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ABSTRACT. In this paper, we first introduce some open and closed sets in
fuzzy m-space and give some interrelations between them. Afterwards, dif-
ferent types of continuity between fuzzy m-spaces have been introduced and
characterized and also found the mutual relationships among themselves.
Again different types of fuzzy m-compact spaces, fuzzy m-s-closed space
and fuzzy s-Urysohn space are introduced and have shown that images of
different types of fuzzy m-compact spaces under the functions defined in
Section 4 are fuzzy m-s-closed space.
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1. INTRODUCTION

L. [1], the notion of fuzzy minimal structure (in the sense of Lowen) has been
introduced as follows : A family M of fuzzy sets in X is said to be a fuzzy minimal
structure on X if aly € M for every a € [0,1]. A more general version of fuzzy
minimal structure (in the sense of Chang) are introduced in [3, (] as follows : A
family F of fuzzy sets in X is a fuzzy minimal structure on X if 0x € F and
1x € F. In this paper we use the notion of fuzzy minimal structure in the sense of
Chang.

2. PRELIMINARIES

In 1965, Zadeh introduced the notion of fuzzy set [8] A which is a mapping from
a non-empty set X into the closed interval [0, 1], i.e., A € IX. The support [7] of
a fuzzy set A, denoted by suppA and is defined by suppA = {x € X : A(z) # 0}.
The fuzzy set with the singleton support {z} C X and the value ¢t (0 < ¢t < 1) will
be denoted by z;. 0x and 1x are the constant fuzzy sets taking values 0 and 1
respectively in X. The complement [3] of a fuzzy set A in X is denoted by 1x \ A
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and is defined by (1x \ A)(z) = 1 — A(z), for each x € X. For any two fuzzy sets
A/ B in X, A < B means A(z) < B(x), for all x € X [8] while A¢B means A is
quasi-coincident (g-coincident, for short) [7] with B, i.e., there exists © € X such
that A(x) + B(x) > 1. The negation of these two statements will be denoted by
A L B and A /4B respectively. For a fuzzy point z, and a fuzzy set Ain X, z, € A
means z, < A4, i.e., A(x) > .

3. Some Different Types of Open and Closed Sets in Fuzzy m-Space

Let X be a non-empty set and m;x C IX. Then m;x is said to be a fuzzy
minimal structure [3, 6] on X if Ox,1x € m;x. The members of myx are called
fuzzy mx-open sets and the complement of a fuzzy m;x-open set is called fuzzy
myx-closed set. The pair (X, mx) is called fuzzy m-space.

Definition 3.1 ([2]). Let X be a non-empty set and mx, a fuzzy minimal structure
on X. For A € IX, the fuzzy m x-closure and fuzzy mx-interior of A, denoted by
myx-clA and myx-intA respectively, are defined as follows :
mx-clA=N{F: A< F,1x\Fem;x}
myx-intA=\{D:D < A,D e mx}.

It can be observed that given a fuzzy minimal structure m;x on X, if A € IX,
the myx-intA may not be an element of myx.

Proposition 3.2 ([2]). Let X be a non-empty set and myrx, a fuzzy minimal struc-
ture on X. Then for any A € I, a fuzzy point xo € myx -clA iff for any U € mx
with xoqU, UqgA.

Lemma 3.3 ([2]). Let X be a non empty set and myx, a fuzzy minimal structure
on X. For A, B € IX, the following hold:
(1) A < B which implies that myx -intA < myx-intB, mrx-clA < myx-clB.

(2) ’I’I’L[X-CZOX = Ox, mIX-Cllx = 1_)(, mlx—intOX = Ox, me-z'ntlx = 1)(.
(3) myx-intA < A < myx-clA.

(4) myx-clA=A if 1lx \ A€ myx, mx-intA=A, if A€ myx.

(5) myx-cl(1x \ A) = 1x \ myx-intA, myx-int(1x \ A) = 1x \ mx-clA.
(6) myx-cl(myx-clA) = myx -clA, myx -int(mrx-intA) = mrx-intA.

It is clear from Lemma 3.3 that

Theorem 3.4. Let (X, mx) be a fuzzy m-space and A, B € I’X. Then the following
statements are true:

(1) myx-clA\/ myx-clB < mrx-cl(A\/ B).

(2) myx-int(A A\ B) < myx-intA \ myx-intB.

We now introduce the following definitions.

Definition 3.5. Let (X,m;x) be a fuzzy m-space. A € IX is said to be fuzzy
(i) myx-regular open, if A = mrx-int(mrx-clA),
(ii) myx-semiopen, if A < mx-cl(mrx-intA),
(iii) myx-a-open, if A < myx-int(mrx-cl(mrx-intA)),
(iv) myx-B-open, if A < mx-cl(mpx-int(mx-clA)),
(v) myx-preopen, if A < mrx-int(mrx-clA).
214
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The complements of the above mentioned fuzzy sets are called their respective
closed sets.

The infimum of all fuzzy mx-semiclosed (resp., fuzzy myx-a-closed, fuzzy m;x-
preclosed) sets containing a fuzzy set A in X is called fuzzy mx-semiclosure (resp.,
fuzzy myx-a-closure, fuzzy myx-preclosure) of A and is denoted by myx-sclA (resp.,
myx-aclA, mrx-pclA).

We denote by myx-RO(X) (resp., myx-RC(X), mix-SO(X), mx-aO(X), myx-
PO(X), mix-fO(X)) the family of all fuzzy mx-regular open (resp., fuzzy mrx-
regular closed, fuzzy mx-semiopen, fuzzy mx-a-open, fuzzy mx-preopen, fuzzy
myx-F-open) sets in X.

Definition 3.6. Let (X, m;x) be a fuzzy m-space and A € IX. A fuzzy point z,
in X is said to be fuzzy mx-0-semicluster point of A, if myx-clUgA for every fuzzy
mrx-semiopen set U with x,qU. The union of all fuzzy mx-6-semicluster points
of A is called fuzzy mx-6-semiclosure of A and is denoted by mx-6-sclA.

A(€ IY) is said to be fuzzy m;x-0-semiclosed if A = m;x—6-sclA. The comple-
ment of a fuzzy m;x-6-semiclosed set is called fuzzy mjx-6-semiopen.

Definition 3.7. Let (X, m;x) be a fuzzy m-space and A € IX. The mx-r-kernel
of A, denoted by mx-r-KerA, is defined as follows:

myx-r-KerA = A{U : U € m;x-RO(X),A <U}.

Definition 3.8. Let (X, m;x) be a fuzzy m-space and A € IX. The fuzzy m x-6-
closure and fuzzy myx-d-interior of A, denoted by myx-dclA and myx-dintA resp.,
are defined by
myx-0clA = {x, € X : Agmx-int(myx-clU), for all U € m;x with z,qU},
myx-0intA = \{W : W € m;x-RO(X),W < A}.

It is clear from Definition 3.8 that

Theorem 3.9. Let (X, m;x) be a fuzzy m-space and A € IX. The following state-
ments are true:

(1) If A < B, then myx-0clA < myx-0clB.

(2) If A < B, then myx-6intA < myx-dintB.

(3) myx-dintA < myx-intA < mrx-clA < myx-dclA

(4) 1x \ myx-dintA = mrx-dcl(1x \ A).

(5) mrx -(5int(1X \A) = lX \me -6clA.

Definition 3.10. Let (X, m;x) be a fuzzy m-space and A € I’X. Then A is said to
be fuzzy
(i) mrx-0-open (resp., myx-d-closed), if A = myx-dintA (resp., A = mx-dclA),
(ii) myx-d-preopen, if A < myx- int(mrx-0clA),
(iil) myx-d-semiopen, if A < myx-cl(mrx-dintA).

The complements of the above mentioned fuzzy sets are called their respective
closed sets.
The collection of all fuzzy myx-d-open (resp., fuzzy myx-d-preopen, fuzzy myrx-
J-semiopen) sets is denoted by m;x-6O(X) (resp., mx-dPO(X), m;x-050(X)).
The collection of all fuzzy mx-d-closed (resp., fuzzy mjx-d-preclosed, fuzzy m;x-
d-semiclosed) sets is denoted by myx-dC(X) (resp., mix-0PC(X), m;x-6SC(X)).
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Definition 3.11. Let (X, mx) be a fuzzy m-space and A € IX. Then A is said to
be fuzzy (i) myrx-e-open, if A < myx-cl(mrx-§intA)\ mrx-int(myx-6clA),

(ii) myx-e*-open, if A < myx-cl(mrx-int(mrx-dclA)),

(iii) myx-a-open, if A < mypx-int(mx-cl(mrx-dintA)).

The complements of the above mentioned sets are called their respective closed
sets.

The collection of all fuzzy myx-e-open (resp., fuzzy myx-e*-open, fuzzy mrx-a-
open) sets is denoted by m;x-eO(X) (resp., myx-e*O(X), m;x-aO(X)).

The collection of all fuzzy myx-e-closed (resp., fuzzy myx-e*-closed, fuzzy m;x-
a-closed) sets is denoted by mx-eC(X) (resp., mx-¢*C(X), myx-aC(X)).

The above definitions show the following relationships.

Example 3.12. Let X = {a,b},m;x = {0x,1x,A, B} where A(a) = 0.4, A(b) =

0.6, B(a) = 0.6, B(b) = 0.4. Then (X, m;x) is a fuzzy m-space. Clearly myx = mx-

RO(X). Consider the fuzzy set C' defined by C(a) = C(b) = 0.6. Now
C=\V{UeI*:Uemx-ROX),U <C}=m;x-dintC.

Then C is fuzzy myx-6-open in X, but C & mx as well as C & m;x-RO(X).

Example 3.13. Let X = {a,b},m;x = {0x,1x,A} where A(a) = A(b) = 0.6.
Then (X, myx) is a fuzzy m-space. Then A € myx but A € m;x-60(X). Again
A€ mix-a0O(X).

Example 3.14. Let X = {a,b},m;x = {0x,1x, A} where A(a) = 0.5, A(b) = 0.6.
Then (X, mrx) is a fuzzy m-space. Consider the fuzzy set B defined by B(a) =
B(b) = 0.6. Then myx-int(myx-cl(mx-intB)) = 1x > B. Thus B € mx-aO(X),
but B Q/ mrx.

Example 3.15. Let X = {a,b},m;x = {0x,1x, A} where A(a) = 0.5, A(b) = 0.4.
Then (X, mrx) is a fuzzy m-space. Consider the fuzzy set B defined by B(a) =
B(b) = 0.5. Then myx-cl(myx-intB) = 1x \ A > B. Thus B € mx-SO(X). But
myx-int(myx-cl(mrx-intB)) = A < B. So B € mx-aO(X).

Again myx-cl(myx-int(myx-clB)) = 1x \ A > B. Then B € m;x-pO(X), but
mrx-int(mx-clB) = A < B. Thus B ¢ mx-PO(X).

Example 3.16. Let X = {a,b},m;x = {0x,1x, A} where A(a) = 0.5, A(b) = 0.4.
Then (X, m;x) is a fuzzy m-space. Now m;x-60(X) = {0x,1x,A}. Consider the
fuzzy set B defined by B(a) = 0.5, B(b) = 0.3. Then myx-int(m;x-6clB) = mx-
int(lx \ A) = A > B. Thus B € m;x-0PO(X), but B & myx.

Again myx-cl(myx-int(mrx-6clB)) = 1x \ A > B. Then B € m;x-e*O(X),
but mrx-cl(myx-intB) = 0x # B. Thus B € mx-SO(X). Also myx-int(myx-
clB) = A > B. So B € mix-PO(X), but myx-int(m;x-cl(mrx-intB)) = 0x # B.
Hence B € m;x-aO(X).

Example 3.17. Consider Example 3.16 and the fuzzy set C defined by C(a) =
C(b) = 0.5. Then myx-int(m;x-6clC) = mx-int(1x\A) = A < C. Thus C & myx-
dPO(X). But myx-cl(mx-8intC) = myx-clA=1x \ A > C. So C € myx-eO(X).
Again myx-int(myx-cl(mx-intC)) = A < C. Then C ¢ mix-aO(X). But
myx-cl(mrx-6intC) > C. Thus C € mx-6SO(X). Also C € mix-60(X) and
myx-int(myx-cl(mrx-dintC)) = A < C. So C € mx-aO(X).
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Example 3.18. Let X = {a,b},mrx = {0x,1x,A, B} where A(a) = 0.5, A(b) =
0.4, B(a) = 0.5, B(b) = 0.7. Then (X, myx) is a fuzzy m-space. Here m;x-00(X) =
{0x,1x,A}. Consider the fuzzy set C' defined by C(a) = 0.5,C(b) = 0.3. Then
myx-int(myx-6clC) = myx-int(lx \ A) = A > C. Thus C € mx-0PO(X), but
myx-int(myx-clC) = 0x # C. So C € m;x-PO(X).

Now myx-int(mrx-dclC) = A > C. Then C' € mx-eO(X).

Again myx-cl(mrx-int(mrx-dclC)) = 1x \ A > C. Then C € myx-e*O(X), but
myx-cl(mrx-int(mrx-clC)) = myx-cl(myx-int(1x\B)) = 0x 2 C. Thus C & m x-
BO(X). Also myx-int(myx-cl(mx-intC)) =0x # C. So C & mix-aO(X).

Example 3.19. Consider Example 3.12 and the fuzzy set D defined by D(a) =
0.6, D(b) = 0.61. Then mx-dintD = \J/{U € m;x-RO(X) : U < D} = C and
thus myx-int(mx-cl(myx-6intD)) = 1x > D. So D € mx-aO(X), but D & myx-
00(X).

Theorem 3.20. Let (X, mrx) be a fuzzy m-space. Then the following statements
are true:
(1) The union of any collection of fuzzy mrx -e*-open sets is fuzzy myx -e*-open.
(2) The union of any collection of fuzzy mrx -e-open sets is fuzzy myx -e-open.
(3) The union of any collection of fuzzy myx-a-open sets is fuzzy mrx -a-open.

Proof. Let {G, : @ € A} be any collection of fuzzy m;x-e*-open sets. Then for any
a € A, Go < myx-cl(myx-int(mpx-6clG,)). Also, Go < \/ Ga. Thus,

a€eA
Go < myrx-cl(myx-int(myx-0clG,))
< myx-cl(mrx-int(myx-dcl( \/ Ga))),

a€A

for all & € A. So \/ Go < mpx-cl(mypx-int(mypx-dcl( \/ G4))). Hence \/ Gy isa
a€eA a€cA a€cA
fuzzy mx-e*-open.

The proofs of (2) and (3) are same as that of (1). O

Definition 3.21. Let (X,m;x) be a fuzzy m-space and A € IX. Then fuzzy
myx-e-closure (resp., fuzzy myx-e*-closure, fuzzy mrx-a-closure) of A, denoted by
myx-e-clA (resp., myx-e*-clA, mrx-a-clA), is defined by
mrx-e-clA = N{F € IX: A<F,1x \ F € myx-eO(X)}
(resp., myx-e*-clA = N{F € IX : A< F,1x \ F € m;x-e*O(X)},
myx-a-clA = N{F € I* : A< F,1x \ F € m;x-aO0(X)}).

Lemma 3.22. Let (X, mrx) be a fuzzy m-space. Then the following statements
hold:

(1) For any fuzzy point o and any U € I, x4 € myx-e*-clU = for any V €
myx-e*O(X) with x,qV, VqU.

(2) For any two fuzzy sets U,V where V. € mx-e*O(X), U 4V = mx-e*-
cdU 4V.

(3) For any A € mrx, myx-sclA = myx -int(myx -clA).

(4) For any A € mix-RO(X), myx-0-sclA = A.

(5) For any A € mx-BO(X), mrx -clA = myx -aclA.

(6) For any A € myx-SO(X),m;x-clA = myx -pclA.
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(7) For any A € mrx, myx-sclA = myx-0-sclA.

Proof. (1) Let V € myx-e*O(X) with z,qV. Then V(z)+a > 1. Thus z, € 1x\V
which is myx-e*-closed in X. So U £ 1x \ V. Hence there exists y € X such that
U(y) > 1—V(y). Therefore UqV.

(2) If possible, let myx-e*-clUqV, but U 4V. Then there exists x € X such that
(myx-e*-clU)(x)+V (z) > 1. Thus V(x)+t > 1, where t = (m;x-e*-clU)(z). So x; €
myx-e*-clU, where x:qV,V € mx-e*O(X). By definition, VqU, a contradiction.

(3) We first prove that myx-clA = myx-cl(myx-sclA), for A € myx.

Now A < myx-sclA < myx-clA. Then myx-clA < myx-cl(mx-sclA) < myx-
clA. Thus mrx-clA = myx-cl(mx-sclA). Since infimum of any two fuzzy myx-
semiclosed sets in a fuzzy m-space is fuzzy mx-semiclosed, myx-sclA is fuzzy myx-
semiclosed in X. So myx-int(myrx-cl(myx-sclA)) < mrx-sclA and so by above,
(3.22.1) myx-int(myx-clA) < myx-sclA.

To prove the converse, let z, & myx-int(myrx-clA). Then [mx-int(mx-clA)](x)
< . Thus zoq(1x \ myx-int(myx-clA)) = myx-cl(mx-int(1x \ A)). Since A €
mrx, A < myx-int(myx-clA). Thus
(3.22.2) A gmrx-cl(mpx-int(1x \ A)).

Now myrx-cl(mx-int(myx-cl(mrx-int(1x \ A)))) > myx-cl(mx-int(1x \ A)).
Thus myx-cl(mx-int(1x \ A)) € m;x-SO(X). So by (3.22.2), x, & myx-sclA.
Consequently,

(3.22.3) myx-sclA < myx-int(myx-clA).
Combining (3.22.1) and (3.22.3), we get the result.

(4) Tt is obvious that A < myx-6-sclA. To prove the converse, let x, € myx-6-
sclA, but z, € A. Then A(x) < . Thus z4q(1x \ A) = myx-cl(mrx-int(1x \ A)).
So 1x \ A € m;x-SO(X). Also,

(3.22.4) myx-cl(1x \ A) = myx-cl(mpx-cl(mpx-int(lx \ A)))
=myx-cl(mx-int(1x \ 4)) =1x \ A.

As x, € myx-0-sclA, myx-cl(1x \ A)gA. So (1x \ A)gA by (3.22.4) which is absurd.

Hence myx-0-sclA < A, for A € mx-RO(X).

(5) Clearly, myx-aclA < myx-clA. To prove the converse, let ., € myx-clA,
where A € mx-O(X). Then A < myx-cl(mx-int(myx-clA)). Thus
(3.22.5) myx-int(mpx-cl(mrx-int(1x \ 4))) < 1x \ A.

Let U € myx-aO(X) with 2,qU < myx-int(mx-cl(mrx-intU)). Then zoq(mx-
int(mypx-cl(myx-intU))). Then there exists V' € myx such that z,qV < myx-
cl(myx-intU). So VgA. Hence
(3.22.6) V = myx-intV < myx-int(myx-cl(mx-intU))qA.

If possible, let U gA. Then U < 1x \ A. Thus by (3.22.5),

mrx-int(mx-cl(mrx-intU)) < mrx-int(mrx-cl(mrx-int(1x \ A))) < 1x\ A. So
myx-int(myx-cl(mrx-intU)) 4A. This is contradicts (3.22.6).

(6) It is similar to that of (5).

(7) Tt is clear that myx-sclA < myx-0-sclA, for any A € I*. To prove the
converse, let x, € mrx-0-sclA, but z, & myx-sclA. Then there exists U € myx-
SO(X) with ,qU, U A = U < 1x \ A. Thus U < cl(1x \ A) = 1x \ A. So
cU gA. This is a contradiction, as x, € myx-6-sclA. O
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4. Continuous functions in fuzzy m-space

In this section, a new class of continuous functions between fuzzy m-spaces are
introduced and characterized and found the mutual relationships among themselves.

Definition 4.1. Let (X, mrx) and (Y, mv) be two fuzzy m-spaces and f: X =Y
be a function between fuzzy m-spaces. Then f is called fuzzy

(i) contra R-map, if f~1(A) € m;x-RC(X) for all A € m;v-RO(Y),

(ii) (8,7)-continuous, if f=1(A) € m;x-6C(X) for all A € mv-RO(Y),

(iii) (6-semi, r)-continuous, if f~1(A4) € m;x-6SC(X) for all A € m;v-RO(Y),
(iv) (6-pre, r)-continuous, if f~1(A) € m;x-dPC(X) for all A € mv-RO(Y),
(v) (e*,r)-continuous, if f~1(A) € myx-e*C(X) for all A € mpy-RO(Y),

(vi) (e,r)-continuous, if f~1(A) € myx-eC(X) for all A € mpv-RO(Y),

(vii) (a,7)-continuous, if f~1(A) € myx-aC(X) for all A € m;v-RO(Y).

Theorem 4.2. Let (X, mrx) and (Y,mpv) be two fuzzy m-spaces and f : X =Y
be a function between fuzzy m-spaces. Then the following statements are true:

(1) If f is fuzzy (6, 7)-continuous, then f is (a,r)-continuous.

(2) If f is fuzzy (a,r)-continuous, then f is fuzzy (6-semi, r)-continuous.

(3) If f is fuzzy (a,r)-continuous, then f is fuzzy (0-pre, r)-continuous.

(4) If f is fuzzy (0-semi, r)-continuous, then f is fuzzy (e, r)-continuous.

(5) If f is fuzzy (d-pre, r)-continuous, then f is fuzzy (e, r)-continuous.

(6) If f is fuzzy (e,7)-continuous, then f is fuzzy (e*,r)-continuous.

Proof. (1) Let A € myv-RO(Y). Then f~1(A) € m;x-6C(X). Thus
myx-6cl(f~1(A)) = f1(A). Now
myx-cl(mpx-int(mpx-5cl(f~1(A))))
= myx-cl(myx-int(f~1(A)))
< mpx-cl(f~'(A))
< myx-ocl(f~1(A))
= fH(A).
Then f~1(A) € myx-aC(X). Thus f is fuzzy (a,r)-continuous.
(2) The proof follows from the fact that A € m;x-aC(X) = A € m;x-05C(X).
(3) The proof follows from the fact that A € m;x-aO(X) = A € mx-6PO(X).
(4) The proof follows from the fact that A € m;x-6SC(X) = A € myx-eC(X).
(5) The proof follows from the fact that A € m;x-6PC(X) = A € mx-eC(X).
(6) The proof follows from the fact that A € myx-eC(X) = A € mx-e*C(X).
0

But the converses are not true, in general, follow from the following examples.

Example 4.3. Fuzzy (a,r)-continuity # fuzzy (4, r)-continuity.
Let X = {a,b}, myx = {Ox,1x, A, B,C,D}, m;x = {0x,1x, E}, where A(a) =
0.4, A(b) = 0.55, B(a) = 0.5, B(b) = 0.45, C(a) = 0.45, C(b) = 0.55, D(a) = 0.55,
D(b) = 0.4,E(a) = E(b) = 0.5. Then (X, m;x) and (X, m/IX) are fuzzy m-spaces.
Thus m;x-00(X) = {0x,1x, B,C,T}, where T'(a) = 0.5, T(b) = 0.55.
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Consider the identity function ¢ : (X,m;x) — (X,m}x). Now E € m/IX—
RO(X). Then i~Y(E) = E. Thus mx-cl(mx-int(myx-6clE)) = mx-cl(myx-
int(lx \ B)) = B< E. So E € myx-aC(X), but myx-6clE = 1x \ B # E. Hence
E & mix-0C(X).

Example 4.4. Fuzzy (d-semi, r)-continuity # fuzzy (a,r)-continuity.

Let X = {a,b}, mix = {0x,1x,A}, m,IX ={0x,1x,C}, where A(a) = 0.5, A(b) =

0.4,C(a) = C(b) = 0.5. Then (X, m;x) and (X, m/IX) are fuzzy m-spaces.
Consider the identity function ¢ : (X, mrx) — (X, m'IX). Now C € m/IX—RO(X).

iTH(C)=C=1x\C € mx-050(X), but 1x \ C & mx-aO(X). Thus C € mx-

0SC(X), but C & myx-aC(X).

Example 4.5. Fuzzy (§-pre, r)-continuity # fuzzy (a,r)-continuity.
Let X = {a,b}, myx = {0x,1x, A}, m,x = {Ox, 1x, B}, where A(a) = 0.5, A(b) =
0.4, B(a) = 0.5, B(b) = 0.3. Then (X, myx) and (X, m}x) are fuzzy m-spaces.
Consider the identity function ¢ : (X, m;x) — (X, m/IX). Now m;x-00(X) =
{0x,1x, A} and m)x-00(X) = {0x,1x, B}. Now B € m,x-RO(X). i"'(B) = B.
Then myx-cl(mx-0intB) = 0x < B. Thus B € m;x-0PC(X), but myx-cl(myx-
int(myx-0clB)) = myx-cl(mpx-int(mx-clB)) = mrx-cl(mx-int(1x \ A)) = myx-
cdlA=1x\ AL B. So B¢ mrx-aC(X).

Example 4.6. Fuzzy (e, r)-continuity # fuzzy (d-semi, r)-continuity.

Consider Example 4.5. Here B € m/,x-RO(X). i~*(B) = B. Then mx-int(mx-
0clB) = myx-int(lx \ A) = A £ B. Thus B &€ mx-6SC(X), but myx-int(mx-
oclB) Amyx-cl(myx-6intB) = AA\Ox = 0x < B. So B € myx-eC(X).

Example 4.7. Fuzzy (e, r)-continuity # fuzzy (d-pre, r)-continuity.

Consider Example 4.4. Here myx-cl(myx-0intC) = myx-clA = 1x \ A £ C. Thus
C ¢ mx-0PC(X). But myx-int(m;x-6clC) Ampx-cl(myx-6intC) = A A(1x \
A)=A<C. SoC € mpx-eC(X).

Example 4.8. Fuzzy (e*,r)-continuity # fuzzy (e, r)-continuity.

Let X = {a,b}, mrx = {0x,1x, A, B}, m/IX = {0x, 1x,C}, where A(a) = 0.5, A(b) =
0.6,B(a) = B(b) = 04,C(a) = 04,C(b) = 0.5. Then (X, m;x) and (X, mIIX) are
fuzzy m-spaces.

Consider the identity function i : (X, mrx) — (X, m,IX). Here myx-60(X) =
{0x,1x,A,B}. Now C € m/IX—RO(X). i~1(C) = C. Now mx-int(myx-cl(mx-
dintC)) = myx-int(mx-clB) = myx-int(lx \ A) = B < C. Then C € myx-
e*C(X). But myx-int(mpx-6clC) A mpx-cl(mpx-§intC) = mx-int(1x\B) A myx-
cB = A/\(lX \A) = 1X \A ﬁ C. Thus C € me—€C(X).

Definition 4.9. Let (X, m;x) and (Y, mv) be two fuzzy m-spaces and f: X =Y
be a function between fuzzy m-spaces. Then f is said to be fuzzy
(i) e*-continuous, if f~1(A) € myx-e*O(X), for all A € myv,
(ii) almost-e*-continuous, if f~1(A) € myx-e*O(X), for all A € mpv-RO(Y),
(iii) almost-e-continuous, if f=(A) € m;x-eO(X), for all A € mpv-RO(Y),
(iv) almost-a-continuous, if f~1(A) € m;x-aO(X), for all A € mpv-RO(Y).
220



Anjana Bhattacharyya /Ann. Fuzzy Math. Inform. 13 (2017), No. 2, 213-229

Theorem 4.10. Let (X, mrx) and (Y, mrv) be two fuzzy m-spaces and f: X =Y
be a function between fuzzy m-spaces. Then the following statements hold:

(1) If f is fuzzy e*-continuous, then f is fuzzy almost-e*-continuous.

(2) If f is fuzzy almost-e-continuous, then f is fuzzy almost-e*-continuous.

(3) If f is fuzzy almost-a-continuous, then f is fuzzy almost-e-continuous.

Proof. The proof is obvious. O
But the converses are not true, in general, follow from the next examples.

Example 4.11. Fuzzy almost-e*-continuity # fuzzy e*-continuity.

Let X = {a,b},m;x = {0x,1x, 4, B}, m,x = {0x,1x, E, F} where A(a) = 0.4,
A(b) = 0.6,B(a) = 0.6,B(b) = 0.4,FE(a) = E(b) = 04,F(a) = 0.5,F(b) =
0.45. Then (X,m;x) and (X, m/IX) are fuzzy m-spaces. Now m;x-60(X) =
{0x,1x, A, B,C}, where C(a) = C(b) = 0.6, m;x-RO(X) = {0x,1x, F}.

Now consider the identity function i : (X,m;x) — (X, mlIX). Then i~1(F) =
F. Now myx-cl(mrx-int(mrx-0clF)) = 1x > F. Then F € mix-¢*O(X). But
iTY(E) = E, mx-cl(myx-int(mx-0clE)) = myx-cl(mx-int(lx \ C)) = mx-
cd0x =0x 2 E= E ¢ myx-e*O(X). Thus i is fuzzy almost-e*-continuous but not
fuzzy e*-continuous.

Example 4.12. Fuzzy almost-e*-continuity % fuzzy almost-e-continuity.

Let X = {a,b},mrx = {0x, 1X,A},m/IX ={0x,1x,B,C}, where A(a) = 0.5, A(b) =
0.4, B(a) = 0.4, B(b) = 0.6,C(a) = 0.6,C(b) = 0.4. Then (X,m;x) and (X, m;x)
are fuzzy m-spaces. Now m;x-60(X) = myx, m}X—RO(X) = m'IX.

Now consider the identity function i : (X, mrx) — (X, mIIX). Then i~*(B) = B.
Now myx-cl(mx-int(myx-6clB)) = 1x\A > B. Then B € m;x-e*O(X), i }(C) =
C,mrx-cl(myx-int(mx-0clC)) = 1x > C. Thus C € myx-e*O(X). So i is fuzzy
almost-e*-continuous. But myx-cl(mx-dintB) \/ myx-int(m;x-6clB) = 0x \/ A =
A # B. Hence B € myx-eO(X). Therefore i is not fuzzy almost e-continuous.

Example 4.13. Fuzzy almost-e-continuity # fuzzy almost-a-continuity.

Let X = {a,b},m;x = {0x,1x,A},m,x = {0x,1x,C}, where A(a) = 0.5, A(b) =
0.4,C(a) = C(b) = 0.5. Then (X, m;x) and (X, m;x) are fuzzy m-spaces. Now
mx-60(X) = {0x,1x, A}, mx-RO(X) = m/x.

Consider the identity function ¢ : (X,m;x) — (X, mlIX). Now i~1(C) = C,
myx-cl(mrx-8intC) \) mrx-int(mrx-6clC) = (1x \A)VA = 1x \ A > C. Then
C € myx-eO(X). Thus i is fuzzy almost-e-continuous. But mx-int(myx-cl(myx-
dintC)) = myx-int(myx-clA) = A < C. So C & m;x-aO(X). Hence i is not fuzzy
almost-e-continuous.

Definition 4.14. A fuzzy m-space (X, mrx) is said to be fuzzy m;x-extremally
disconnected, if the fuzzy mx-closure of all fuzzy mx-interior of a fuzzy set in X
is fuzzy mx-open.

Example 4.15. Let X = {a,b},m;x = {0x,1x, A}, where A(a) = A(b) = 0.5.
Then (X, m;x) is a fuzzy m-space. Now myx-clA = A € mx = X is fuzzy myx-
extremally disconnected.

221



Anjana Bhattacharyya /Ann. Fuzzy Math. Inform. 13 (2017), No. 2, 213-229

Theorem 4.16. Let (X,m;x) and (Y, mpv) be two fuzzy m-spaces and f : X —
Y be a function. If (Y,mpv) is a fuzzy mpv-extremally disconnected, then f is
fuzzy (e*,r)-continuous (resp., fuzzy (e,r)-continuous, fuzzy (a,r)-continuous) iff
f s fuzzy almost-e*-continuous (resp., fuzzy almost-e-continuous, fuzzy almost-a-
conlinuous).

Proof. First suppose that f is fuzzy (e*,r)-continuous. Let U(€ IV) € m;»-RO(Y).
Then U = myv-int(mpv-clU). As Y is fuzzy mjv-extremally disconnected, myv-
clU € mypy and so U € myv as well as 1y \ U € myv, i.e., U is fuzzy myv-open as
well as fuzzy myv-closed and so U = myv-cl(myv-intU), i.e., U € mv-RC(Y). As
f is fuzzy (e*,r)-continuous, f~1(U) € myx-e*O(X). Then f is fuzzy almost-e*-
continuous.

Conversely, suppose that f is fuzzy almost-e*-continuous and let W € mjv-
RC(Y). Since Y is fuzzy mjv-extremally disconnected, W € m;v-RO(Y). By
hypothesis, f~1(W) € m;x-e*O(X) = f is fuzzy (e*, r)-continuous.

The other two cases are similar to that of first case. d

Definition 4.17. A fuzzy m-space (X, m;x) is said to be fuzzy

(i) myx-e*-Ty so-space, if all fuzzy mx-e*-closed set in X is fuzzy m x-d-closed
in X,

(ii) myx-e-T} jo-space, if all fuzzy mx-e*-closed set in X is fuzzy m x-e-closed
in X,

(iii) m x-a-T} jo-space, if all fuzzy m x-e*-closed set in X is fuzzy mx-a-closed
in X.

Example 4.18. Consider Example 4.15. Here (X,m;x) is a fuzzy myx-e*-T' jo-
space.

Theorem 4.19. Let (X, m;x) and (Y,m;v) be two fuzzy m-spaces and f : X =Y
be a function. If X is fuzzy myx-e*-T13-space, then the following statements are
equivalent:

(1) f is fuzzy

*, 1) -continuous.

(e
(2) f is fuzzy (e, ) continuous.
(3) f is fuzzy (§-semi, r)-continuous.
(4) f is fuzzy (§-pre, r)-continuous.
(5) f is fuzzy (a,r)-continuous.
(6) f is fuzzy (9, r)-continuous.

Proof. (1) = (4): Let W € myv-RO(Y). By (1), f~Y(W) € mix-eC(X). As X is
fuzzy mrx-e*-Ty jo-space, f~1(W) € m;x-6C(X). Then f~Y(W) € m;x-0PC(X).
Thus f is fuzzy (d-pre, r)-continuous.

(4) = (6): Let W € myv-RO(Y). By (4), f~Y(W) € m;x-0PC(X). Then
f7HW) € myx-e*C(X). As X is fuzzy mx-e*-T} jo-space, f~1 (W) € mx-6C(X).
Thus f is fuzzy (0, r)-continuous.

(6) = (5): Let W € mp-RO(Y). By (6), f7*(W) € mjx -0C(X). Then
YW = mpx-8cl(f~H(W)). Thus, mx-cl(mx-int(mpx-6cl(f~1(W)))) <
lmpx Bel(f~ (W) < myx-Sel(me-del(f (W) = myx-5cl(f~ (W) = /-
So f~Y(W) € mx-aC(X). Hence f is fuzzy (a,r)-continuous.
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3): Let W € m;v-RO(Y). By (5), f~1(W) € myx-aC(X). Then 1x \
) € myx-aO(X). Thus 1x \ f=* (W) < myx-int(mpx-cl(mpx-dint(1x \
) < myx-cl(mpx-6int(1x \ f=1(W))). So 1x \ f~1(W) € m;x-6SO(X).
“Y W) € m;x-6SC(X). Therefore f is fuzzy (J-semi, r)-continuous.
= (2): Let W € mv-RO(Y). By (3), f7Y(W) € m;x-6SC(X). Then
) € mrx-eC(X) as every fuzzy myx-d-semiclosed set is fuzzy mx-e-closed.
Therefore, f is fuzzy (e, r)-continuous.
(2) = (1): Let W € mp-RO(Y). By (2), f~*(W) € mx-eC(X). Then
f7YW) € myx-e*C(X) (as every fuzzy myx-e-closed set is fuzzy mjx-e*-closed).
Thus f is fuzzy (e*,r)-continuous. O

Theorem 4.20. Let (X,m;x) and (Y, myv) be two fuzzy m-spaces and f: X —Y
be a function. Then the following statements are equivalent:
(1) f is fuzzy (e*,r)-continuous.
(2) f~YHA) € myx-e*O(X), for all A € myy-RCO(Y).
(3) f(myx-e*-clU) < mpv -r-ker(f(U)), for all U € I¥.
(4) myx-e*-cl(f~1(A)) < f~ (mpv -r-ker(A)), for all A€ IY.
(5) For each fuzzy point x4 in X and each A € mpy-SOY') with f(x4)qA, there
ts U € myx-e*O(X) with xoqU, f(U) < mpv-clA.

(6) f(myx-e* clP) < me—G scl(f(P)), for all P € IX.

(7) myx-e*-cl(f~Y(R)) < f~1(mv-0-sclR)), for all R € IY.

(8) myx-e*-cl(f~H(R)) < f~Y(myv-0-sclR)), for all R € myv.

(9) myx-e*-cl(f~Y(R)) < f~1(myv -sclR)), for all R € myv .

(10) myx-e*-cl(f~H(R )) fY(mpy -int(mpv -clR)), for all R € myv .
(11

) For each fuzzy point xa in X and each A € mpy-SO(Y) with f(zy) € A,
there em'sts Uempx 6*0( ) such that o, € U and f(U) < mpv-clA.

“LHA) < myx-e*-int(fH(mpy -clA)), for all A € mp-SO(Y).
f Ympy -int(mpy -clA)) € myx-e*C(X), for all A € myv.
Y mpy -cl(mpv -intF)) € myx-e*O(X), for all 1x \ F € myv.
Y mpy-clU) € mx-e*O(X), for all U € myv-BO(Y).
fYmyy -clU) € myx-e*O(X), for all U € m;v-SO(Y).
FYmypy -int(mpy clU)) € myx-e*C(X), for allU € mpy -PO(Y).
Y mpy -acU) € mix-e*O(X), for allU € mpy-BO(Y).
I 1(m1y-pclU) € me e*O( ), for allU € mpy-SO(Y).
myx-e*-cl(f71(R)) < f~Y(mpv-8-sclR)), for all R € mv-SO(Y).
myx-e*-cl(f7H(R)) < f~Y(mv -0-s5clR)), for all R € mv-PO(Y).
myx-e*-cl(f~YH(R)) < f~Y(myv -0-sclR)), for all R € mpy-BO(Y).

Proof. (1) = (2): Let W € m;v-RC(Y). Then 1y \ W € m;v-RO(Y). By (1),
LAy \ W) =1x \ f7H(W) € mx-e*C(X). Thus f~1(W) € myx-e*O(X).

(2) = (1): Let W € myv-RO(Y). Then 1y \W € m;v-RC(Y). By (2), f~1(1y\
W) =1x \ f1(W) € myx-e*O(X). Thus f~1(W) € myx-e*C(X).

(2) = (3): Let U € I'X and suppose that y, be a fuzzy point in Y with y, & mjv-
r-ker(f(U)). Then there exists V' € m;v-RO(Y') such that f(U) <V and yo € V.
Thus V(y) < a. S0 yaq(ly \' V) € m;v-RC(Y) and 1y \ f(U) > 1y \ V. Hence
F(U) 41y \ V). Therefore U 4} (1y \ V). By (2), /11y \V) = 1x \ f 1(V) €
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mrx-e*O(X). By Lemma 3.22(2), myx-e*-clU /fg(1x \ f~1(U)). Then mjx-e*-
cdU < f=YV), ie., f(mx-e*-clU) < V. Thus 1y \ f(mrx-e*-clU) > 1y \ V. So
1= fimpx-e*-cU)(y) > 1-V(y) > 1—a, ie,, a > f(myx-e*-clU)(y). Hence
Yo & f(mpx-e*-clU). Therefore, f(mx-e*-clU) < myv-r-ker(f(U)).

(3) = (4): Let A€ IY. Then f~'(A) € IX. By (3), f(mx-e*-clf~1(A)) < mv-
r-ker(A). Then myx-e*-cl(f~1(A)) < f~ (myv-r-ker(A)).

4) = (1): Let A € me—RO(Y). By (4), myx-e*-cl(f~1(A4)) < f~Y(mpv-r-
ker(A )) L(A). But f~1(A) < myx-e*-cl(f~1(A)) and thus f=1(A) = mx-e*-
cd(f71(A )) So f1(A) € mpx-e*C(X).

(5) = (6). Let P € I and x,, be any fuzzy point in X such that z, € mx-e*-
clP and let G € m;y-SO(Y) with f(z4)qG. By (5), there exists U € myx-e*O(X)
with z,qU, f(U) < myy-clG. As z, € mrx-e*-clP, by Lemma 3.22(1), UgP and
so f(U)qf(P). Then f(P)gmpv-clG = f(x,) € mly—H—scl(f(P)). Thus f(mx-e*-
clP) < mpv-0-scl(f(P)).

(6) = (7): Let R € IY. By (6), f(mx-e*-cl(f~(R))) < mv-0-scl(f(f~1(R))) <
myy-0-sclR. Then myx-e*-cl(f~1(R)) < f~1(mv-0-sclR).

(7) = (5): Let x4 be any fuzzy point in X and A € m;y-SO(Y) with f(z,)gA.
Since, (myv-clA) 4(1y \ mpv-clA), by definition f(z,) & myv-6-scl(ly \ mpv-clA).
Then z, & f~ (mpv-0-scl(ly \ mpv-clA)). By (7), o &€ myx-e*-cl(f~*(1y \ myv-
clA)). Thus there exists U € mx-e*O(X) with zoqU, U 4f~*(1y \ m;v-clA). So
fU) 41y \ myr-clA). Hence f(U) < myv-clA.

(7) = (8): Let A € myv. By (7), myx-e*~cl(f~1(A)) < f~L(myv-0-sclA).

(8) = ( ) It follows from Lemma 3.22(7).

9) = : Tt follows from Lemma 3.22(3).

(10) = (1): Let A € mpy-RO(Y). By (10), myx-e*-cl(f~1(A)) < f~1(myv-
int(mpv-clA)) = f~Y(A).Then f~1(A) € m;x-e*C(X). Thus f is fuzzy (e*,r)-
continuous.

(1) = (10): Let A € myv. Then myv-int(myv-clA) € mv-RO(Y). By (1),
fYmpy-int(mpv-clA)) € myx- e*C( ). Thus

myx-e*-cl(f~1(A)) < - e*-cl(f~t(mpv-int(mv-clA)))
= f~Ympv-int(myy-clA)).
) = (9): It follows from lemma 3.22(3).
= (8): It follows from Lemma 3.22(7).
= (1): Let R € mp-RO(Y). By (7), mx-e*-cl(f~1(R)) < f~Y(mv-0-
sclR) = f~1(R). Then f~}(R) € myx-e*C(X). Thus f is fuzzy (e*,r)-continuous.

(5) = (12): Let A € m;v-SO(Y) and z, be any fuzzy point in X such that
aqf H(A). Then f(z4,)qA. By (5), there exists U € myx- e*O( ) such that z,qU,
fo) < mly -clA. Thus 2,qU < f=Y(myv-clA). So woqmyx-e*-int(f~1(mpv-clA)),
as myx-e* mt(f Y(myv-clA)) is the union of all fuzzy me e*-open sets in X con-
tained in f~1(myv-clA). Hence f~1(A) < myx-e*-int(f~1(mpv-clA)).

(12) = (5): Let x4 be any fuzzy pomt in X and A € m;v-SO(Y) with f(z,)qA.
Then z,qf 1 (A) < mx-e* mt(f Ymypv-clA)) (by (12)) implies there exists U €
myx-e*O(X) with zoqU, U < f~1(mpv-clA). Thus f(U) < mpv-clA.

(11) = (12): Let A € m;v-SO(Y) and z, be any fuzzy point in X such that
To € f7H(A). Then f(x,) € A. By (11), there exists U € myx-e*O(X) with z, € U
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and f(U) < mpv-clA. Thus U < f~ (m[y clA). So x4 € myx-e*-int(f~1(myy-
clA)). Hence f=1(A) < myx-e*-int(f~t(mpv-clA)).

(12) = (11): Let , be any fuzzy pomt in X and A € mv-SO(Y) with f(z,) € A.
Then z, € f71(A) < myx-e*-int(f~ (me clA)) (by (12)) implies there exists
U € mx-e*O(X) with 2, € U and U < f~Y(mpv-clA). Thus f(U) < myv-clA.

(1) = (13): Let A € myv. Then myv-int(myv-clA) € mv-RO(Y). By (1),
Y mpy-int(mpv-clA)) € myx-e*C(X).

(13) = (1): Let A € myv-RO(Y). Then A € myv. By (13), f~1H(A) = f~L(myv-
int(myv-clA)) € myx-e*C(X).

(12) = (2): Let F € myv-RC(Y). Then F € myv-SO(Y). By (12), f~1(F) <
myx-e*-int(f = ((mpv-clF)) = myx-e*-int(f~1(F)).

(2) = (14): Let F € mv-RC(Y). By (2), f~Y(F) € myx-e*O(X). But f~}(F) =
fY(mpy-cl(mypy-intF)). Then f~Y(mpv-cl(mpy-intF)) € myx-e*O(X).

(14) = (2): Let F € myv-RC(Y). By (14), f~Y(F) = f~Y(mpv-cl(mpv-intF)) €
myx-e*O(X).

(2) = (15): Let U € myv-pO(Y). Then U < myv-cl(mpv-int(mpy-clU)) <
mpv-clU. Thus mpv-cdU < mpv-cl(mpy-cl(mpy-int(mpy-clU))) = mpy-cl(myy-
int(mpv-cU)) < mpv-cl(mpy-clU) = myy-cU = mly—clU = myv-cl(mpy-int(mypy-
cU)). So myv-clU € myv-RC(Y). Hence by (2), f~*(mv- clU) € mx-e*0(X).

(15) = (16): Since m;v-SO(Y) C myv-BO(Y), by (15), f~Y(mv-clU) € myx-
e*O(X), for all U € myv-SO(Y).

(16) = (17): Let U € myv-PO(Y). Then U < myy-int(mpv-clU). We claim
that myy-int(mpy-clU) € mpy-RO(Y"). Indeed,

myy-int(mpy-clU) < mpyv-int(mpy-cl(mpy-int(mpy-clU))) < mpv-int(mpy-clU).
Thus myv-int(mypy-clU) = myv-int(mpv-cl(myy-int(mpy-clU))) = mpv-int(myv-
cU) € my-RO(Y). So 1y \ myv-int(myv- clU) € mv-RC(Y). Hence 1y \ myv-
int(mpyv-clU) € mp-SO(Y). By (16), f~Y(mpv-cl(ly \ mpv-int(mpv- clU)))
myx-e*O(X). Thus 1x \ f~Y(mpv-int(mpv-int(mp-clU))) = 1x \ f~H((mgr-
int(mpy-clU)) € myx-e*O(X). So f~Y(mpv-int(mpv-clU)) € myx-e*C(X).

(17) = (1): Let U € mpy-RO(Y). Then U € m;v-PO(Y). By (17), f~1(myv-
znt(mjy clU)) € myx-e*C(X). Thus f~YU) = f~Y(mv-int(mpv-clU)) € myx-
e*C(X). So (1) holds.

5) < (18): The proof follows from Lemma 3.22(5).
5) < (19): The proof follow from Lemma 3.22(6)
) = (20): Obvious.
(8): Let A € myv. Since myv-SO(Y) 2 myv, by (20), myx-e*-cl(f~1(A)) <

(1
(1
(7
(20) =
fY(mpv-0-sclA).
(
(
(
(

(

7) = (22): Obvious.

22) = ( 0): Since my-SO(Y) C myv-BO(Y), the result follows.

7) = (21). Obvious.

21) = ( ): Since mpy C mpv-PO(Y), the result follows. O

Remark 4.21. In a similar manner we can characterize fuzzy (e, r)-continuous
(resp., fuzzy (a,r)-continuous) function by changing e* by e (resp., by a) in the
Theorem 4.20.
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5. Fuzzy compact sets and fuzzy s-closed sets in fuzzy m-Space

Definition 5.1 ([, 4]). Let A be a fuzzy set in X. A collection U of fuzzy sets in
X is called a fuzzy cover of A, if sup{U(z) : U € U} = 1, for each = € suppA. In
particular, if A = 1x, we get the definition of fuzzy cover of X.

Definition 5.2 ([5, 4]). A fuzzy cover U of a fuzzy set A in X is said to have a
finite subcover Uy, if Uy is a finite subcollection of U such that JUy > A, i.e., Uy is
also a fuzzy cover of A. In particular, if A =1x, we get [JUp = 1x.

Definition 5.3. A fuzzy set A in a fuzzy m-space (X, myx) is said to be fuzzy
m-compact (resp., fuzzy m-e*-compact, fuzzy m-e-compact, fuzzy m-a-compact), if
every fuzzy covering U of A by fuzzy mrx-open (resp., fuzzy m;x-e*O(X), fuzzy
myx-eO(X), fuzzy mrx-aO(X)) sets in X has a finite subcovering Uy of U. In
particular, if A = 1x, we get the definition of fuzzy m-compact (resp., fuzzy m-e*-
compact, fuzzy m-e-compact, fuzzy m—a—compact) space.

Since every fuzzy mjyx-open (resp., fuzzy mpx-e-open, fuzzy mjx-a-open) set
is fuzzy mjyx-e*-open (resp., fuzzy mx-e*-open, fuzzy myx-e-open), the following
theorem is obvious.

Theorem 5.4. Let (X, m;x) be a fuzzy m-space and A € IX.
(1) If A is fuzzy m-e*-compact, then A is fuzzy m-compact.
(2) If A is fuzzy m-e*-compact, then A is fuzzy m-e-compact.
(3) If A is fuzzy m-e-compact, then A is fuzzy m-a-compact.

Definition 5.5. A fuzzy m-space (X, mrx) is said to be fuzzy m-s-closed, if for
every fuzzy covering of X by fuzzy mjx-regular closed sets in X contains a finite
subcovering.

Theorem 5.6. Let (X, mrx) and (Y,mpv) be two fuzzy m-spaces and f : X =Y
be surjective, fuzzy (e*,r)-continuous function. If X is fuzzy m-e*-compact space,
then Y is fuzzy m-s-closed space.

Proof. Let U = {U,, : a € A} be a fuzzy covering of Y by fuzzy myy-regular closed
sets of Y. As f is fuzzy (e*,r)-continuous, ¥V = {f~1(U,) : @ € A} covers X by fuzzy
myx-e*-open sets of X. As X is fuzzy m-e*-compact, there exists a finite subset Ag of
A such that 1x = \/ f7'(Ua). Then 1y = f(\/ f7'(U.) = \/ f(f7(U)) <
a€lg a€lg a€lg
\/ U,. Thus Y is fuzzy m-s-closed space. O
a€lNg

In a similar manner we can easily state the following two theorems the proof of
which are similar to that of Theorem 5.6.

Theorem 5.7. Let (X,mrx) and (Y,mpv) be two fuzzy m-spaces and f : X =Y
be surjective, fuzzy (e, r)-continuous function. If X is fuzzy m-e-compact space, then
Y is fuzzy m-s-closed space.

Theorem 5.8. Let (X, mrx) and (Y, mpv) be two fuzzy m-spaces and f : X — Y be
surjective, fuzzy (a,r)-continuous function. If X is fuzzy m-a-compact space, then
Y is fuzzy m-s-closed space.
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Theorem 5.9. Every fuzzy mpx-e*-closed set A in a fuzzy m-e*-compact space X
is fuzzy m-e*-compact.

Proof. Let A be a fuzzy myx-e*-closed set in a fuzzy m-e*-compact space X. Let U
be a fuzzy covering of A by fuzzy myx-e*-open setsin X. Then V =UJ(1x\A4) is a
fuzzy mx-e*-open covering of X. By hypothesis, there exists a finite subcollection
Vo of V which also covers X. If Vy contains 1x \ A, we omit it and get a finite
subcovering of A. Consequently, A is fuzzy m-e*-compact. a

Similarly we can easily state the following two theorems the proof of which are
similar to that of Theorem 5.9.

Theorem 5.10. Every fuzzy myx -e-closed set A in a fuzzy m-e-compact space X
is fuzzy m-e-compact.

Theorem 5.11. Every fuzzy mix-a-closed set A in a fuzzy m-a-compact space X
is fuzzy m-a-compact.

Theorem 5.12. Let (X,m;x) and (Y, mrv) be two fuzzy m-spaces and f: X =Y
be fuzzy e*-continuous function. If A is fuzzy m-e*-compact relative to X, then the
image f(A) is fuzzy m-compact relative to Y.

Proof. Let A be fuzzy m-e*-compact relative to X and U = {U, : a € A} be a

fuzzy covering of f(A) by fuzzy mpv-open sets of Y, ie, f(A) < \/ U,. Then
acA

A< 7Y \/ U,) = \/ Y U,). Thus V = {f~1(U,) : « € A} is a fuzzy covering

acN acA
of A by fuzzy myx-e*-open sets in X. As A is fuzzy m-e*-compact relative to X,

there exists a finite subcollection Vo = {f~1(Uys,) : 1 < i < n} of V such that
A<\ f 1 Ua) So f(4) < F\ 71 (Ua) = /(£ (Us,)) < \/Ua,. Hence
i=1 i=1 i=1 i=1

Uy = {Uy, : 1 < i < n} is a finite subcovering of f(A). Therefore the result
holds. g

Similarly we can easily state the following two theorems the proof of which are
similar to that of Theorem 5.12.

Theorem 5.13. Let (X, myx) and (Y, mpv) be two fuzzy m-spaces where (X, myx)
is fuzzy myx-e-Ty jo-space and f: X —'Y be fuzzy e*-continuous function. If A is
fuzzy m-e-compact relative to X, then the image f(A) is fuzzy m-compact relative

toY.

Theorem 5.14. Let (X, mrx) and (Y, mpv) be two fuzzy m-spaces where (X, myx)
is fuzzy myx-a-Typ-space and f: X —'Y be fuzzy e*-continuous function. If A is
fuzzy m-a-compact relative to X, then the image f(A) is fuzzy m-compact relative
toY.

Definition 5.15. Let (X, m;x) be a fuzzy m-space. Then X is said to be fuzzy

myx-To (vesp., fuzzy myx-e*-Ty, fuzzy myx-e-Ts, fuzzy mrx-a-Ts) space, if for each

pair of distinct fuzzy points x,, ys ; when x # y, there exist fuzzy mrx-open (resp.,

fuzzy myx-e*-open, fuzzy mjx-e-open, fuzzy myx-a-open) sets Uy, Us, Vi, Vo in X
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such that z, € Uy,ygqVy and Uy Vi and 2,qUs, yg € Vo and Uz Ve ; when
x =y, a < f (say), there exist fuzzy m;x-open (resp., fuzzy myx-e*-open, fuzzy
myx-e-open, fuzzy myx-a-open) sets U,V in X such that z, € U,ygqV and U 4V.

Definition 5.16. A fuzzy m-space (X, m;x) is said to be fuzzy s-Urysohn if for each
pair of distinct fuzzy points z,, yg : when = # y, there exist fuzzy m;x-semiopen sets
Ui,Us, Vi, Vs in X such that z, € Uy, ygqVi and myx-clUy gmpx-clVi and x,qUs,
yg € Vo and myx-clUy fgmix-clV, ; when © = y, a < [ (say), there exist fuzzy
myx-semiopen sets U,V in X such that z, € U,y3qV and myx-clU gmpx-clV.

Theorem 5.17. Let (X, mrx) and (Y, mrv) be two fuzzy m-spaces and f: X =Y
be injective fuzzy (e*,r)-continuous function and Y is fuzzy s-Urysohn space. Then
X is fuzzy myx-e*-Ts.

Proof. Let z, and yg be two distinct fuzzy points in X where z # y. Since f is in-
jective, f(zqa) # f(ys). Since Y is fuzzy s-Urysohn, there exist fuzzy mv-semiopen
sets U1,Uz, V1,V in Y such that f(zo) € Ui, f(ys)gVh and myy-clUs gmyy-clVy
and f(za)qUs, f(yg) € Vo and myy-clUs gmyv-clV;. By Theorem 4.20, there exist
Wi, Wy € myx-e*O(X) such that z, € Wi,Wy < f~Ympv-clUy),ygqWa, Wa <
fH(mpv-clVi) or xaqWa, Wa < f=H(my-clUs),ys € W1, W1 < f=Hmpy-clVa). We
claim that W7 4gWs. Indeed, mv-clUy gmpv-clVi and mpy-clUs gmpy-clVs. Then
Y mpr-clUy) 4f Y (mpv-clVi) and f=Y(mpv-clUs) 4f Y (mpv-clVa).

Similarly, when z = y, a < 8 (say), there exist Uy, Us € my-SO(Y) such that
flza) € U, f(ys)qUs and myv-clUs Jgmyv-clUs. By Theorem 4.20, there exist
Wi, Wy € myx-e*O(X) such that x, € Wi, Wy < f=Ympv-clUy), ysqWa, Wa <
f~Y(mpy-clUs). Thus as above, Wi 4Ws. So X is fuzzy mx-e*-Ty-space. O

Similarly we can easily state the following two theorems the proof of which are
similar to that of Theorem 5.17

Theorem 5.18. Let (X, mx) and (Y, myv) be two fuzzy m-spaces and f: X =Y
be injective, fuzzy (e,r)-continuous function and Y is fuzzy s-Urysohn space. Then
X is fuzzy myx -e-Ts.

Theorem 5.19. . Let (X, mrx) and (Y, mrv) be two fuzzy m-spaces and f : X —Y
be injective, fuzzy (a,r)-continuous function and Y is fuzzy s-Urysohn space. Then
X is fuzzy mrx-a-Ts.
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