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Abstract. The motivation of the current paper is to define and study
some soft separation axioms in soft bitopological spaces in terms of pairwise
softness namely, pairwise soft T ∗

0 , pairwise soft T ∗
1 , pairwise soft T ∗

2 , and
pairwise soft R∗

1. Characterizations and properties of these soft separation
axioms have been obtained. Moreover, we study the implications of these
types of soft separation axioms in soft and crisp cases. Finally, we show
that these properties are hereditary.
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1. Introduction

In 1999, Molodtsov [14] introduced the soft set theory as a new mathematical tool
for dealing with uncertainties inherent in many of real world problems. This theory
is a relatively new approach to discuss vagueness and uncertainties. It is getting
popularity among the researchers and a good number of papers is being published
every year. The main characteristic of soft set theory is that it is free of the difficulties
in the theories of probability, fuzzy set, interval-valued fuzzy set and other theories.
Some important applications of soft sets are in decision making, data mining, medical
diagnosis and complete (incomplete) information systems. Pei and Miao [18] showed
that the soft set is a simple information system. Topological structure of soft sets
also was studied by many of authors see [1, 4, 5, 6, 15, 16, 17, 19, 22]. Soft separation
axioms in soft topological spaces studied in some papers (see, for example, [4, 16]).
Ittanagi [2] introduced the concept of soft bitopological space and studied some
types of soft separation axioms for soft bitopological spaces from his point of view.
Recently, Kandil et al. [8] introduced the concept of generalized pairwise closed soft
sets and the associated pairwise soft separation axioms namely, PSR∗0 and PST ∗1

2

.
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The present paper is a continuation of [8], [9] and [10]. We introduce some pairwise
soft separation axioms in soft bitopological spaces namely, PST ∗0 , PST ∗1 , PSR∗1, and
PST ∗2 and study some of their properties. We show that these axioms are hereditary
properties. Moreover, we studied the implications of these types of soft separation
axioms in soft and crisp cases.

2. Preliminaries

In this section, we briefly review some concepts and some related topics of soft
sets, soft topological spaces and soft bitopological spaces which are needed to used
in current paper.

Definition 2.1 ([16]). A pair (F,E) is called a soft set over X, where F is a mapping
given by F : E → P (X). A soft set can also be defined by the set of ordered pairs

(F,E) = {(e, F (e)) : e ∈ E, F : E → P (X)}.

From now on, SS(X)E denotes the family of all soft sets over X with a fixed set
of parameters E.

Definition 2.2 ([16]). For two soft sets (F,E), (G,E) ∈ SS(X)E , (F,E) is called
a soft subset of (G,E), denoted by (F,E)⊆̃(G,E), if F (e) ⊆ G(e), ∀e ∈ E. In this
case, (G,E) is called a soft superset of (F,E).

Definition 2.3 ([16]). The union of the soft sets (F,E) and (G,E), denoted by
(F,E)∪̃(G,E), is the soft set (H,E) which defined as H(e) = F (e) ∪G(e), ∀e ∈ E.

Definition 2.4 ([16]). The intersection of the soft sets (F,E) and (G,E), denoted
by (F,E)∩̃(G,E), is the soft set (M,E) which defined as M(e) = F (e) ∩ G(e),
∀e ∈ E.

Definition 2.5 ([16]). The complement of the soft set (F,E), denoted by (F,E)c,
is defined as (F,E)c = (F c, E), where F c : E → P (X) is a mapping given by
F c(e) = X \ F (e), ∀ e ∈ E.

Definition 2.6 ([16]). The difference of the soft sets (F,E) and (G,E), denoted by
(F,E) \ (G,E), is the soft set (H,E), where for all e ∈ E, H(e) = F (e) \G(e).

Clearly, (F,E) \ (G,E) = (F,E)∩̃(G,E)c.

Definition 2.7 ([16]). A soft set (F,E) is called a null soft set, denoted by (φ̃, E),
if F (e) = φ for all e ∈ E. Moreover, a soft set (F,E) is called an absolute soft set,

denoted by (X̃, E), if F (e) = X, ∀e ∈ E.

Clearly, we have (φ̃, E)c = (X̃, E) and (X̃, E)c = (φ̃, E).

For more details about the properties of the union, the intersection and the com-
plement of soft sets, you can see [4, 7, 18, 20, 22].

Definition 2.8 ([1, 15, 20]). A soft set (F,E) ∈ SS(X)E is called a soft point in

(X̃, E), if there exist x ∈ X and e ∈ E such that F (e) = {x} and F (e′) = φ for each
e′ ∈ E \ {e}. This soft point is denoted by (xe, E) or xe, i.e.,
xe : E → P (X) is a mapping defined by

xe(a) =

{
{x} if e = a,
φ if e 6= a

for all a ∈ E.
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The set of all soft points in (X̃, E) is denoted by ξ(X)E .

Definition 2.9 ([20]). A soft point (xe, E) is said to be belonging to the soft set
(G,E), denoted by xe∈̃(G,E), if xe(e) ⊆ G(e), i.e., {x} ⊆ G(e).

Clearly, xe∈̃(G,E) if and only if (xe, E)⊆̃(G,E).

Definition 2.10 ([20]). A two soft points xe1 , ye2 over X are said to be equal, if
x = y and e1 = e2.

Thus, xe1 6= ye2 iff x 6= y or e1 6= e2.

Proposition 2.11. [20] The union of any collection of soft points can be considered
as a soft set and every soft set can be expressed as a union of all soft points belonging

to it, i.e., (G,E) =
⋃̃
{(xe, E) : xe∈̃(G,E)}.

Proposition 2.12. [20] Let (G,E), (H,E) be two soft sets over X. Then

(1) xe∈̃(G,E)⇔ xe˜6∈(G,E)c,
(2) xe∈̃(G,E)∪̃(H,E)⇔ xe∈̃(G,E) or xe∈̃(H,E),
(3) xe∈̃(G,E)∩̃(H,E)⇔ xe∈̃(G,E) and xe∈̃(H,E),
(4) (G,E)⊆̃(H,E)⇔ [xe∈̃(G,E)⇒ xe∈̃(H,E)].

Definition 2.13 ([19]). Let η be a collection of soft sets over a universe X with a
fixed set of parameters E. Then, η ⊆ SS(X)E is called a soft topology on X if it
satisfies the following axioms:

(i) (X̃, E), (φ̃, E) ∈ η, where φ̃(e) = φ and X̃(e) = X, ∀e ∈ E,
(ii) the union of any number of soft sets in η belongs to η,
(iii) The intersection of any two soft sets in η belongs to η.
The triple (X, η,E) is called a soft topological space. Any member of η is said

to be an open soft set. A soft set (F,E) over X is said to be a closed soft set in
(X, η,E), if its complement (F,E)c is an open soft set in (X, η,E).

Definition 2.14 ([16]). A soft topological space (X, η,E) is said to be a soft
T0[briefly, ST0], if for each xα, yβ ∈ ξ(X)E with xα 6= yβ , there exists (G,E) ∈ η
such that

xα∈̃(G,E), yβ ˜6∈(G,E) or yβ∈̃(G,E), xα˜6∈(G,E).

Definition 2.15 ([11]). A soft set (G,E) in a soft topological space (X, η,E) is
called a generalized closed soft set [briefly, g-closed soft set], if sclη(G,E)⊆̃(H,E),
whenever

(G,E)⊆̃(H,E) and (H,E) ∈ η.

Definition 2.16 ([11]). A soft topological space (X, η,E) is called a soft T 1
2

[briefly,

ST 1
2
], if every g-closed soft set is a closed soft set.

Theorem 2.17 ([8]). A soft topological space (X, η,E) is a soft T 1
2

if and only if

every soft point either open soft set or closed soft set.

Definition 2.18 ([16]). A soft topological space (X, η,E) is said to be a soft
T1[briefly, ST1], if for each xα, yβ ∈ ξ(X)E with xα 6= yβ , there exist (G,E), (H,E) ∈
η such that xα∈̃(G,E), yβ ˜6∈(G,E) and yβ∈̃(H,E), xα˜6∈(H,E).

Theorem 2.19 ([16]). A soft topological space (X, η,E) is a soft T1 if and only if
every soft point is a closed soft set.
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Definition 2.20 ([16]). A soft topological space (X, η,E) is said to be a soft
T2[briefly, ST2], if for each xα, yβ ∈ ξ(X)E with xα 6= yβ , there exist (G,E), (H,E) ∈
η such that xα∈̃(G,E), yβ∈̃(H,E) and (G,E)∩̃(H,E) = (φ̃, E).

For more details about the properties of the soft topological space, you can see
[1, 4, 5, 6, 13, 15, 16, 17, 19, 21, 22].

Definition 2.21 ([12]). A triple (X, τ1, τ2) is called a bitopological space [briefly,
bts], where τ1, τ2 are arbitrary topologies on X. The collection τ12 is a supra
topology on X, where

τ12 = {G ⊆ X : G = G1 ∪G2;Gi ∈ τi, i = 1, 2}.

Definition 2.22 ([3]). Let (X, τ1, τ2) be a bts. Then (X, τ1, τ2) is called:
(i) PT0, if for every x, y ∈ X, x 6= y, there exists G ∈ τ12 such that

x ∈ G, y 6∈ G or x 6∈ G, y ∈ G,
(ii) PT1, if for every x, y ∈ X, x 6= y, there exist G,H ∈ τ12 such that

x ∈ G, y 6∈ G and x 6∈ H, y ∈ H,
(iii) PT2, if for every x, y ∈ X, x 6= y, there exist G,H ∈ τ12 such that

x ∈ G, y ∈ H and G ∩H = φ,
(iv) PR0, if x ∈ cl12{y} ⇒ y ∈ cl12{x},
(v) PR1, if cl12{x} 6= cl12{y} there exist G,H ∈ τ12 such that

cl12{x} ⊆ G, cl12{y} ⊆ H and G ∩H = φ.

Definition 2.23 ([2]). A quadrable system (X, η1, η2, E) is called a soft bitopological
space [briefly, sbts], where η1, η2 are arbitrary soft topologies on X and E be a set
of parameters.

Definition 2.24 ([9]). Let (X, η1, η2, E) be a sbts.
(i) A soft set (G,E) over X is said to be a pairwise open soft set in (X, η1, η2, E)

[briefly, p-open soft set], if there exist an open soft set (G1, E) in η1 and an open
soft set (G2, E) in η2 such that (G,E) = (G1, E)∪̃(G2, E).

(ii) A soft set (G,E) over X is said to be a pairwise closed soft set in (X, η1, η2, E)
[briefly, p-closed soft set], if its complement is a p-open soft set in (X, η1, η2, E).

The family of all p-open (p-closed) soft sets in sbts (X, η1, η2, E) is denoted by
η12 (ηc12), respectively, i.e., η12 = {(G,E) ∈ SS(X)E : (G,E) = (G1, E)∪̃(G2, E) :
(Gi, E) ∈ ηi, i = 1, 2}. Moreover, η12 is a supra soft topology on X.

Definition 2.25 ([9]). Let (X, η1, η2, E) be a sbts and let (G,E) ∈ SS(X)E . The
pairwise soft closure of (G,E), denoted by scl12(G,E), is the intersection of all
p-closed soft super sets of (G,E), i.e.,

scl12(G,E) =
⋂̃
{(F,E) ∈ ηc12 : (G,E)⊆̃(F,E)}.

Clearly, scl12(G,E) is the smallest p-closed soft set containing (G,E).

Definition 2.26 ([9]). Let (X, η1, η2, E) be a sbts and let (G,E) ∈ SS(X)E . The
pairwise soft interior of (G,E), denoted by sint12(G,E), is the union of all p-open
soft subsets of (G,E), i.e.,

sint12(G,E) =
⋃̃
{(H,E) ∈ η12 : (H,E)⊆̃(G,E)}.

Clearly, sint12(G,E) is the largest p-open soft set contained in (G,E).
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For more details about pairwise soft closure (interior) operator see [9].

Definition 2.27 ([9]). Let (X, η1, η2, E) be a sbts and let (G,E) ∈ SS(X)E . The
pairwise soft kernel of (G,E) [briefly, sker12(G,E)], is the intersection of all p-open
soft supersets of (G,E), i.e.,

sker12(G,E) =
⋂̃
{(H,E) ∈ η12 : (G,E)⊆̃(H,E)}.

Theorem 2.28 ([9]). Let (X, η1, η2, E) be a sbts and let (G,E), (H,E) ∈ SS(X)E.
Then

(1) sker12(X̃, E) = (X̃, E) and sker12(φ̃, E) = (φ̃, E),
(2) (G,E)⊆̃sker12(G,E),
(3) (G,E)⊆̃(H,E) ⇒ sker12(G,E)⊆̃sker12(H,E),
(4) if (G,E) ∈ η12, then sker12(G,E) = (G,E),
(5) sker12[sker12(G,E)] = sker12(G,E),

(6) sker12[
⋂̃
{(Hi, E) : i ∈ ∆}]⊆̃

⋂̃
{sker12(Hi, E) : i ∈ ∆},

(7) sker12[
⋃̃
{(Gi, E) : i ∈ ∆}] =

⋃̃
{sker12(Gi, E) : i ∈ ∆}.

Definition 2.29 ([9]). A soft set (G,E) is said to be a pairwise Λ- soft set in a sbts
(X, η1, η2, E) [briefly, pΛ-soft set], if sker12(G,E) = (G,E).

Theorem 2.30 ([9]). Let (X, η1, η2, E) be a sbts. Then, The family of all pΛ-
soft sets is a soft topology on X. This soft topology, we denoted by ηpΛ. The triple
(X, ηpΛ, E) is the soft topological space associated to the sbts (X, η1, η2, E). Members
of ηpΛ are called pΛ-open soft sets. A soft set (G,E) in a sbts (X, η1, η2, E) is called
a pΛ-closed soft set, if its complement is a pΛ-open soft set. We denote the family
of all pΛ-closed soft set by ηcpΛ.

Theorem 2.31 ([9]). Let (X, η1, η2, E) be a sbts. Then,

η1 ∪ η2 ⊆ η12 ⊆ ηpΛ ⊆ SS(X)E.

Definition 2.32 ([9]). A soft set (G,E) is said to be a pairwise λ-closed soft set
in a sbts (X, η1, η2, E) [briefly, pλ-closed soft set] if (G,E) = (F,E)∩̃(H,E), where
(F,E) is a p-closed soft set and (H,E) is a pΛ-soft set.

The family of all pλ-closed soft sets we denoted by PλCS(X, η1, η2)E .

Theorem 2.33 ([9]). Let (X, η1, η2, E) be a sbts. Then
(1) every p-closed (p-open)soft set is a pλ-closed soft set,
(2) every pΛ-open soft set is a pλ-closed soft set.

Definition 2.34 ([8]). Let (X, η1, η2, E) be a sbts. A soft set (G,E) is said to be a
gp-closed soft set, if scl12(G,E)⊆̃(H,E), whenever (G,E)⊆̃(H,E) and (H,E) is a
p-open soft set.

Theorem 2.35 ([8]). Let (X, η1, η2, E) be a sbts and (G,E) ∈ SS(X)E. Then
every p-closed soft set is a gp-closed soft set.

Definition 2.36 ([8]). A sbts (X, η1, η2, E) is said to be a pairwise soft T ∗1
2

[briefly,

PST ∗1
2

], if every gp-closed soft set is a p-closed soft set.

Theorem 2.37 ([8]). Let (X, η1, η2, E) be a sbts. Then
(X, η1, η2, E) is a PST ∗1

2

iff every soft point is either p-open soft set or p-closed

soft set.
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Definition 2.38 ([8]). A sbts (X, η1, η2, E) is said to be a pairwise soft R∗0 [briefly,
PSR∗0], if xα∈̃scl12(yβ , E)⇒ yβ∈̃scl12(xα, E), where xα, yβ ∈ ξ(X)E .

Theorem 2.39 ([8]). A sbts (X, η1, η2, E) is a PSR∗0 iff every soft point is a gp-
closed soft set.

Theorem 2.40 ([8]). A sbts (X, η1, η2, E) is a PSR∗0 iff xα∈̃scl12(yβ , E) ⇒
scl12(xα, E) = scl12(yβ , E).

Theorem 2.41. [8]] Let (X, η1, η2, E) be a sbts. Then, (X, η1, η2, E) is a PSR∗0 if

and only if scl12(xα, E)∩̃scl12(yβ , E) 6= (φ̃, E) ⇒ scl12(xα, E) = scl12(yβ , E).

Theorem 2.42 ([8]). A sbts (X, η1, η2, E) is a PSR∗0 iff pscl12(xα, E) = psker12(xα, E),
∀ xα ∈ ξ(X)E.

3. Pairwise soft separation axioms

Definition 3.1. A sbts (X, η1, η2, E) is said to be a pairwise soft T ∗0 [briefly, PST ∗0 ],
if for each xα, yβ ∈ ξ(X)E with xα 6= yβ , there exists (G,E) ∈ η12 such that

xα∈̃(G,E), yβ ˜6∈(G,E) or yβ∈̃(G,E), xα˜6∈(G,E).

Example 3.2. Let X = {x, y}, E = {e1, e2} and let

η1 = {(φ̃, E), (X̃, E), (G1, E), (G2, E)},
η2 = {(φ̃, E), (X̃, E), (H1, E), (H2, E)},

where
(G1, E) = {(e1, {x}), (e2, φ)}, (G2, E) = {(e1, X), (e2, {x})},
(H1, E) = {(e1, {y}), (e2, φ)}, (H2, E) = {(e1, X), (e2, {y})}.

Then, (X, η1, η2, E) is a sbts. Thus,

η12 = {(φ̃, E), (X̃, E), (G1, E), (G2, E), (H1, E), (H2, E), (P,E)},
where

(P,E) = {(e1, X), (e2, φ)}. It is clear that (X, η1, η2, E) is a PST ∗0 .

Example 3.3. Let X = {x, y, z}, E = {e1, e2} and

η1 = {(φ̃, E), (X̃, E), (G1, E), (G2, E)},
η2 = {(φ̃, E), (X̃, E), (H,E)},

where
(G1, E) = {(e1, {x}), (e2, {x, y})},
(G2, E) = {(e1, {x}), (e2, {y})},
(H,E) = {(e1, {x, y}), (e2, {z})}.

Then, (X, η1, η2, E) is a sbts. Thus,

η12 = {(φ̃, E), (X̃, E), (G1, E), (G2, E), (H,E), (P1, E), (P2, E)},
where

(P1, E) = {(e1, {x, y}), (e2, X)},
(P2, E) = {(e1, {x, y}), (e2, {y, z})}.

So, (X, η1, η2, E) is not PST ∗0 because ye1 6= ze2 and there is no p-open soft set
contains ye1 but not contains ze2 or contains ze2 but not contains ye1 .

Theorem 3.4. Let (X, η1, η2, E) be a sbts. The following statements are equivalent:
(1) (X, η1, η2, E) is a PST ∗0 ,
(2) scl12(xα, E) 6= scl12(yβ , E), ∀ xα, yβ ∈ ξ(X)E, xα 6= yβ,
(3) sker12(xα, E) 6= sker12(yβ , E), ∀ xα, yβ ∈ ξ(X)E, xα 6= yβ.
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Proof. (1) ⇒ (2): Let xα, yβ ∈ ξ(X)E such that xα 6= yβ . Then, by (1), there

exists (G,E) ∈ η12 such that xα∈̃(G,E), yβ ˜6∈(G,E). It follows that xα˜6∈(G,E)c,

yβ∈̃(G,E)c. Thus, scl12(yβ , E)⊆̃(G,E)c. Since xα˜6∈(G,E)c, xα˜6∈scl12(yβ , E). So,
scl12(xα, E) 6= scl12(yβ , E)[for xα∈̃scl12(xα, E)]. Hence, (2) holds.

(2)⇒ (3) : Let xα, yβ ∈ ξ(X)E such that xα 6= yβ . Then, by (2), scl12(xα, E) 6=
scl12(yβ , E). Thus, there exists a soft point ze such that ze∈̃scl12(xα, E) and

ze˜6∈scl12(yβ , E) or ze˜6∈scl12(xα, E) and ze∈̃scl12(yβ , E).

We claim that ze∈̃scl12(xα, E) and ze˜6∈scl12(yβ , E). Since ze˜6∈scl12(yβ , E), there

exists a p-closed soft set (F,E) such that yβ∈̃(F,E) and ze˜6∈(F,E), or equivalently,

yβ ˜6∈(F,E)c and ze∈̃(F,E)c. So, xα∈̃(F,E)c because if xα˜6∈(F,E)c, then xα∈̃(F,E)

which implies that scl12(xα, E)⊆̃(F,E) which contradicts with ze˜6∈(F,E). Now,

since xα∈̃(F,E)c, sker12(xα, E)⊆̃(F,E)c. It follows that yβ ˜6∈sker12(xα, E) but
yβ∈̃sker12(yβ , E), then sker12(xα, E) 6= sker12(yβ , E). Hence, (3) holds.

(3)⇒ (1) : Let xα, yβ ∈ ξ(X)E such that xα 6= yβ . Then, by (3), sker12(xα, E) 6=
sker12(yβ , E). Thus, there exists a soft point ze such that ze∈̃sker12(xα, E) and

ze˜6∈sker12(yβ , E) or ze˜6∈sker12(xα, E) and ze∈̃sker12(yβ , E).

We claim that ze∈̃sker12(xα, E) and ze˜6∈sker12(yβ , E), then there exists (G,E) ∈
η12 such that yβ∈̃(G,E) but ze˜6∈(G,E). So, xα˜6∈(G,E), for if xα∈̃(G,E), then

sker12(xα, E)⊆̃(G,E) which contradicts with ze˜6∈(G,E)]. Hence, there exists (G,E) ∈
η12 such that yβ∈̃(G,E) and xα˜6∈(G,E). Therefore, (X, η1, η2, E) is a PST ∗0 . �

Lemma 3.5. Let (X, η1, η2, E) be a sbts. Then,
(X, η1, η2, E) is a PST ∗0 if and only if for all xα, yβ ∈ ξ(X)E, xα 6= yβ, there

exists (G,E) ∈ η12 ∪ ηc12 such that xα∈̃(G,E) and yβ ˜6∈(G,E).

Proof. Straightforward. �

Theorem 3.6. Let (X, η1, η2, E) be a sbts. Then,
(X, η1, η2, E) is a PST ∗0 if and only if every soft point xe ∈ ξ(X)E is a pλ-closed

soft set.

Proof. (⇒) : Let xe ∈ ξ(X)E . Then, by Lemma 3.5, for each yα ∈ ξ(X)E such that

yα 6= xe, there exists (G,E) ∈ η12 ∪ ηc12 such that xe∈̃(G,E) and yα˜6∈(G,E).
We set

(M,E) =
⋂̃
{(G,E) ∈ η12 : xe∈̃(G,E), yα˜6∈(G,E)}

and

(N,E) =
⋂̃
{(F,E) ∈ ηc12 : xe∈̃(F,E), yα˜6∈(F,E)}.

Then,
sker12(M,E)

= sker12

⋂̃
{(G,E) ∈ η12 : xe∈̃(G,E), yα˜6∈(G,E)}

⊆̃
⋂̃
{sker12(G,E) ∈ η12 : xe∈̃(G,E), yα˜6∈(G,E)}[by Theorem 2.28 (6)]

=
⋂̃
{(G,E) ∈ η12 : xe∈̃(G,E), yα˜6∈(G,E)} [by Theorem 2.28 (4)]

= (M,E).
Thus, sker12(M,E)⊆̃(M,E). So, (M,E) is a pΛ-soft set. Also, it is clear that (N,E)
is a p-closed soft set. Consequently, (N,E)∩̃(M,E) is a pλ-closed soft set. Now, if
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zβ∈̃(N,E)∩̃(M,E), then zβ∈̃(N,E) and zβ∈̃(M,E). It follows that zβ 6= yα ∀yα,
yα 6= xe. Hence, zβ = xe and thus (N,E)∩̃(M,E) = (xe, E). Therefore, (xe, E) is a
pλ-closed soft set.

Conversely, let xα ∈ ξ(X)E . Then , by hypothesis, (xα, E) = (F,E)∩̃(G,E),
where (F,E) is a p-closed soft set and (G,E) is a pΛ-soft set. For each yβ ∈ ξ(X)E
such that xα 6= yβ , we have yβ ˜6∈(F,E)∩̃(G,E) implies yβ ˜6∈(F,E) or yβ ˜6∈(G,E). Here
we have two cases:

Case 1: If yβ ˜6∈(F,E), then yβ∈̃(F,E)c and xα˜6∈(F,E)c.

Case 2: If yβ ˜6∈(G,E), then yβ ˜6∈sker12(G,E). Thus, there exists (M,E) ∈ η12

such that (G,E)⊆̃(M,E) and yβ ˜6∈(M,E). But xα∈̃(G,E). So xα∈̃(M,E).
From both cases, we have (X, η1, η2, E) is a PST ∗0 . �

Theorem 3.7. If (X, η1, E) or (X, η2, E) is an ST0, then (X, η1, η2, E) is PST ∗0 .

Proof. It follows from the fact ηi ⊆ η12, i = 1, 2. �

Remark 3.8. The converse of Theorem 3.7 is not true in general which shown in
the Example 3.2. It is clear that (X, η1, E) is not ST0 because xe2 6= ye1 and there
is no open soft set in η1 which contains one of points but not contains the other.

Similarly, (X, η2, E) is not ST0.

Theorem 3.9. A sbts (X, η1, η2, E) is PST ∗0 if and only if (X, ηpΛ, E) is an ST0.

Proof. The first direction is immediate from the fact that η12 ⊆ ηpΛ. To prove
the inverse direction, let xα, yβ ∈ ξ(X)E with xα 6= yβ . Then, by hypothesis,

there exists a pΛ-soft set (G,E) ∈ ηpΛ such that xα∈̃(G,E), yβ ˜6∈(G,E)(say). Thus,

yβ ˜6∈sker12(G,E). So, there exists a p-open soft set (H,E) ∈ η12 such that

(G,E)⊆̃(H,E) and yβ ˜6∈(H,E).

Hence, (H,E) ∈ η12, xα∈̃(H,E) and yβ ˜6∈(H,E). Therefore, (X, η1, η2, E) is a PST ∗0 .
�

Theorem 3.10. Every PST ∗1
2

is a PST ∗0 .

Proof. Let (X, η1, η2, E) be a PST ∗1
2

and let xα, yβ ∈ ξ(X)E such that xα 6= yβ .

Then, yβ ˜6∈(xα, E). Now, since xα is a soft point in sbts (X, η1, η2, E), it follows that,
by Theorem 2.37, (xα, E) is either p-closed soft set or p-open soft set.

If (xα, E) is a p-closed soft set, then (xα, E)c is a p-open soft set, i.e., (xα, E)c ∈
η12 and yβ∈̃(xα, E)c, xα˜6∈(xα, E)c.

If (xα, E) is a p-open soft set, then (xα, E) ∈ η12 and yβ ˜6∈(xα, E), xα∈̃(xα, E).
Thus, (X, η1, η2, E) is a PST ∗0 . �

Remark 3.11. The converse of Theorem 3.10 is not true in general which shown
in the following example.

Example 3.12. Let X = {x, y}, E = {e1, e2} and let

η1 = {(φ̃, E), (X̃, E), (G1, E), (G2, E)}, η2 = {(φ̃, E), (X̃, E), (H,E)},
where

(G1, E) = {(e1, {x}), (e2, {y})},
(G2, E) = {(e1, {y}), (e2, {x})},
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(H,E) = {(e1, {x}), (e2, {x})}.
Then, (X, η1, η2, E) is a sbts. Consequently,

η12 = {(φ̃, E), (X̃, E), (G1, E), (G2, E), (H,E), (P1, E), (P2, E)},
where (P1, E) = {(e1, {x}), (e2, X)}, (P2, E) = {(e1, X), (e2, {x})}.
It is clear that (X, η1, η2, E) is a PST ∗0 . Since the soft point
(xe1 , E) = {(e1, {x}), (e2, φ)} is neither p-open soft set nor p-closed soft set, by
Theorem 2.37, (X, η1, η2, E) is not PST ∗1

2

.

Theorem 3.13. If (X, η1, η2, E) is PST ∗1
2

, then (X, ηpΛ, E) is an ST 1
2
.

Proof. Straightforward. �

Remark 3.14. The converse of Theorem 3.13 is not true in general which shown
in the following example.

Example 3.15. In Example 3.12, we deduced that (X, η1, η2, E) is not PST ∗1
2

. The

family of all soft points is ξ(X)E = {xe1 , xe2 , ye1 , ye2}. Now, sker12(xe1 , E) =
(G1, E)∩̃(H,E) = (xe1 , E). Then, (xe1 , E) is an open soft set in ηpΛ. Also,
sker12(xe2 , E) = (G2, E)∩̃(H,E) = (xe2 , E). Thus, (xe2 , E) is an open soft set
in ηpΛ. Since (P1, E) ∈ η12, (P1, E) ∈ ηpΛ which implies that (P1, E)c is a closed
soft set in ηpΛ. But (P1, E)c = (ye1 , E). So (ye1 , E) is a closed soft set in ηpΛ.

Similarly, (P2, E)c = (ye2 , E) it follows that (ye2 , E) is a closed soft set in ηpΛ.
Consequently, every soft point either open soft set or closed soft set in ηpΛ. Hence,
(X, ηpΛ, E) is a ST 1

2
[by Theorem 2.17].

Definition 3.16. A sbts (X, η1, η2, E) is said to be a pairwise soft T ∗1 [briefly PST ∗1 ],
if for each xα, yβ ∈ ξ(X)E with xα 6= yβ , there exist (G,E), (H,E) ∈ η12 such

that xα∈̃(G,E), yβ ˜6∈(G,E) and yβ∈̃(H,E), xα˜6∈(H,E).

Theorem 3.17. Let (X, η1, η2, E) be a sbts. Then

(X, η1, η2, E) is a PST ∗1 if and only if every soft point over X is a p-closed soft set.

Proof. (⇒): Let xα ∈ ξ(X)E . Then by hypothesis, for each yβ ∈ ξ(X)E with

xα 6= yβ , there exist (G,E), (H,E) ∈ η12 such that xα∈̃(G,E), yβ ˜6∈(G,E) and

yβ∈̃(H,E), xα˜6∈(H,E). It follows that scl12(xα, E)⊆̃(H,E)c. Thus, yβ ˜6∈scl12(xα, E)
for all yβ with xα 6= yβ . So, scl12(xα, E) = (xα, E). Hence, every soft point over X
is a p-closed soft set.

(⇐): Obvious. �

Example 3.18. Let Z be the set of all integers numbers and E be a nonempty set
of parameters. We denote Z−(Z+) for the set of all negative (nonnegative) integers,
respectively. Let

η1

= {(Z̃, E), (φ̃, E)}
⋃
{(G,E) ∈ SS(Z)E : Gc(e) is finite subset of Z+ ∀ e ∈ E},

and
η2

= {(Z̃, E), (φ̃, E)}
⋃
{(H,E) ∈ SS(Z)E : Hc(e) is finite subset of Z− ∀ e ∈ E}.

It is easy to verify that η1 and η2 are soft topologies over Z. Then, (Z, η1, η2, E) is
a sbts. Now, let xe ∈ ξ(Z)E . Then
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xe(a) =

{
{x} if e = a
φ if e 6= a

, for all a ∈ E.

Thus, if x ∈ Z+, then (xe, E)c ∈ η1. If x ∈ Z−, then (xe, E)c ∈ η2. Consequently,

for every soft point (xe, E) in (Z̃, E), we have (xe, E)c ∈ η1 ∪ η2 ⊆ η12. So, every
soft point is a p-closed soft set. Hence, (Z, η1, η2, E) is a PST ∗1 .

Theorem 3.19. Let (X, η1, η2, E) be a sbts. If (X, η1, η2, E) is a PST ∗1 ,then every
soft set is a pΛ-soft set, i.e., ηpΛ = SS(X)E is the discrete soft topology on X.

Proof. Let (G,E) be an arbitrary soft set over X. From Theorem 2.28(2), we have

(G,E)⊆̃sker12(G,E). Now, if xe˜6∈(G,E), then (G,E)⊆̃(xe, E)c implies sker12(G,E)
⊆̃sker12(xe, E)c. Since (X, η1, η2, E) is a PST ∗1 , (xe, E)c is a p-open soft super-

set of (G,E). Thus, sker12(G,E)⊆̃(xe, E)c. It follows that xe˜6∈sker12(G,E). So,
sker12(G,E)⊆̃(G,E). Hence, sker12(G,E) = (G,E). Therefore, (G,E) is a pΛ-soft
set, i.e., ηpΛ = SS(X)E . �

Theorem 3.20. Every PST ∗1 is a PST ∗1
2

.

Proof. It is immediate from Theorem 3.17 and Theorem 2.37. �

Corollary 3.21. Every PST ∗1 is a PST ∗0 .

Remark 3.22. The converse of Theorem 3.20 is not true in general which shown
in the following example.

Example 3.23. From Example 3.2, we get
ηc12 = {(φ̃, E), (X̃, E), (G1, E)c, (G2, E)c, (H1, E)c, (H2, E)c, (P,E)c},

where
(G1, E)c = {(e1, {y}), (e2, X)}, (G2, E)c = {(e1, φ), (e2, {y})},
(H1, E)c = {(e1, {x}), (e2, X)}, (H2, E)c = {(e1, φ), (e2, {x})},
(P,E)c = {(e1, φ), (e2, X)}.

Since a soft set (G,E) over X characterized by a function G : E → P (X),
| SS(X)E |=| P (X) ||E|= 2|X|.|E|. Then, in present example we have | SS(X)E |=
16. We set SS(X)E = ηc12

⋃
{(Fi, E) : i = 1, ..., 9},

where
(F1, E) = {(e1, {x}), (e2, {x})}, (F2, E) = {(e1, {x}), (e2, {y})},
(F3, E) = {(e1, {x}), (e2, φ)}, (F4, E) = {(e1, {y}), (e2, {y})},
(F5, E) = {(e1, {y}), (e2, {x})}, (F6, E) = {(e1, {y}), (e2, φ)},
(F7, E) = {(e1, X), (e2, {x})}, (F8, E) = {(e1, X), (e2, {y})},
(F9, E) = {(e1, X), (e2, φ)}.

It is easy to verify that (Fi, E) is not gp-closed soft set, i = 1, ..., 9. It follows
that, every gp-closed soft set is a p-closed soft set. Consequently, (X, η1, η2, E) is a
PST ∗1

2

. It is clear that (xe1 , E) is a soft point but it is not p-closed soft set. Thus,

(X, η1, η2, E) is not a PST ∗1 .

Theorem 3.24. If (X, η1, E) or (X, η2, E) is an ST1, then (X, η1, η2, E) is a PST ∗1 .

Proof. Straightforward. �

Remark 3.25. The converse of Theorem 3.24 is not true in general which shown
in the following example.
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Example 3.26. In Example 3.18, we have (X, η1, η2, E) is a PST ∗1 . If x is a positive

integer and e ∈ E, then (xe, E) is a soft point in (Z̃, E) but it is not closed soft set
in η2, because xe(e) = {x} * Z−. Thus, by Theorem 2.19, (X, η2, E) is not ST1.

Similarly, if y is a negative integer and a ∈ E, then (ya, E) is a soft point in (Z̃, E)
but it is not closed soft set in η1, because ya(a) = {y} * Z+. Thus, (X, η1, E) is
not ST1. Consequently, (X, η1, E) and (X, η2, E) are not ST1. Though, we have
(X, η1, η2, E) is a PST ∗1 .

Theorem 3.27. If (X, η1, η2, E) is a PST ∗1 , then it is a PSR∗0.

Proof. Let (X, η1, η2, E) be a PST ∗1 . Then, every soft point (xe, E) is a p-closed
soft set, it follows that every soft point (xe, E) is a gp-closed soft sets [by Theorem
2.35]. Therefore, by Theorem 2.39, (X, η1, η2, E) is a PSR∗0. �

Remark 3.28. The converse of Theorem 3.27 is not true in general which shown
in the following example.

Example 3.29. Let X = {a, b}, E = {e1, e2} and let

η1 = {(φ̃, E), (X̃, E), (G,E)}, η2 = {(φ̃, E), (X̃, E), (H,E)},
where

(G,E) = {(e1, {a}), (e2, {b})}, (H,E) = {(e1, {b}), (e2, {a})}.
Then, (X, η1, η2, E) is a sbts. Thus, η12 = {(φ̃, E), (X̃, E), (G,E), (H,E)}.
Moreover, ηc12 = {(φ̃, E), (X̃, E), (G,E), (H,E)}. It is clear that
scl12(ae1 , E) = scl12(be2 , E) = (G,E) and scl12(ae2 , E) = scl12(be1 , E) = (H,E).

Thus, ae1 ∈̃scl12(be2 , E) and be2∈̃scl12(ae1 , E), be1 ∈̃scl12(ae2 , E) and ae2∈̃scl12(be1 , E).
Also, we have
ae1

˜6∈scl12(be1 , E), be1
˜6∈scl12(ae1 , E) and ae2

˜6∈scl12(be2 , E), be2
˜6∈scl12(ae2 , E).

So, (X, η1, η2, E) is a PSR∗0. It is clear that (ae1 , E) is a soft point but it is not
p-closed soft set. Hence, (X, η1, η2, E) is not PST ∗1 .

Theorem 3.30. A sbts (X, η1, η2, E) is a PST ∗1 if and only if it is PST ∗0 and PSR∗0.

Proof. The first direction is immediate from the Corollary 3.21 and Theorem 3.27.
To prove the inverse direction, let xe ∈ ξ(X)E . Suppose that yα∈̃scl12(xe, E).
Then by PSR∗0 property, scl12(yα, E) = scl12(xe, E) [by Theorem 2.40]. By PST ∗0
property, we have (yα, E) = (xe, E) [by Theorem 3.4 (2)]. Thus, yα∈̃(xe, E). So,
scl12(xe, E) = (xe, E). Hence, (X, η1, η2, E) is a PST ∗1 . �

Theorem 3.31. If (X, η1, η2, E) is PST ∗1 , then (X, ηpΛ, E) is an ST1.

Proof. It is immediate from Theorem 3.19. �

Definition 3.32. A sbts (X, η1, η2, E) is said to be a pairwise soft R∗1 [briefly,
PSR∗1], if for each xα, yβ ∈ ξ(X)E , scl12(xα, E) 6= scl12(yβ , E), there exist (G,E), (H,E) ∈
η12 such that scl12(xα, E)⊆̃(G,E), scl12(yβ , E)⊆̃(H,E) and (G,E)∩̃(H,E) = (φ̃, E).

Theorem 3.33. If (X, η1, η2, E) is a PSR∗1, then it is PSR∗0.

Proof. Let scl12(xα, E) 6= scl12(yβ , E). Then, by hypothesis, there exists (G,E),
(H,E) ∈ η12 such that
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scl12(xα, E)⊆̃(G,E), scl12(yβ , E)⊆̃(H,E) and (G,E)∩̃(H,E) = (φ̃, E).

It follows that scl12(xα, E)∩̃scl12(yβ , E)⊆̃(G,E)∩̃(H,E) = (φ̃, E). Thus,

scl12(xα, E)∩̃scl12(yβ , E) = (φ̃, E).

So, by Theorem 2.41, (X, η1, η2, E) is a PSR∗0. �

Remark 3.34. The converse of Theorem 3.33 is not true in general which shown
in the following example.

Example 3.35. Let X be an infinite universe and let E be a set of parameters.
Then ηco ⊆ SS(X)E is a soft topology on X , where

ηco = {(φ̃, E)}
⋃
{(G,E) ∈ SS(X)E : Gc(e) is finite ∀ e ∈ E} [see Proposition 3.1

in [16] ]. Thus, (X, ηco, ηco, E) is a PST ∗1 . So it is PSR∗0. [here η12 = ηco]. Now, for
any two non-null soft set (G,E), (F,E) in ηco, G

c(e), F c(e) are finite for all e ∈ E.
It follows that Gc(e) ∪ F c(e) is finite, for all e ∈ E. So, (G,E)c∪̃(F,E)c is a finite
soft set . On the other hand,

(G,E)∩̃(F,E) = (X̃, E) \ (G,E)c∩̃(X̃, E) \ (F,E)c = (X̃, E) \ [(G,E)c∪̃(F,E)c].

Hence, (G,E)∩̃(F,E) 6= (φ̃, E). Therefore, (X, ηco, ηco, E) is not PSR∗1.

Definition 3.36. A sbts (X, η1, η2, E) is said to be a pairwise soft T ∗2 [briefly,
PST ∗2 ], if ∀ xα, yβ ∈ ξ(X)E , xα 6= yβ , there exist (Oxα

, E), (Oyβ , E) ∈ η12 such

that (Oxα
, E)∩̃(Oyβ , E) = (φ̃, E), where (Oxα

, E) means that xα∈̃(Oxα
, E).

Example 3.37. For any soft topologyη on X, we have (X, η, SS(X)E , E) is a PST ∗2 .

Theorem 3.38. Every PST ∗2 is a PST ∗1 .

Proof. Immediate. �

Remark 3.39. The converse of Theorem 3.38 is not true in general as shown in
Example 3.35.

Theorem 3.40. If (X, η1, E) or (X, η2, E) is a ST2, then (X, η1, η2, E) is a PST ∗2 .

Proof. It is clear from the fact η1, η2 ⊆ η12. �

Theorem 3.41. (X, η1, η2, E) is a PST ∗2 if and only if it is PST ∗0 and PSR∗1.

Proof. It is easy to prove that every PST ∗2 is a PST ∗0 . Let scl12(xα, E) 6= scl12(yβ , E).
Then, xα 6= yβ . Thus, there exist (G,E), (H,E) ∈ η12 such that

xα∈̃(G,E), yβ∈̃(H,E) and (G,E)∩̃(H,E) = (φ̃, E).

It follows that, by Theorem 2.28, sker12(xα, E)⊆̃(G,E) and sker12(yβ , E)⊆̃(H,E).
So, by Theorems 2.42 and 3.27,
scl12(xα, E)⊆̃(G,E), scl12(yβ , E)⊆̃(H,E) and (G,E)∩̃(H,E) = (φ̃, E).

Hence, (X, η1, η2, E) is a PSR∗1.
Conversely, let xα 6= yβ . Then, by given and Theorem 3.4, scl12(xα, E) 6=

scl12(yβ , E). Thus, by hypothesis there exist (G,E), (H,E) ∈ η12 such that

scl12(xα, E)⊆̃(G,E), scl12(yβ , E)⊆̃(H,E) and (G,E)∩̃(H,E) = (φ̃, E).

It follows that xα∈̃(G,E), yβ∈̃(H,E) and (G,E)∩̃(H,E) = (φ̃, E).
So, (X, η1, η2, E) is a PST ∗2 . �
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Corollary 3.42. Let (X, η1, η2, E) be a sbts. The following diagram holds:

PST ∗2 ⇒ PST ∗1 ⇒ PST ∗1
2

⇒ PST ∗0 .

⇓ ⇓

PSR∗1 ⇒ PSR∗0

Theorem 3.43. Let (X, η1, η2, E) be a sbts. Then
(1) if (X, η1, η2, E) is a PST ∗i , then (X, ηe1, η

e
2) is a PTi, i = 0, 1

2 , 1, 2, for all
e ∈ E,

(2) if (X, η1, η2, E) is a PSR∗i , then (X, ηe1, η
e
2) is a PRi, i = 0, 1, for all e ∈ E.

Proof. (1) We shall prove the theorem at i = 0 and the others are similar. Let
x, y ∈ X such that x 6= y. Then xe 6= ye ∀ e ∈ E. Since (X, η1, η2, E) is a PST ∗0 ,

there exists (G,E) ∈ η12 such that xe∈̃(G,E), ye˜6∈(G,E) or xe˜6∈(G,E), ye∈̃(G,E).

We claim that xe∈̃(G,E), ye˜6∈(G,E), then x ∈ G(e) and y 6∈ G(e). Now, since
(G,E) ∈ η12, G(e) ∈ ηe12. Thus, for all x, y ∈ X such that x 6= y, there exists
G(e) ∈ ηe12 such that x ∈ G(e), y 6∈ G(e) or x 6∈ G(e), y ∈ G(e). So, (X, ηe1, η

e
2, E) is

a PT0.
(2) At i = 0, see Theorem 5.7 in [8]. Similarly, At i = 1. �

Theorem 3.44. Let (X, η1, η2, E) be a sbts and Y ⊆ X. Then (Y, η1Y , η2Y , E) is a
sbts on Y . Moreover, η1Y 2Y = η12Y , where
η12Y = {(Ỹ , E)∩̃(G,E) : (G,E) ∈ η12},

and
η1Y 2Y = {(H,E) ∈ SS(Y )E : (H,E) = (H1, E)∪̃(H2, E), (Hi, E) ∈ ηiY , i = 1, 2}.

Proof. Since (X, η1, η2, E) is a sbts, (X, η1, E) and (X, η2, E) are soft topological
spaces on X. Since Y ⊆ X, (Y, η1Y , E) and (Y, η2Y , E) are soft topologies on Y [see
Definition 27 in [19]]. Consequently, (Y, η1Y , η2Y , E) is a sbts on Y .

Now, Since (X, η1, η2, E) is a sbts, (X, η12, E) is a supra soft topological space.
Then, (Y, η12Y , E) is a supra soft topological space on Y .

Now, let (G,E) ∈ η12Y . Then, there exists (H,E) ∈ η12 such that

(G,E) = (Ỹ , E)∩̃(H,E)

= (Ỹ , E)∩̃[(H1, E)∪̃(H2, E)], (H1, E) ∈ η1 and (H2, E) ∈ η2

= [(Ỹ , E)∩̃(H1, E)]∪̃[(Ỹ , E)∩̃(H2, E)].

Since (Ỹ , E)∩̃(H1, E) ∈ η1Y and (Ỹ , E)∩̃(H2, E) ∈ η2Y ,

[(Ỹ , E)∩̃(H1, E)]∪̃[(Ỹ , E)∩̃(H2, E)] ∈ η1Y 2Y . Thus, (G,E) ∈ η1Y 2Y . So, η12Y ⊆
η1Y 2Y .

By similar way, we can prove that η1Y 2Y ⊆ η12Y . �

Theorem 3.45. Let (X, η1, η2, E) be a sbts and let Y ⊆ X. Then
(1) if (X, η1, η2, E) is a PST ∗i , then (Y, η1Y , η2Y , E) is a PST ∗i , i = 0, 1

2 , 1, 2,
(2) if (X, η1, η2, E) is a PSR∗i , then (Y, η1Y , η2Y , E) is a PSR∗i , i = 0, 1.

Proof. Straightforward. �
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4. Conclusion

. Soft sets play a very important role in general and soft topology and they are now
the research topics of many topologists worldwide. Some important applications
of soft sets are in decision making, data mining, medical diagnosis and complete
(incomplete) information systems, etc. Indeed a significant theme in general, soft
topology and real analysis concerns the variously modified forms of continuity, sepa-
ration axioms etc. by utilizing crisp and soft sets. The concept of a soft bitopological
space was introduced by Ittanagi [2]. Kandil et al.[9] introduced some structures of
soft bitopological space (X, η1, η2, E). In this paper, we introduced and studied
some classes of soft bitopological spaces, namely, PST ∗0 , PST ∗1 , PST ∗2 and PSR∗1
spaces. Characterizations of these spaces are obtained. Moreover, we studied the
implications of these types of soft separation axioms in soft and crisp cases. Finally,
we showed that these soft separation axioms are hereditary properties. The future
work is to introduce the relation between the family of all information system with
set of subjects X and the family of all soft bitopologies on X itself, also we will
give some application in decision making by utilizing properties of soft bitopological
space.
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