FA, FR̃∩̃FB = FB ,

FB∩̃FA = FB .
(iii)Fφ∪̃FA = FA: Fφ∪̃FB = FB , Fφ∪̃FR̃ = FR̃, FR̃∪̃FA = FR̃, FR̃∪̃FB = FR̃,

FB∪̃FA = FA, Fφ∪̃FR̃∪̃FA∪̃FB = FR̃.
This implies that τ̃ = {Fφ, FR̃, FA, FB} is a FPFS-topology on X.

Definition 3.3 ([44]). Let τ̃1 and τ̃2 be two FPFS-topologies on X. If τ̃1⊆̃τ̃2 then τ̃1
is called FPFS-courser or FPFS-weaker and τ̃2 is called FPFS-finer or FPFS-stronger
than τ̃1.

Example 3.4. Let X = {σ1, σ2, σ3} be the set of universe and let R = {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.3/ζ1, 0.5/ζ2, 0.7/ζ4} ⊆ R, B = {0.2/ζ1, 0.6/ζ4} ⊆
R with the FPFS-sets,

FA={(0.3/ζ1, {0.1/σ1, 0.3/σ2, 0.6/σ3}), (0.5/ζ2, {0.7/σ1, 0.3/σ2, 0.5/σ3}),
(0.7/ζ4, {0.4/σ1, 1/σ2, 0.2/σ3})}

and
FB = {(0.2/ζ1, {0.1/σ1, 0.2/σ2, 0.2/σ3}), (0.6/ζ4, {0.3/σ1, 0.8/σ2, 0.2/σ3})},

then τ̃1 = {Fφ, FR̃, FA, } and τ̃2 = {Fφ, FR̃, FA, FB} are two FPFS-topologies it is

clear that τ̃1⊆̃τ̃2. Thus τ̃1 is called FPFS-courser or FPFS-weaker and τ̃2 is called
FPFS-finer or FPFS-stronger than τ̃1.

Definition 3.5 ([44]). The families τ̃indiscrete = {Fφ, FR̃} and τ̃discrete = FPFS(X,R)
are FPFS-topology on X.

Example 3.6. Let X = {σ1, σ2, σ3} be the set of universe and let R = {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.3/ζ1, 0.4/ζ2, 0.1/ζ3} ⊆ R, then τ̃ = {Fφ, FR̃} is
the indiscrete FPFS-topology and P (FR̃) (power set of FR̃) is the discrete FPFS-
topology on X.
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Definition 3.7. Let τ̃1 be a FPFS-topology on (X,R) and Y ⊆ X and let τ̃2 be a
FPFS-topology on (Y,E) whose FPFS-open sets can be defined as

FB = FA∩̃FẼ ,
where FA is the FPFS-open sets of τ̃1 and FB is the FPFS-open sets of τ̃2, FẼ is
FPFS-absolute set on (Y,E), and R,E are the set of attributes for X,Y , respectively.
Then τ̃2 is known as the FPFS-subspace of τ̃1.

Example 3.8. Let X = {σ1, σ2, σ3} be the set of universe and let R = {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.7/ζ1, 0.8/ζ3, 0.6/ζ4} ⊆ R, B = {0.5/ζ1, 0.3/ζ4} ⊆
R with the FPFS-sets,

FA={(0.7/ζ1, {0.5/σ1, 0.6/σ2, 0.4/σ3}), (0.8/ζ3, {0.2/σ1, 0.3/σ2, 0.9/σ3}),
(0.6/ζ4, {0.7/σ1, 0.3/σ2, 0.4/σ3})}

and
FB = {(0.5/ζ1, {0.4/σ1, 0.4/σ2, 0.3/σ3}), (0.3/ζ4, {0.3/σ1, 0.2/σ2, 0.1/σ3})},

then τ̃1 = {Fφ, FR̃, FA, FB} is a FPFS-topology on X.
If Y = {σ1, σ2} ⊆ X and E = {ζ1, ζ2, ζ3, ζ4}, then FPFS-absolute set on Y is,
FẼ={(1/ζ1, {1/σ1, 1/σ2}), (1/ζ2, {1/σ1, 1/σ2}),

(1/ζ3, {1/σ1, 1/σ2}), (1/ζ4, {1/σ1, 1/σ2})}.
Where FPFS-open sets for τ̃2 can be calculated as,

FẼ∩̃Fφ = Fφ, FẼ∩̃FR̃ = FẼ ,

FC = FẼ∩̃FA
={(0.7/ζ1, {0.5/σ1, 0.6/σ2}), (0.8/ζ3, {0.2/σ1, 0.3/σ2}),

(0.6/ζ4, {0.7/σ1, 0.3/σ2})}
and

FD = FẼ∩̃FB = {(0.5/ζ1, {0.4/σ1, 0.4/σ2}), (0.3/ζ4, {0.3/σ1, 0.2/σ2})}.
Thus τ̃2 = {Fφ, FẼ , FC , FD} is FPFS-topology on Y . So τ̃2 is an FPFS-subspace of
τ̃1.

Remark 3.9. (1) Every FPFS-subspace of a discrete FPFS-topological space is
always discrete. Similarly, every subspace of indiscrete FPFS-topological space is
indiscrete.

(2) A subspace Z of a subspace Y of a FPFS-topological space X is a FPFS-
subspace of X.

Definition 3.10 ([44]). Let (X,R) be a FPFS-topological space and FA⊆̃(X,R)
then FPFS-closure of FA is written as FA which is the FPFS-intersection of all
FPFS-closed supersets of FA.

Clearly FA is the FPFS-smallest closed superset of FA.

Example 3.11. LetX = {σ1, σ2, σ3} be the set of universe and letR= {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.6/ζ1, 0.4/ζ2, 0.3/ζ3} ⊆ R, B = {0.2/ζ2, 0.1/ζ3} ⊆
R with the FPFS-sets,

FA={(0.6/ζ1, {0.6/σ1, 0.3/σ2, 0.5/σ3}), (0.4/ζ2, {0.1/σ1, 0.2/σ2, 0.3/σ3}),
(0.3/ζ3, {0.6/σ1, 0.7/σ2, 0.3/σ3})}

and
FB = {(0.2/ζ2, {0.1/σ1, 0.2/σ2, 0.2/σ3}), (0.1/ζ3, {0.5/σ1, 0.4/σ2, 0.1/σ3})},

then τ̃ = {Fφ, FR̃, FA, FB} is a FPFS-topology on X. Thus, the closed sets can be
calculated as by taking the compliments of FPFS-open sets in τ̃ , i.e.,
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(Fφ)c = FR̃, (FR̃)c = Fφ,
(FA)c={(0.4/ζ1, {0.4/σ1, 0.7/σ2, 0.5/σ3}), (0.6/ζ2, {0.9/σ1, 0.8/σ2, 0.7/σ3}),

(0.7/ζ3, {0.4/σ1, 0.3/σ2, 0.7/σ3})}
and

(FB)c = {(0.8/ζ2, {0.9/σ1, 0.8/σ2, 0.8/σ3}), (0.9/ζ3, {0.5/σ1, 0.6/σ2, 0.9/σ3})}.
If C = {0.2/ζ1, 0.4/ζ2} ⊆ R, then a FPFS-set on X is,
FC = {(0.2/ζ1, {0.3/σ1, 0.5/σ2, 0.4/σ3}), (0.4/ζ2, {0.7/σ1, 0.6/σ2, 0.4/σ3})}.

Which implies that FPFS-closed supersets of FC are (FA)c and FR̃ only. Thus

FC = (FA)c∩̃FR̃ = (FA)c.

Definition 3.12 ([44]). Let (X,R) be a FPFS-topological space and FA⊆̃(X,R).
then the interior of FA is denoted as F oA which is the FPFS-union of all FPFS-open
subsets of FA.

It is clear that F oA is the FPFS-largest open subset of FA.

Example 3.13. LetX = {σ1, σ2, σ3} be the set of universe and letR= {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.6/ζ1, 0.4/ζ2, 0.3/ζ3} ⊆ R, B = {0.2/ζ2, 0.1/ζ3} ⊆
R with the FPFS-sets,

FA={(0.6/ζ1, {0.6/σ1, 0.3/σ2, 0.5/σ3}), (0.4/ζ2, {0.1/σ1, 0.2/σ2, 0.3/σ3}),
(0.3/ζ3, {0.6/σ1, 0.7/σ2, 0.3/σ3})}

and
FB = {(0.2/ζ2, {0.1/σ1, 0.2/σ2, 0.2/σ3}), (0.1/ζ3, {0.5/σ1, 0.4/σ2, 0.1/σ3})},

then τ̃ = {Fφ, FR̃, FA, FB} is a FPFS-topology on X.
If D = {0.4/ζ2, 0.6/ζ3} ⊆ R, then FPFS-set on X is,
FD = {(0.4/ζ2, {0.5/σ1, 0.3/σ2, 0.4/σ3}), (0.6/ζ3, {0.6/σ1, 0.4/σ2, 0.9/σ3})}.

This implies that FPFS-open sets contained in FD are FB and Fφ. Thus F oD =
FB∪̃Fφ = FB .

Definition 3.14 ([44]). A FPFS-set FA is said to be a FPFS-point, denoted by

ζ(FA), if A ⊆ R is fuzzy singleton, (µ(ζ)/ζ) ∈ A and F (µ(ζ)/ζ) = γζFA
(σ), where

γζFA
(σ) 6= φ̃ and F (µ(ζ́)/ζ́) = φ̃ ∀ (µ(ζ́)/ζ́) ∈ R− {(µ(ζ)/ζ)}.

Definition 3.15 ([44]). A FPFS-point ζ(FA) belongs to a FPFS-set FB , if µFA
(ζ) ≤

µFB
(ζ),∀ ζ ∈ R and γζFA

(σ) ≤ γζFB
(σ),∀ σ ∈ X. It is denoted as FA∈̃FB .

Example 3.16. LetX = {σ1, σ2, σ3} be the set of universe and letR= {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.3/ζ1, 0.7/ζ2, 0.9/ζ4} ⊆ R, B = {0.1/ζ1} ⊆ R with
the FPFS-sets,

FA={(0.3/ζ1, {0.1/σ1, 0.5/σ2, 0.3/σ3}), (0.7/ζ2, {0.1/σ1, 0.2/σ2, 0.5/σ3}),
(0.9/ζ4, {0.4/σ1, 0.3/σ2, 0.6/σ3})}

and
FB={(0.1/ζ1, {0.1/σ1, 0.3/σ2, 0.2/σ3}), (0/ζ2, {0/σ1, 0/σ2, 0/σ3}),

(0/ζ3, {0/σ1, 0/σ2, 0/σ3}), (0/ζ4, {0/σ1, 0/σ2, 0/σ3})}
then FB is called FPFS-point.

Clearly µFB
(ζ) ≤ µFA

(ζ),∀ζ ∈ R and γζFB
(σ) ≤ γζFA

(σ),∀ σ ∈ X. Thus, FB∈̃FA.

Remark 3.17. Every non-empty FPFS-set FA can be written as the FPFS-union
of all the FPFS-points which are in FA.
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Definition 3.18 ([44]). Let ζ(FA1) and FA2 ∈ FPFS(X,R). Then ζ(FA1) is called
FPFS quasi-coincident with FA2 , written as ζ(FA1)qFA2 , if

µFA1
(ζ) + µFA2

(ζ) > 1, ζ ∈ R and γζFA1
(σ) + γζFA2

(σ) > 1, for some σ ∈ X.

If ζ(FA1
) is not FPFS quasi-coincident with FA2

, then we write ζ(FA1
)qFA2

.

Example 3.19. LetX = {σ1, σ2, σ3} be the set of universe and letR= {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A1 = {0.6/ζ1} ⊆ R, A2 = {0.7/ζ1, 0.8/ζ4} ⊆ R with the
FPFS-point and FPFS-set respectively,

ζ(FA1
) = {(0.6/ζ1, {0.6/σ1, 0.7/σ2, 0.8/σ3})}

and
FA2 = {(0.7/ζ1, {0.6/σ1, 0.5/σ2, 0.8/σ3}), (0.8/ζ4, {0.7/σ1, 0.8/σ2, 0.9/σ3})}

then it is clear that ζ(FA1) is quasi-coincident with FA2 .

As µFA1
(ζ1) + µFA2

(ζ1) > 1, ζ1 ∈ R and γζ1FA1
(σ) + γζ1FA2

(σ) > 1, σ ∈ X.

Definition 3.20 ([44]). Let FA1 and FA2 ∈ FPFS(X,R). Then FA1 is called FPFS
quasi-coincident with FA2 , written as FA1qFA2 , if

µFA1
(ζ) + µFA2

(ζ) > 1; ζ ∈ A1∩̃A2 and γζFA1
(σ) + γζFA2

(σ) > 1;σ ∈ X.

If FA1
is not FPFS quasi-coincident with FA2

, then we write FA1
qFA2 .

Example 3.21. Let X = {σ1, σ2, σ3} is a universal set and let R = {ζ1, ζ2, ζ3, ζ4} be
the set of parameters. IfA1 = {0.6/ζ1, 0.7/ζ2, 0.8/ζ3} ⊆ R, A2 = {0.5/ζ2, 0.6/ζ3, 0.7/ζ4}
⊆ R with the FPFS-sets,

FA1
={(0.6/ζ1, {0.6/σ1, 0.7/σ2, 0.9/σ3}), (0.7/ζ2, {0.7/σ1, 0.8/σ2, 0.6/σ3}),

(0.8/ζ3, {0.6/σ1, 0.7/σ2, 0.9/σ3})}
and

FA2
={(0.5/ζ2, {0.6/σ1, 0.5/σ2, 0.6/σ3}), (0.6/ζ3, {0.7/σ1, 0.5/σ2, 0.8/σ3}),

(0.7/ζ4, {0.6/σ1, 0.9/σ2, 0.8/σ3})},
then clearly, µFA1

(ζ) + µFA2
(ζ) > 1, ζ ∈ A1∩̃A2 and γζFA1

(σ) + γζFA2
(σ) > 1, σ ∈ X.

Thus, FA1
qFA2

.

Theorem 3.22. [44] If FA and FB are FPFS-sets, then

(1) FA⊆̃FB ⇔ FAqF
c
B,

(2) FAqFB ⇒ FA∩̃FB 6= Fφ,
(3) FAqF

c
A,

(4) FAqFB ⇔ there exists an ζ(FC)∈̃FA such that ζ(FC)qFB,
(5) ζ(FC)∈̃F cA ⇔ ζ(FC)qFA,

(6) FA⊆̃FB ⇒ if ζ(FC)qFA, then ζ(FC)qFB ∀ ζ(FC)∈̃FPFS(X,R).

Theorem 3.23. [44] Let {FAi
}i∈Ω be a family of FPFS-sets over (X,R). Then a

FPFS-point ζ(FB) is Q-coincident with ∪̃iFAi if and only if ζ(FB)qFAi for some
i ∈ Ω.

4. Main results

In this section we present some results which holds in FPFS-set theory but does
not hold in crisp set theory. We introduce frontier and exterior in the context of
FPFS-topological space. We define Q-neighborhood, adherence point and accumu-
lation point for FPFS-set.
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First we present an illustration to show that τ̃1∪̃τ̃2 may not be a FPFS-topology on
X.

Example 4.1. Let X = {σ1, σ2, σ3} be the set of universe and let R = {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.3/ζ1, 0.5/ζ3} ⊆ R, B = {0.4/ζ2, 0.7/ζ4} ⊆ R with
the FPFS-sets,

FA = {(0.3/ζ1, {0.3/σ1, 0.5/σ2, 0.6/σ3}), (0.5/ζ3, {0.6/σ1, 0.3/σ2, 0.2/σ3})}
and

FB = {(0.4/ζ2, {0.1/σ1, 0.2/σ2, 0.5/σ3}), (0.7/ζ4, {0.3/σ1, 0.2/σ2, 0.1/σ3})},
then τ̃1 = {Fφ, FR̃, FA, } and τ̃2 = {Fφ, FR̃, FB} are two FPFS-topologies on X.

On the other hand, since FA, FB∈̃τ̃1∪̃τ̃2 but FA∪̃FB , FA∩̃FB /̃∈τ̃1∪̃τ̃2,
τ̃1∪̃τ̃2 = {Fφ, FR̃, FA, FB} is not a FPFS-topology. But τ̃1∩̃τ̃2 = {Fφ, FR̃} is a
FPFS-topology on X.

Proposition 4.2. Let τ̃1 and τ̃2 be two FPFS-topologies on X. Then τ̃1∩̃τ̃2 is a
FPFS-topology on (X,R) but τ̃1∪̃τ̃2 is not necessarily a FPFS-topology on (X,R).

Proposition 4.3. If {τ̃α : α ∈ Ω} is a family of FPFS-topologies on X, then
∩̃α∈Ω{τ̃α : α ∈ Ω} is also a FPFS-topology on X.

Remark 4.4. The members of discrete FPFS-topology are infinite due to infinite
subsets of a FPFS-set.

Remark 4.5. In FPFS-set theory the law of contradiction FA∩̃F cA = Fφ and the
law of excluded middle FA∪̃F cA = FR̃ does not hold in general. Then the collection
of FPFS-sets {Fφ, FR̃, FA, F

c
A} is not a FPFS-topology on X.

Example 4.6. Let X = {σ1, σ2, σ3} be the set of universe and let R = {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.4/ζ1, 0.7/ζ2} ⊆ R, then

FA = {(0.4/ζ1, {0.3/σ1, 0.7/σ2, 0.9/σ3}), (0.7/ζ2, {0.1/σ1, 0.3/σ2, 0.8/σ3})}
and

F cA = {(0.6/ζ1, {0.7/σ1, 0.3/σ2, 0.1/σ3}), (0.3/ζ2, {0.9/σ1, 0.7/σ2, 0.2/σ3})}.
Clearly τ̃ = {Fφ, FR̃, FA, F

c
A} is not a FPFS-topology on X, because FA∩̃F cA /∈ τ̃

and FA∪̃F cA /∈ τ̃ .

Definition 4.7. Let FA be a FPFS-subset of FPFS-topological space (X,R). Then
the frontier or boundary of FA, denoted as Fr(FA) and is defined as

Fr(FA) = FA∩̃F cA.

Example 4.8. Let X = {σ1, σ2, σ3} be the set of universe and let R = {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.6/ζ1, 0.4/ζ2, 0.3/ζ3} ⊆ R, B = {0.2/ζ2, 0.1/ζ3} ⊆
R with the FPFS-sets,

FA={(0.6/ζ1, {0.6/σ1, 0.3/σ2, 0.5/σ3}), (0.4/ζ2, {0.1/σ1, 0.2/σ2, 0.3/σ3}),
(0.3/ζ3, {0.6/σ1, 0.7/σ2, 0.3/σ3})}

and
FB = {(0.2/ζ2, {0.1/σ1, 0.2/σ2, 0.2/σ3}), (0.1/ζ3, {0.5/σ1, 0.4/σ2, 0.1/σ3})},

then τ̃ = {Fφ, FR̃, FA, FB} is a FPFS-topology on X. Thus, the closed sets can be
calculated as by taking the compliments of FPFS-open sets in τ̃ , i.e.,

(Fφ)c = FR̃, (FR̃)c = Fφ,
(FA)c={(0.4/ζ1, {0.4/σ1, 0.7/σ2, 0.5/σ3}), (0.6/ζ2, {0.9/σ1, 0.8/σ2, 0.7/σ3}),
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(0.7/ζ3, {0.4/σ1, 0.3/σ2, 0.7/σ3})}
and

(FB)c = {(0.8/ζ2, {0.9/σ1, 0.8/σ2, 0.8/σ3}), (0.9/ζ3, {0.5/σ1, 0.6/σ2, 0.9/σ3})}
If C = {0.2/ζ1, 0.4/ζ2} ⊆ R, then a FPFS-set on X is,
FC = {(0.2/ζ1, {0.3/σ1, 0.5/σ2, 0.4/σ3}), (0.4/ζ2, {0.7/σ1, 0.6/σ2, 0.4/σ3})}.

This shows that the FPFS-closed supersets of FC are (FA)c and FR̃ only. Thus

FC = (FA)c∩̃FR̃ = (FA)c. On the other hand,
F cC = {(0.8/ζ1, {0.7/σ1, 0.5/σ2, 0.6/σ3}), (0.6/ζ2, {0.3/σ1, 0.4/σ2, 0.6/σ3})}.

So F cC = FR̃. Hence we obtain Fr(FC) = FC∩̃F cC = (FA)c∩̃FR̃ = (FA)c.

Definition 4.9. Let FA be a subset of FPFS-topological space (X,R). Then the
exterior of FA, denoted as Ext(FA) is defined by Ext(FA) = (FA)c.

Example 4.10. LetX = {σ1, σ2, σ3} be the set of universe and letR= {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. If A = {0.6/ζ1, 0.4/ζ2, 0.3/ζ3} ⊆ R, B = {0.2/ζ2, 0.1/ζ3} ⊆
R with the FPFS-sets,

FA = {(0.6/ζ1, {0.6/σ1, 0.3/σ2, 0.5/σ3}), (0.4/ζ2, {0.1/σ1, 0.2/σ2, 0.3/σ3}),
(0.3/ζ3, {0.6/σ1, 0.7/σ2, 0.3/σ3})}
and

FB = {(0.2/ζ2, {0.1/σ1, 0.2/σ2, 0.2/σ3}), (0.1/ζ3, {0.5/σ1, 0.4/σ2, 0.1/σ3})},
then τ̃ = {Fφ, FR̃, FA, FB} is a FPFS-topology on X.

On the other hand, the closed FPFS-sets are,
(Fφ)c = FR̃, (FR̃)c = Fφ,
(FA)c={(0.4/ζ1, {0.4/σ1, 0.7/σ2, 0.5/σ3}), (0.6/ζ2, {0.9/σ1, 0.8/σ2, 0.7/σ3}),

(0.7/ζ3, {0.4/σ1, 0.3/σ2, 0.7/σ3})}
and

(FB)c = {(0.8/ζ2, {0.9/σ1, 0.8/σ2, 0.8/σ3}), (0.9/ζ3, {0.5/σ1, 0.6/σ2, 0.9/σ3})}.
If D = {0.4/ζ2, 0.6/ζ3} ⊆ R, then FPFS-set on X is,
FD = {(0.4/ζ2, {0.5/σ1, 0.3/σ2, 0.4/σ3}), (0.6/ζ3, {0.6/σ1, 0.4/σ2, 0.9/σ3})}.

This shows that FPFS-open sets contained in FD are FB and Fφ. Then F oD =

FB∪̃Fφ = FB . Thus FD = FR̃. So Fr(FD) = FD∩̃F cD and thus F cD = F cB . Hence

Fr(FD) = FR̃∩̃F
c
B = F cB . Therefore Ext(FD) = (FD)c = Fφ.

Remark 4.11. We present some results about closure, interior, frontier and exterior
of a FPFS-set and show investigate some results which hold in crisp set theory but
do not hold in FPFS-set theory with the help of some examples. Since the law of
contradiction and the law of Excluded middle does not hold in FPFS-set theory.
This leads the following theorem.

Theorem 4.12. If FA, FB , FC , FD are FPFS-sets, then
(1) (F oA)c = (F cA),

(2) (FA)c = (F cA)o,

(3) (FA)o 6= FA − F cA,
(4) Ext(F cA) = F oA,
(5) Ext(FA) = (F cA)o,
(6) Ext(FA)∪̃Fr(FA)∪̃F oA 6= FR̃,
(7) Fr(FA) = Fr(F

c
A),

(8) F oA∩̃Fr(FA) 6= Fφ,
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(9) FA 6= FA∪̃Fr(FA),
(10) FA 6= F oA∪̃Fr(FA).

Proof. By Example 4.10, we observe that Ext(FD) = Fφ, Fr(FD) = F cB , F oD = FB
and FD = FR̃.

(1) and (2) hold by [44].
(3) (FA)o 6= FA − F cA, because FA − FB 6= FA∩̃F cB .

(4) Clearly, Ext(F cA) = (F cA)c. Then Ext(F cA) = [(F cA)c]o. Thus Ext(F cA) = F oA.

(5) Clearly, Ext(FA) = (FA)c. Then Ext(FA) = (F cA)o.
(6) Clearly, Ext(FA)∪̃Fr(FA)∪̃F oA 6= FR̃. Then by Example 4.10, we observe that

Fφ∪̃F cB∪̃FB 6= FR̃.

(7) Clearly, Fr(F
c
A) = (F cA)∩̃[(F cA)]c. Then Fr(F

c
A) = (F cA)∩̃(FA) = Fr(FA).

(8) Clearly, F oA∩̃Fr(FA) 6= Fφ. Then by Example 4.10, we observe that F cB∩̃FB 6=
Fφ.

(9) Clearly, FA 6= FA∪̃Fr(FA). Then by Example 4.10, we see that FR̃ 6= FD∪̃F cB .

(10) Clearly, FA 6= F oA∪̃Fr(FA). Then by Example 4.10, we see that FR̃ 6=
FB∪̃F cB . �

In [6, 35] Sanjay and Borah introduced the idea of fuzzy soft point and FS quasi-
coincident with Q-neighborhood. The concept of FPFS-point and quasi-neighborhood
was introduced by Idris in [44]. We extend these concepts in FPFS-set theory and
prove some important results for it.

Remark 4.13. Every non-empty FPFS-set FA can be written as the FPFS-union
of all the FPFS-points which are in FA.

Definition 4.14. A FPFS-set FA1 is called Q-neighborhood of ζ(FA2), if there

exists FB∈̃τ such that ζ(FA2
)qFB and FB⊆̃FA1

.

Example 4.15. LetX = {σ1, σ2, σ3} be the set of universe and letR= {ζ1, ζ2, ζ3, ζ4}
be the set of attributes. IfB1 = {0.6/ζ1, 0.7/ζ2, 0.8/ζ4} ⊆ R, B2 = {0.5/ζ1, 0.6/ζ4} ⊆
R with the FPFS-sets,

FB1
={(0.6/ζ1, {0.7/σ1, 0.9/σ2, 0.9/σ3}), (0.7/ζ2, {0.6/σ1, 0.9/σ2, 0.8/σ3}),

(0.8/ζ4, {0.7/σ1, 0.8/σ2, 0.9/σ3})}
and

FB2 = {(0.5/ζ1, {0.6/σ1, 0.9/σ2, 0.7/σ3}), (0.6/ζ4, {0.7/σ1, 0.8/σ2, 0.8/σ3})},
Then τ = {Fφ, FR̃, FB1

, FB2
} is an FPFS-topology on X.

If ζ(FA2
) = {(0.6/ζ1, {0.7/σ1, 0.8/σ2, 0.6/σ3})} is a FPFS-point, then it is clear

that ζ(FA2
)qFB2

andFB2
∈ τ . Thus µFA2

(ζ) + µFB2
(ζ) > 1, ζ ∈ R and γζFA2

(σ) +

γζFB2
(σ) > 1, σ ∈ X.

If FA1 = {(0.7/ζ1, {0.8/σ1, 0.9/σ2, 0.7/σ3}), (0.7/ζ4, {0.7/σ1, 0.9/σ2, 0.8/σ3}),
(0.6/ζ3, {0.6/σ1, 0.5/σ2, 0.7/σ3})}, then FB2

⊆̃FA1
and ζ(FA2

)qFB2
. Thus by defini-

tion, FA1 is quasi-neighborhood of ζ(FA2).

Theorem 4.16. FB⊆̃FA1
if and only if FB and F cA1

are not quasi-coincident. In

particular, ζ(FA2)∈̃FB if and only if ζ(FA2) is not quasi-coincident with F cB.

Proof. This follow from the fact:
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FB⊆̃FA1 ⇔ µB(ζ) ≤ µA1(ζ), ζ ∈ R and γζB(σ) ≤ γζA1
(σ), σ ∈ X

⇔ µB(ζ) + µAc
1
(ζ) = µB(ζ) + 1− µA1

(ζ) ≤ 1.

Then γζB(σ) + γζAc
1
(σ) = γζB(σ) + 1− γζA1

(σ) ≤ 1, for ζ ∈ R and σ ∈ X.

Thus FB⊆̃FA1 . So FBqF
c
A1

.

Similarly, ζ(FA2
)∈̃FB . Then (FA2

)qF cB . �

Theorem 4.17. Let Uζ be the collection of FPFS Q-neighborhoods of a FPFS point
ζ(FA) in a FPFS-topological space τ .

(1) If FB∈̃Uζ , then ζ(FA) is quasi-coincident with FB.

(2) If FB1
∈̃Uζ and FB1

⊆̃FB2
, then FB2

∈̃Uζ .
(3) If FB1∈̃Uζ , then there exists FB2∈̃Uζ such that FB2⊆̃FB3 and FB3 ∈̃Ud for

every FPFS-point d(FA) which is quasi-coincident with FB2
.

Proof. (1) Suppose that FB∈̃Uζ . Then by definition, there exists IC∈̃τ such that

ζ(FA)qIC and IC⊆̃FB .

Thus µFA
(ζ) + µIC (ζ) > 1, ζ ∈ R and γζFA

(σ) + γζIC (σ) > 1, σ ∈ X.

Again µIC (ζ) ≤ µFB
(ζ), ζ ∈ R and γζIC (σ) ≤ γζFB

(σ), σ ∈ X
So,

µFA
(ζ) + µFB

(ζ) ≥ µFA
(ζ) + µIC (ζ) > 1ζ ∈ R

and
γζFA

(σ) + γζFB
(σ) ≥ γζFA

(σ) + γζIC (σ) > 1, σ ∈ X.
This shows that ζ(FA) is quasi-coincident with FB .

(2) Suppose that FB1
∈̃Uζ . Then by definition, there exists IC∈̃τ such that

ζ(FA)qIC and IC⊆̃FB1 .

Thus µFA
(ζ) + µIC (ζ) > 1, ζ ∈ R and γζFA

(σ) + γζIC (σ) > 1, σ ∈ X.

Again µIC (ζ) ≤ µFB1
(ζ), ζ ∈ R and γζIC (σ) ≤ γζFB1

(σ), σ ∈ X
Given is that FB1⊆̃FB2 . Then by definition of FPFS-subset,

(4.1) µB1
(ζ) ≤ µB2

(ζ), ζ ∈ R
and

(4.2) γζB1
(σ) ≤ γζB2

(σ), σ ∈ X.

Since ζ(FA)qIC , now only we have to show that IC⊆̃FB2
. Since

(4.3) µIC (ζ) ≤ µFB1
(ζ), ζ ∈ R

and

(4.4) γζIC (σ) ≤ γζFB1
(σ), σ ∈ X.

Comparing (4.1),4.2),(4.4) and (4.4),
µIC (ζ) ≤ µFB1

(ζ) ≤ µB2(ζ), ζ ∈ R
and

γζIC (σ) ≤ γζFB1
(σ) ≤ γζB2

(σ), σ ∈ X.

Thus, FB2
∈̃Uζ .

(3) Suppose that FB1
∈̃Uζ . Then, there exists FB2

∈̃τ such that ζ(FA)qFB2
and

FB2⊆̃FB1 . Thus , there exists FB2∈̃Uζ such that ζ(FA)qFB2 and FB2⊆̃FB1 .
Let d(FA) be any FPFS-point which is Q-coincident with FB2

. Then FB2
∈̃Ud. �
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Theorem 4.18. Intersection of two Q-neighborhoods of FPFS-point ζ(FA) is a Q-
neighborhood.

Proof. Let FA1
and FA2

be two Q-neighborhoods of a FPFS-point ζ(FA). Then by

definition for FA1
, there exists some IC1

∈̃τ such that ζ(FA)qIC1
and IC1

⊆̃FA1
. Thus

µFA
(ζ) + µIC1

(ζ) > 1; ζ ∈ R,

γζFA
(σ) + γζIC1

(σ) > 1;σ ∈ X
and

µIC1
(ζ) ≤ µFA1

(ζ); ζ ∈ R,

γζIC1
(σ) ≤ γζFA1

(σ);σ ∈ X.

Similarly, for Q-neighborhood FA2
, there exists some IC2

∈̃τ such that ζ(FA)qIC2

and IC2⊆̃FA2 . Then
µFA

(ζ) + µIC2
(ζ) > 1; ζ ∈ R,

γζFA
(σ) + γζIC2

(σ) > 1;σ ∈ X
and

µIC2
(ζ) ≤ µFA2

(ζ); ζ ∈ R,

γζIC2
(σ) ≤ γζFA2

(σ);σ ∈ X.

Since FA1
and FA2

both are FPFS-sets, their intersection is also an FPFS-set.
Suppose FA1 ∩̃FA2 = FA3 . Then

µFA3
(ζ) = min{µFA1

(ζ), µFA2
(ζ)}

and

γζFA3
(σ) = min{γζFA1

(σ), γζFA2
(σ)}.

Since IC1
⊆̃FA1

and IC2
⊆̃FA2

, IC1
∩̃IC2

⊆̃FA1
∩̃FA2

.

If IC1
∩̃IC2

= IC3
, then IC3

⊆̃FA3
. Thus

µIC3
(ζ) ≤ µFA3

(ζ), ζ ∈ R

and

γζIC3
(σ) ≤ γζFA3

(σ), σ ∈ X.

Since ζ(FA)qIC1
and ζ(FA)qIC2

, ζ(FA)q[IC1
∩ IC2

] = IC3
, where

µIC3
(ζ) = min{µIC1

(ζ), µIC2
(ζ)},

γζIC3
(σ) = min{γζIC1

(σ), γζIC2
(σ)}

and
µFA

(ζ) + µIC3
(ζ) > 1, ζ ∈ R,

γζFA
(σ) + γζIC3

(σ) > 1, σ ∈ X
with IC3

⊆̃FA3
. So, FA3

is a Q-neighborhood of ζ(FA). �

Theorem 4.19. A FPFS-point ζ(FB)∈̃FA if and only if Q-neighborhood of ζ(FB)
is Q-coincident with FA.

Proof. ζ(FB)∈̃FA if and only if every closed set FC containing FA contains ζ(FB),
i.e., ζ(FB)∈̃FC . On the other hand,

µFB
(ζ) ≤ µFC

(ζ), ζ ∈ R
and
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γζFB
(σ) ≤ γζFC

(σ), σ ∈ X.
Then
ζ(FB)∈̃FA if and only if for all closed sets FA⊆̃FC ,

1− µFB
(ζ) ≥ 1− µFC

(ζ), ζ ∈ R
and

1− γζFB
(σ) ≥ 1− γζFC

(σ), σ ∈ X.

Thus ζ(FB)∈̃FA if and only if for any FPFS-open set IC⊆̃F cA, we have
µIC (ζ) ≤ 1− µFB

(ζ), ζ ∈ R
and

γζIC (σ) ≤ 1− γζFB
(σ), σ ∈ X.

In other words, for every FPFS-open set IC satisfying
µIC (ζ) > 1− µFB

(ζ), ζ ∈ R
and

γζIC (σ) > 1− γζFB
(σ), σ ∈ X,

IC is not contained in F cA.
Again IC is not contained in F cA if and only if IC is Q-coincident with FA. So we

proved that ζ(FB)∈̃FA if and only if every open Q-neighborhood IC of ζ(FB), which
is evidently equivalent to what we want to prove. �

Definition 4.20. A FPFS-point ζ(FA) is called an adherence point of FPFS-set
FB , if every FPFS Q-neighborhood of ζ(FA) is a Q-coincident with FB .

Theorem 4.21. Every FPFS-point of FA is an adherence point of FA.

Proof. Let ζ(FB) be an arbitrary FPFS-point of FA. Then ζ(FB)∈̃FA. Thus

(4.5) µFB
(ζ) ≤ µFA

(ζ), ζ ∈ R

and

(4.6) γζFB
(σ) ≤ γζFA

(σ), σ ∈ X.

Suppose that FC be a Q-neighborhood of ζ(FB). Then by definition, there exists

FD∈̃τ such that ζ(FB)qFD and FD⊆̃FC . Thus

(4.7) µFB
(ζ) + µFD

(ζ) > 1, ζ ∈ R,

(4.8) γζFB
(σ) + γζFD

(σ) > 1, σ ∈ X

and

(4.9) µFD
(ζ) ≤ µFC

(ζ), ζ ∈ R,

(4.10) γζFD
(σ) ≤ γζFC

(σ), σ ∈ X.

Adding (4.5),(4.6) and (4.9),(4.10) using (4.7),(4.8), we get
µFC

(ζ) + µFA
(ζ) ≥ µFD

(ζ) + µFB
(ζ) > 1; ζ ∈ R

and
γζFC

(σ) + γζFA
(σ) ≥ γζFD

(σ) + γζFB
(σ) > 1;σ ∈ X.

So FCqFA. Hence, FC being a Q-neighborhood of ζ(FB) is Q-coincident with FA.
Therefore ζ(FB) is adherence point of FA. �

606



Muhammad Riaz et al./Ann. Fuzzy Math. Inform. 13 (2017), No. 5, 593–613

Definition 4.22. A FPFS-point ζ(FA) is called limit point of a FPFS-set FB , if
ζ(FA) is an adherence point of FB , and every FPFS Q-neighborhood of ζ(FA) and
FB are Q-coincident at some FPFS-point different from ζ, and ζ(FA)∈̃FB .

The FPFS-union of all accumulation points of a FPFS-set FB is called the derived
set of FB denoted as F dB .

Theorem 4.23. FA = FA∪̃F dA.

Proof. Let Ω = {ζ(FB) is an adherent point ofFA}. Then by theorem
“A FPFS-point ζ(FB)∈̃FA if and only if Q-neighborhood of ζ(FB) is Q-coincident
with FA”,
FA = ∪̃Ω. Thus ζ(FB)∈̃Ω if and only if either ζ(FB)∈̃FA or ζ(FB)∈̃F dA. So FA =
∪̃Ω = FA∪̃F dA. �

Corollary 4.24. A FPFS-set FA is closed if and only if FA contains all of its
accumulation points.

Proof. Let FA be a FPFS-set. Then by Theorem 4.23, FA = FA∪̃F dA.
Thus FA is closed
⇔ FA = FA
⇔ FA = FA∪̃F dA = FA
⇔ F dA⊆̃FA
⇔ FA contains all of its accumulation points. �

5. Applications of FPFS-topology to decision-making

Example 5.1. Assume that a committee wants to fill a position for scholarship.
There are seven candidates which form the set of alternatives,
X = {σ1, σ2, σ3, σ4, σ5, σ6, σ7}, where
σ1 = Ahmed Ali,
σ2 = Hafsa,
σ3 = Asma,
σ4 = Mohsin,
σ5 = Saniya,
σ6 = Haniya,
σ7 = Fatima.
The panel (committee) consider the set of attributes R = {ζ1, ζ2, ζ3, ζ4, ζ5}. The
parameters ζi(i = 1, 2, 3, 4, 5) stands for,
ζ1 = needy,
ζ2 = intelligent,
ζ3 = best result percentage,
ζ4 = intrusted in higher education,
ζ5 = hard working.

The panel consists of two members A and B after some discussion each applicant is
evaluated from point of view of the goals and the constraint according to the chosen
subsets by member-1 and member-2 respectively
A = {0.6/ζ3, 0.8/ζ4, 0.7/ζ5} and B = {0.3/ζ3, 0.6/ζ4} of R.
We here use the algorithm for FPFS-sets which is used by Cagman in [7].
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Step 1: After a discussion the members of committee construct FPFS-sets FA and
FB over X given by
FA={(0.6/ζ3, {0.3/σ2, 0.4/σ3, 0.7/σ4, 0.2/σ6}), (0.8/ζ4, {0.3/σ3, 0.5/σ5, 0.7/σ6, 0.9/σ7}),
(0.7/ζ5, {0.1/σ1, 0.3/σ2, 0.7/σ3, 0.6/σ4, 1/σ5})} and
FB={(0.3/ζ3, {0.2/σ2, 0.3/σ3, 0.5/σ4, 0.2/σ6}), (0.6/ζ4, {0.2/σ3, 0.4/σ5, 0.4/σ7})}.
In tabular form, the FPFS-set FA can be written as

X 0.6/ζ3 0.8/ζ4 0.7/ζ5
σ1 0 0 0.1
σ2 0.3 0 0.3
σ3 0.4 0.3 0.7
σ4 0.7 0 0.6
σ5 0 0.5 1
σ6 0.2 0.7 0
σ7 0 0.9 0

In tabular form, the FPFS-set FB can be written as,

X 0.3/ζ3 0.4/ζ4
σ1 0 0
σ2 0.2 0
σ3 0.3 0.2
σ4 0.5 0
σ5 0 0.4
σ6 0.2 0
σ7 0 0.4

Step 2: Now we make here a FPFS-topology as

τ̃ = {Fφ, FR̃, FA, FB},

where Fφ and FR̃ are FPFS-empty and FPFS-absolute sets, respectively.
Step 3: Now we find the aggregate fuzzy set by using the formula,

FA∗ = {µFA∗ (σ)/σ : σ ∈ X},

where

µFA∗ (σ) = Σζ∈R µA(ζ) γA(σ)/|R|.
Then

FA∗ = {0.014/σ1, 0.078/σ2.0.194/σ3, 0.168/σ4, 0.220/σ5, 0.136/σ6, 0.144/σ7}.

Similarly, we can also find the aggregate fuzzy set for FB given as,

FB∗ = {0/σ1, 0.012/σ2, 0.042/σ3, 0.03/σ4, 0.048/σ5, 0.012/σ6, 0.048/σ7}.

The aggregate fuzzy set of Fφ and FR̃ given respectively, as

Fφ = {0/σ1, 0/σ2, 0/σ3, 0/σ4, 0/σ5, 0/σ6, 0/σ7}

and

FR̃ = {1/σ1, 1/σ2, 1/σ3, 1/σ4, 1/σ5, 1/σ6, 1/σ7}.
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Step 4: Now we find the final decision set by adding FA∗ and FB∗ only because
there is no need to add the aggregate fuzzy sets of Fφ and FR̃. Then

µFA∗+FB∗ (σ) = µA∗(σ) + µB∗(σ)− [µA∗(σ) ∗ µB∗(σ)].

This shows that

FA∗+FB∗ = {0.014/σ1, 0.089/σ2, 0.2278/σ3, 0.1929/σ4, 0.2574/σ5, 0.1463/σ6, 0.1850/σ7}.

Step 5: Finally the largest membership grate can be chosen bymax µFA∗+FB∗ (σ) =
0.2574. Which shows that the applicant σ5 has the greatest membership degree,
which implies that Saniya is selected for the scholarship.

Example 5.2. We introduce here another algorithm for FPFS-set in decision mak-
ing problem which is modified form of algorithm for FS-set in [9].

Now we solve the above example by using modified algorithm of FPSS-decision
making method.
Step 1: After a discussion the members of committee construct FPFS-sets FA and
FB over X given by
FA={(0.6/ζ3, {0.3/σ2, 0.4/σ3, 0.7/σ4, 0.2/σ6}), (0.8/ζ4, {0.3/σ3, 0.5/σ5, 0.7/σ6, 0.9/σ7}),
(0.7/ζ5, {0.1/σ1, 0.3/σ2, 0.7/σ3, 0.6/σ4, 1/σ5})} and
FB={(0.3/ζ3, {0.2/σ2, 0.3/σ3, 0.5/σ4, 0.2/σ6}), (0.6/ζ4, {0.2/σ3, 0.4/σ5, 0.4/σ7})}.
In tabular form, the FPFS-set FA can be written as

X 0.6/ζ3 0.8/ζ4 0.7/ζ5
σ1 0 0 0.1
σ2 0.3 0 0.3
σ3 0.4 0.3 0.7
σ4 0.7 0 0.6
σ5 0 0.5 1
σ6 0.2 0.7 0
σ7 0 0.9 0

In tabular form, the FPFS-set FB can be written as

X 0.3/ζ3 0.4/ζ4
σ1 0 0
σ2 0.2 0
σ3 0.3 0.2
σ4 0.5 0
σ5 0 0.4
σ6 0.2 0
σ7 0 0.4

Step 2: Now we make here a FPFS-topology as

τ̃ = {Fφ, FR̃, FA, FB},

where Fφ and FR̃ are FPFS-empty and FPFS-absolute sets respectively.
Step 3: The cardinal is computed by the formula,

cFA = {µcFR(ζ)/ζ : ζ ∈ A},
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where µcFR(ζ) = Σσ∈X µA(ζ) γA(σ)/|X|.
Then

cFA = {0.137/ζ3, 0.274/ζ4, 0.27/ζ5}.
Similarly, the cardinal for FB is

cFB = {0.0514/ζ3, 0.0857/ζ4}.
The cardinal for Fφ and FR̃, respectively as

cFφ = {0/ζ1, 0/ζ2, 0/ζ3, 0/ζ4, 0/ζ5}
and

cFR̃ = {1/ζ1, 1/ζ2, 1/ζ3, 1/ζ4, 1/ζ5}.
Step 4: We use here this formula to find the aggregate fuzzy set,

(5.1) |R| ∗MF∗
A

= MFA
∗M t

cFA
,

where MFA
,McFA

and MF∗
A

are representation matrices of FA, cFA and F ∗A, respec-
tively. Then we find out the matrix of F ∗A by using (5.1),

MF∗
A

= 1/5



0 0 0 0 0.1
0 0 0.3 0 0.3
0 0 0.4 0.3 0.7
0 0 0.7 0 0.6
0 0 0 0.5 1
0 0 0.2 0.7 0
0 0 0 0.9 0




0
0

0.137
0.274
0.27

 =



0.0054
0.0244
0.0652
0.0515
0.0814
0.0438
0.0493


that means,

F ∗A = {0.0054/σ1, 0.0244/σ2, 0.0652/σ3, 0.0515/σ4, 0.0814/σ5, 0.0438/σ6, 0.0493/σ7}.
Similarly, we can find the aggregate for FB calculated as,

MF∗
B

= 1/5



0 0 0 0 0
0 0 0.2 0 0
0 0 0.3 0.2 0
0 0 0.5 0 0
0 0 0 0.4 0
0 0 0.2 0 0
0 0 0 0.4 0




0
0

0.0514
0.0857

0

 =



0
0.00205
0.00651
0.00514
0.00685
0.00205
0.00685


that means,

F ∗B = {0/σ1, 0.00205/σ2, 0.00651/σ3, 0.00514/σ4, 0.00685/σ5, 0.00205/σ6, 0.00685/σ7}.
Step 5: Now we find the final decision set by adding FA∗ and FB∗ only because

there is no need to add the aggregate fuzzy sets of Fφ and FR̃.Then

µFA∗+FB∗ (σ) = µA∗(σ) + µB∗(σ)− [µA∗(σ) ∗ µB∗(σ)].

This shows that
FA∗ + FB∗

= {0.0054/σ1, 0.0263/σ2, 0.0712/σ3, 0.0563/σ4, 0.0876/σ5, 0.0457/σ6, 0.0558/σ7}.
Step 6: In the last, we choose the greatest degree of membership by

max µFA∗+FB∗ (σ) = 0.0876.
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Which shows that the applicant σ5 has the greatest membership degree, so Saniya
is selected for the scholarship.

It is interesting to note that both algorithms used in above two applications yields
the same result.

6. Conclusion

In this paper we define FPFS-sets and FPFS-topology with some examples. We
study adherence point and accumulation point for FPFS-set which help us to proof
some important results. We present an interesting application of FPFS-topology
to the decision-making with some algorithms. To make the result better we modify
some algorithms which will helpful and beneficial for the researchers in their research
work on FS-set, FPFS-set theory and FPFS-topology. We hope that the results
investigated in this paper make a significant and technically sound contribution in
the field of FPFS-set theory.

Acknowledgements. The authors are highly thankful to the Editor-in-chief
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quality of our paper.
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