Annals of Fuzzy Mathematics and Informatics Volume 13, No. 2, (February 2017), pp. 213–229 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Several concepts of continuity in fuzzy *m*-space

Anjana Bhattacharyya

Received 31 May 2016; Accepted 25 July 2016

ABSTRACT. In this paper, we first introduce some open and closed sets in fuzzy m-space and give some interrelations between them. Afterwards, different types of continuity between fuzzy m-spaces have been introduced and characterized and also found the mutual relationships among themselves. Again different types of fuzzy m-compact spaces, fuzzy m-s-closed space and fuzzy s-Urysohn space are introduced and have shown that images of different types of fuzzy m-compact spaces under the functions defined in Section 4 are fuzzy m-s-closed space.

2010 AMS Classification: 54A40, 54C99

Keywords: Fuzzy m_{Ix} -e-open, Fuzzy m_{Ix} -e*-open, Fuzzy m_{Ix} -a-open, Fuzzy m-compact set, Fuzzy s-Urysohn space, Fuzzy (e*, r)-continuous function.

Corresponding Author: (anjanabhattacharyya@hotmail.com)

1. INTRODUCTION

In [1], the notion of fuzzy minimal structure (in the sense of Lowen) has been introduced as follows : A family \mathcal{M} of fuzzy sets in X is said to be a fuzzy minimal structure on X if $\alpha 1_X \in \mathcal{M}$ for every $\alpha \in [0, 1]$. A more general version of fuzzy minimal structure (in the sense of Chang) are introduced in [3, 6] as follows : A family \mathcal{F} of fuzzy sets in X is a fuzzy minimal structure on X if $0_X \in \mathcal{F}$ and $1_X \in \mathcal{F}$. In this paper we use the notion of fuzzy minimal structure in the sense of Chang.

2. Preliminaries

In 1965, Zadeh introduced the notion of fuzzy set [8] A which is a mapping from a non-empty set X into the closed interval [0,1], i.e., $A \in I^X$. The support [7] of a fuzzy set A, denoted by suppA and is defined by $suppA = \{x \in X : A(x) \neq 0\}$. The fuzzy set with the singleton support $\{x\} \subseteq X$ and the value t ($0 < t \leq 1$) will be denoted by x_t . 0_X and 1_X are the constant fuzzy sets taking values 0 and 1 respectively in X. The complement [8] of a fuzzy set A in X is denoted by $1_X \setminus A$ and is defined by $(1_X \setminus A)(x) = 1 - A(x)$, for each $x \in X$. For any two fuzzy sets A, B in $X, A \leq B$ means $A(x) \leq B(x)$, for all $x \in X$ [8] while AqB means A is quasi-coincident (q-coincident, for short) [7] with B, i.e., there exists $x \in X$ such that A(x) + B(x) > 1. The negation of these two statements will be denoted by $A \leq B$ and $A \not AB$ respectively. For a fuzzy point x_α and a fuzzy set A in $X, x_\alpha \in A$ means $x_\alpha \leq A$, i.e., $A(x) \geq \alpha$.

3. Some Different Types of Open and Closed Sets in Fuzzy *m*-Space

Let X be a non-empty set and $m_{I^X} \subseteq I^X$. Then m_{I^X} is said to be a fuzzy minimal structure [3, 6] on X if $0_X, 1_X \in m_{I^X}$. The members of m_{I^X} are called fuzzy m_{I^X} -open sets and the complement of a fuzzy m_{I^X} -open set is called fuzzy m_{I^X} -closed set. The pair (X, m_{I^X}) is called fuzzy m-space.

Definition 3.1 ([2]). Let X be a non-empty set and m_{I^X} , a fuzzy minimal structure on X. For $A \in I^X$, the fuzzy m_{I^X} -closure and fuzzy m_{I^X} -interior of A, denoted by m_{I^X} -clA and m_{I^X} -intA respectively, are defined as follows :

$$m_{I^X} - clA = \bigwedge \{F : A \le F, 1_X \setminus F \in m_{I^X} \}$$
$$m_{I^X} - intA = \bigvee \{D : D \le A, D \in m_{I^X} \}.$$

It can be observed that given a fuzzy minimal structure m_{I^X} on X, if $A \in I^X$, the m_{I^X} -intA may not be an element of m_{I^X} .

Proposition 3.2 ([2]). Let X be a non-empty set and m_{I^X} , a fuzzy minimal structure on X. Then for any $A \in I^X$, a fuzzy point $x_{\alpha} \in m_{I^X}$ -clA iff for any $U \in m_{I^X}$ with $x_{\alpha}qU$, UqA.

Lemma 3.3 ([2]). Let X be a non empty set and m_{I^X} , a fuzzy minimal structure on X. For $A, B \in I^X$, the following hold:

- (1) $A \leq B$ which implies that m_{I^X} -int $A \leq m_{I^X}$ -intB, m_{I^X} -cl $A \leq m_{I^X}$ -clB.
- (2) $m_{IX} cl_{0X} = 0_X$, $m_{IX} cl_{1X} = 1_X$, $m_{IX} int_{0X} = 0_X$, $m_{IX} int_{1X} = 1_X$.
- (3) m_{IX} -int $A \leq A \leq m_{IX}$ -clA.
- $(4) \ m_{I^{X}} \text{-} clA = A \ \text{if} \ 1_{X} \setminus A \in m_{I^{X}}, \ m_{I^{X}} \text{-} intA = A, \ \text{if} \ A \in m_{I^{X}}.$
- (5) $m_{I^X} \cdot cl(1_X \setminus A) = 1_X \setminus m_{I^X} \cdot intA, m_{I^X} \cdot int(1_X \setminus A) = 1_X \setminus m_{I^X} \cdot clA.$
- (6) $m_{IX} cl(m_{IX} clA) = m_{IX} clA, m_{IX} int(m_{IX} intA) = m_{IX} intA.$

It is clear from Lemma 3.3 that

Theorem 3.4. Let (X, m_{I^X}) be a fuzzy *m*-space and $A, B \in I^X$. Then the following statements are true:

- (1) m_{I^X} - $clA \bigvee m_{I^X}$ - $clB \leq m_{I^X}$ - $cl(A \lor B)$.
- (2) m_{I^X} -int $(A \wedge B) \leq m_{I^X}$ -int $A \wedge m_{I^X}$ -intB.

We now introduce the following definitions.

Definition 3.5. Let (X, m_{I^X}) be a fuzzy *m*-space. $A \in I^X$ is said to be fuzzy

- (i) m_{Ix} -regular open, if $A = m_{Ix}$ -int $(m_{Ix}$ -clA),
- (ii) m_{IX} -semiopen, if $A \leq m_{IX}$ - $cl(m_{IX}$ -intA),
- (iii) m_{IX} - α -open, if $A \leq m_{IX}$ - $int(m_{IX}$ - $cl(m_{IX}$ -intA)),
- (iv) m_{IX} - β -open, if $A \leq m_{IX}$ - $cl(m_{IX}$ - $int(m_{IX}$ -clA)),
- (v) m_{IX} -preopen, if $A \leq m_{IX}$ -int $(m_{IX}$ -clA).

The complements of the above mentioned fuzzy sets are called their respective closed sets.

The infimum of all fuzzy m_{I^X} -semiclosed (resp., fuzzy m_{I^X} - α -closed, fuzzy m_{I^X} -preclosed) sets containing a fuzzy set A in X is called fuzzy m_{I^X} -semiclosure (resp., fuzzy m_{I^X} - α -closure, fuzzy m_{I^X} -preclosure) of A and is denoted by m_{I^X} -sclA (resp., m_{I^X} - α -clA, m_{I^X} -pclA).

We denote by m_{I^X} -RO(X) (resp., m_{I^X} -RC(X), m_{I^X} -SO(X), m_{I^X} - $\alpha O(X)$, m_{I^X} -PO(X), m_{I^X} - $\beta O(X)$) the family of all fuzzy m_{I^X} -regular open (resp., fuzzy m_{I^X} -regular closed, fuzzy m_{I^X} -semiopen, fuzzy m_{I^X} - α -open, fuzzy m_{I^X} -preopen, fuzzy m_{I^X} - β -open) sets in X.

Definition 3.6. Let (X, m_{I^X}) be a fuzzy *m*-space and $A \in I^X$. A fuzzy point x_{α} in X is said to be fuzzy m_{I^X} - θ -semicluster point of A, if m_{I^X} -clUqA for every fuzzy m_{I^X} -semiopen set U with $x_{\alpha}qU$. The union of all fuzzy m_{I^X} - θ -semicluster points of A is called fuzzy m_{I^X} - θ -semiclosure of A and is denoted by m_{I^X} - θ -sclA.

 $A(\in I^X)$ is said to be fuzzy m_{I^X} - θ -semiclosed if $A = m_{I^X} - \theta$ -sclA. The complement of a fuzzy m_{I^X} - θ -semiclosed set is called fuzzy m_{I^X} - θ -semiopen.

Definition 3.7. Let (X, m_{I^X}) be a fuzzy *m*-space and $A \in I^X$. The m_{I^X} -*r*-kernel of *A*, denoted by m_{I^X} -*r*-Ker*A*, is defined as follows:

$$m_{I^X}$$
-r-Ker $A = \bigwedge \{ U : U \in m_{I^X}$ - $RO(X), A \le U \}.$

Definition 3.8. Let (X, m_{I^X}) be a fuzzy *m*-space and $A \in I^X$. The fuzzy m_{I^X} - δ closure and fuzzy m_{I^X} - δ -interior of A, denoted by m_{I^X} - δclA and m_{I^X} - $\delta intA$ resp.,
are defined by

 $m_{I^{X}} \cdot \delta clA = \{ x_{\alpha} \in X : Aqm_{I^{X}} \cdot int(m_{I^{X}} \cdot clU), \text{ for all } U \in m_{I^{X}} \text{ with } x_{\alpha}qU \}, \\ m_{I^{X}} \cdot \delta intA = \bigvee \{ W : W \in m_{I^{X}} \cdot RO(X), W \leq A \}.$

It is clear from Definition 3.8 that

Theorem 3.9. Let (X, m_{IX}) be a fuzzy *m*-space and $A \in I^X$. The following statements are true:

(1) If $A \leq B$, then $m_{I^X} \cdot \delta clA \leq m_{I^X} \cdot \delta clB$.

(2) If $A \leq B$, then m_{I^X} - $\delta int A \leq m_{I^X}$ - $\delta int B$.

- (3) $m_{I^X} \delta intA \leq m_{I^X} intA \leq m_{I^X} clA \leq m_{I^X} \delta clA$
- (4) $1_X \setminus m_{I^X} \cdot \delta intA = m_{I^X} \cdot \delta cl(1_X \setminus A).$
- (5) $m_{I^X} \cdot \delta int(1_X \setminus A) = 1_X \setminus m_{I^X} \cdot \delta clA.$

Definition 3.10. Let (X, m_{I^X}) be a fuzzy *m*-space and $A \in I^X$. Then A is said to be fuzzy

(i) m_{IX} - δ -open (resp., m_{IX} - δ -closed), if $A = m_{IX}$ - $\delta intA$ (resp., $A = m_{IX}$ - δclA),

(ii) m_{IX} - δ -preopen, if $A \leq m_{IX}$ - $int(m_{IX}$ - $\delta clA)$,

(iii) m_{IX} - δ -semiopen, if $A \leq m_{IX}$ - $cl(m_{IX}$ - $\delta intA)$.

The complements of the above mentioned fuzzy sets are called their respective closed sets.

The collection of all fuzzy m_{I^X} - δ -open (resp., fuzzy m_{I^X} - δ -preopen, fuzzy m_{I^X} - δ -semiopen) sets is denoted by m_{I^X} - $\delta O(X)$ (resp., m_{I^X} - $\delta PO(X)$, m_{I^X} - $\delta SO(X)$).

The collection of all fuzzy m_{I^X} - δ -closed (resp., fuzzy m_{I^X} - δ -preclosed, fuzzy m_{I^X} - δ -semiclosed) sets is denoted by m_{I^X} - $\delta C(X)$ (resp., m_{I^X} - $\delta PC(X)$, m_{I^X} - $\delta SC(X)$).

Definition 3.11. Let (X, m_{I^X}) be a fuzzy *m*-space and $A \in I^X$. Then A is said to be fuzzy (i) m_{I^X} -e-open, if $A \leq m_{I^X}$ - $cl(m_{I^X}$ - $\delta intA) \bigvee m_{I^X}$ - $int(m_{I^X}$ - $\delta clA)$,

(ii) $m_{I^X} \cdot e^*$ -open, if $A \le m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot \delta clA))$,

(iii) m_{I^X} -a-open, if $A \le m_{I^X}$ - $int(m_{I^X}$ - $cl(m_{I^X}$ - $\delta intA)).$

The complements of the above mentioned sets are called their respective closed sets.

The collection of all fuzzy m_{I^X} -e-open (resp., fuzzy m_{I^X} -e^{*}-open, fuzzy m_{I^X} -a-open) sets is denoted by m_{I^X} -eO(X) (resp., m_{I^X} -e^{*}O(X), m_{I^X} -aO(X)).

The collection of all fuzzy m_{I^X} -e-closed (resp., fuzzy m_{I^X} -e*-closed, fuzzy m_{I^X} -a-closed) sets is denoted by m_{I^X} -eC(X) (resp., m_{I^X} -e*C(X), m_{I^X} -aC(X)).

The above definitions show the following relationships.

Example 3.12. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A, B\}$ where A(a) = 0.4, A(b) = 0.6, B(a) = 0.6, B(b) = 0.4. Then (X, m_{I^X}) is a fuzzy *m*-space. Clearly $m_{I^X} = m_{I^X} - RO(X)$. Consider the fuzzy set *C* defined by C(a) = C(b) = 0.6. Now

 $C = \bigvee \{ U \in I^X : U \in m_{I^X} \cdot RO(X), U \le C \} = m_{I^X} \cdot \delta intC.$

Then C is fuzzy m_{IX} - δ -open in X, but $C \notin m_{IX}$ as well as $C \notin m_{IX}$ -RO(X).

Example 3.13. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}$ where A(a) = A(b) = 0.6. Then (X, m_{I^X}) is a fuzzy *m*-space. Then $A \in m_{I^X}$ but $A \notin m_{I^X} - \delta O(X)$. Again $A \in m_{I^X} - \alpha O(X)$.

Example 3.14. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.6. Then (X, m_{I^X}) is a fuzzy *m*-space. Consider the fuzzy set *B* defined by B(a) = B(b) = 0.6. Then m_{I^X} -int $(m_{I^X}$ -cl $(m_{I^X}$ -int $B)) = 1_X \ge B$. Thus $B \in m_{I^X}$ - $\alpha O(X)$, but $B \notin m_{I^X}$.

Example 3.15. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.4. Then (X, m_{I^X}) is a fuzzy *m*-space. Consider the fuzzy set *B* defined by B(a) = B(b) = 0.5. Then m_{I^X} - $cl(m_{I^X}$ - $intB) = 1_X \setminus A \ge B$. Thus $B \in m_{I^X}$ -SO(X). But m_{I^X} - $int(m_{I^X}$ - $cl(m_{I^X}$ -intB)) = A < B. So $B \notin m_{I^X}$ -aO(X).

Again $m_{I^X} - cl(m_{I^X} - int(m_{I^X} - clB)) = 1_X \setminus A \ge B$. Then $B \in m_{I^X} - \beta O(X)$, but $m_{I^X} - int(m_{I^X} - clB) = A < B$. Thus $B \notin m_{I^X} - PO(X)$.

Example 3.16. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}$ where A(a) = 0.5, A(b) = 0.4. Then (X, m_{I^X}) is a fuzzy *m*-space. Now $m_{I^X} - \delta O(X) = \{0_X, 1_X, A\}$. Consider the fuzzy set *B* defined by B(a) = 0.5, B(b) = 0.3. Then $m_{I^X} - int(m_{I^X} - \delta clB) = m_{I^X} - int(1_X \setminus A) = A \ge B$. Thus $B \in m_{I^X} - \delta PO(X)$, but $B \notin m_{I^X}$.

Again $m_{I^X} - cl(m_{I^X} - int(m_{I^X} - \delta clB)) = 1_X \setminus A > B$. Then $B \in m_{I^X} - e^*O(X)$, but $m_{I^X} - cl(m_{I^X} - intB) = 0_X \not\geq B$. Thus $B \notin m_{I^X} - SO(X)$. Also $m_{I^X} - int(m_{I^X} - clB) = A > B$. So $B \in m_{I^X} - PO(X)$, but $m_{I^X} - int(m_{I^X} - cl(m_{I^X} - intB)) = 0_X \not\geq B$. Hence $B \notin m_{I^X} - \alpha O(X)$.

Example 3.17. Consider Example 3.16 and the fuzzy set C defined by C(a) = C(b) = 0.5. Then m_{I^X} -int $(m_{I^X}$ - $\delta clC) = m_{I^X}$ -int $(1_X \setminus A) = A < C$. Thus $C \notin m_{I^X}$ - $\delta PO(X)$. But m_{I^X} - $cl(m_{I^X}$ - $\delta intC) = m_{I^X}$ - $clA = 1_X \setminus A > C$. So $C \in m_{I^X}$ -eO(X).

Again $m_{I^X} \cdot int(m_{I^X} \cdot cl(m_{I^X} \cdot intC)) = A < C$. Then $C \notin m_{I^X} \cdot aO(X)$. But $m_{I^X} \cdot cl(m_{I^X} \cdot \delta intC) > C$. Thus $C \in m_{I^X} \cdot \delta SO(X)$. Also $C \notin m_{I^X} \cdot \delta O(X)$ and $m_{I^X} \cdot int(m_{I^X} \cdot cl(m_{I^X} \cdot \delta intC)) = A < C$. So $C \notin m_{I^X} \cdot aO(X)$.

Example 3.18. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A, B\}$ where A(a) = 0.5, A(b) =0.4, B(a) = 0.5, B(b) = 0.7. Then $(X, m_I x)$ is a fuzzy *m*-space. Here $m_I x - \delta O(X) = 0.4$ $\{0_X, 1_X, A\}$. Consider the fuzzy set C defined by C(a) = 0.5, C(b) = 0.3. Then m_{IX} -int $(m_{IX}$ - $\delta clC) = m_{IX}$ -int $(1_X \setminus A) = A \geq C$. Thus $C \in m_{IX}$ - $\delta PO(X)$, but m_{I^X} -int $(m_{I^X}$ -cl $C) = 0_X \not\geq C$. So $C \notin m_{I^X}$ -PO(X).

Now m_{IX} -int $(m_{IX}$ - $\delta clC) = A > C$. Then $C \in m_{IX}$ -eO(X).

Again m_{IX} - $cl(m_{IX}$ - $int(m_{IX}$ - $\delta clC)) = 1_X \setminus A > C$. Then $C \in m_{IX}$ - $e^*O(X)$, but $m_{I^X} - cl(m_{I^X} - int(m_{I^X} - clC)) = m_{I^X} - cl(m_{I^X} - int(1_X \setminus B)) = 0_X \not\geq C$. Thus $C \notin m_{I^X} - cl(m_{I^X} - clC) = 0_X \neq C$. $\beta O(X)$. Also m_{IX} -int $(m_{IX}$ -cl $(m_{IX}$ -int $C)) = 0_X \not\geq C$. So $C \notin m_{IX}$ - $\alpha O(X)$.

Example 3.19. Consider Example 3.12 and the fuzzy set D defined by D(a) =0.6, D(b) = 0.61. Then $m_{I^X} - \delta int D = \bigvee \{ U \in m_{I^X} - RO(X) : U \leq D \} = C$ and thus m_{IX} - $int(m_{IX}$ - $cl(m_{IX}$ - $\delta intD)) = 1_X \ge D$. So $D \in m_{IX}$ -aO(X), but $D \notin m_{IX}$ - $\delta O(X).$

Theorem 3.20. Let (X, m_{IX}) be a fuzzy m-space. Then the following statements are true:

- (1) The union of any collection of fuzzy m_{IX} -e^{*}-open sets is fuzzy m_{IX} -e^{*}-open.
- (2) The union of any collection of fuzzy m_{IX} -e-open sets is fuzzy m_{IX} -e-open.
- (3) The union of any collection of fuzzy m_{IX} -a-open sets is fuzzy m_{IX} -a-open.

Proof. Let $\{G_{\alpha} : \alpha \in \Lambda\}$ be any collection of fuzzy m_{I^X} -e^{*}-open sets. Then for any $\alpha \in \Lambda, G_{\alpha} \leq m_{I^{X}} - cl(m_{I^{X}} - int(m_{I^{X}} - \delta clG_{\alpha})).$ Also, $G_{\alpha} \leq \bigvee_{\alpha \in \Lambda} G_{\alpha}$. Thus,

$$G_{\alpha} \leq m_{IX} \cdot cl(m_{IX} \cdot int(m_{IX} \cdot \delta clG_{\alpha}))$$

$$\leq m_{IX} \cdot cl(m_{IX} \cdot int(m_{IX} \cdot \delta cl(\bigvee_{\alpha \in \Lambda} G_{\alpha}))),$$

for all $\alpha \in \Lambda$. So $\bigvee_{\alpha \in \Lambda} G_{\alpha} \leq m_{I^{X}} \cdot cl(m_{I^{X}} \cdot int(m_{I^{X}} \cdot \delta cl(\bigvee_{\alpha \in \Lambda} G_{\alpha})))$. Hence $\bigvee_{\alpha \in \Lambda} G_{\alpha}$ is a fuzzy $m_{X^{X^{*}}} e^{*}$ -open

fuzzy $m_I x - e^*$ -open.

The proofs of (2) and (3) are same as that of (1).

Definition 3.21. Let (X, m_{I^X}) be a fuzzy *m*-space and $A \in I^X$. Then fuzzy m_{Ix} -e-closure (resp., fuzzy m_{Ix} -e^{*}-closure, fuzzy m_{Ix} -a-closure) of A, denoted by m_{IX} -e-clA (resp., m_{IX} -e^{*}-clA, m_{IX} -a-clA), is defined by

 $m_{I^X} \cdot e \cdot clA = \bigwedge \{ F \in I^X : A \le F, 1_X \setminus F \in m_{I^X} \cdot eO(X) \}$ $\begin{array}{l} (\text{resp.}, \ m_{I^X} \text{-} e^* \text{-} clA = \bigwedge \{F \in I^X : A \leq F, 1_X \setminus F \in m_{I^X} \text{-} e^*O(X)\}, \\ m_{I^X} \text{-} a \text{-} clA = \bigwedge \{F \in I^X : A \leq F, 1_X \setminus F \in m_{I^X} \text{-} aO(X)\}). \end{array}$

Lemma 3.22. Let (X, m_{IX}) be a fuzzy m-space. Then the following statements hold:

(1) For any fuzzy point x_{α} and any $U \in I^X$, $x_{\alpha} \in m_{I^X} e^*$ -cl $U \Rightarrow$ for any $V \in$ m_{IX} -e^{*}O(X) with $x_{\alpha}qV$, VqU.

(2) For any two fuzzy sets U,V where $V \in m_{I^X} \cdot e^*O(X)$, U /qV $\Rightarrow m_{I^X} \cdot e^*$ $clU \not qV.$

(3) For any $A \in m_{I^X}$, m_{I^X} -scl $A = m_{I^X}$ -int $(m_{I^X}$ -clA).

(4) For any $A \in m_{I^X} - RO(X), m_{I^X} - \theta - scl A = A$.

- (5) For any $A \in m_{I^X} \cdot \beta O(X), m_{I^X} \cdot clA = m_{I^X} \cdot \alpha clA$.
- (6) For any $A \in m_{I^X}$ -SO(X), m_{I^X} -cl $A = m_{I^X}$ -pclA.

(7) For any $A \in m_{I^X}$, m_{I^X} -scl $A = m_{I^X}$ - θ -sclA.

Proof. (1) Let $V \in m_{I^X} - e^*O(X)$ with $x_{\alpha}qV$. Then $V(x) + \alpha > 1$. Thus $x_{\alpha} \notin 1_X \setminus V$ which is $m_{I^X} - e^*$ -closed in X. So $U \not\leq 1_X \setminus V$. Hence there exists $y \in X$ such that U(y) > 1 - V(y). Therefore UqV.

(2) If possible, let $m_{I^X} \cdot e^* \cdot clUqV$, but $U \not qV$. Then there exists $x \in X$ such that $(m_{I^X} \cdot e^* - clU)(x) + V(x) > 1$. Thus V(x) + t > 1, where $t = (m_{I^X} \cdot e^* - clU)(x)$. So $x_t \in m_{I^X} \cdot e^* - clU$, where $x_t qV, V \in m_{I^X} \cdot e^* O(X)$. By definition, VqU, a contradiction.

(3) We first prove that $m_{I^X} - clA = m_{I^X} - cl(m_{I^X} - sclA)$, for $A \in m_{I^X}$.

Now $A \leq m_{I^X} \cdot sclA \leq m_{I^X} \cdot clA$. Then $m_{I^X} \cdot clA \leq m_{I^X} \cdot cl(m_{I^X} \cdot sclA) \leq m_{I^X} \cdot clA$. Thus $m_{I^X} \cdot clA = m_{I^X} \cdot cl(m_{I^X} \cdot sclA)$. Since infimum of any two fuzzy m_{I^X} -semiclosed sets in a fuzzy m-space is fuzzy $m_{I^X} \cdot semiclosed$, $m_{I^X} \cdot sclA$ is fuzzy $m_{I^X} \cdot semiclosed$ in X. So $m_{I^X} \cdot int(m_{I^X} \cdot cl(m_{I^X} \cdot sclA)) \leq m_{I^X} \cdot sclA$ and so by above, (3.22.1) $m_{I^X} \cdot int(m_{I^X} \cdot clA) \leq m_{I^X} \cdot sclA$.

To prove the converse, let $x_{\alpha} \notin m_{IX}$ -int $(m_{IX}$ -clA). Then $[m_{IX}$ -int $(m_{IX}$ -clA)](x) < α . Thus $x_{\alpha}q(1_X \setminus m_{IX}$ -int $(m_{IX}$ -clA)) = m_{IX} -cl $(m_{IX}$ -int $(1_X \setminus A))$. Since $A \in m_{IX}$, $A \leq m_{IX}$ -int $(m_{IX}$ -clA). Thus

 $(3.22.2) \qquad A \not/ m_{I^X} - cl(m_{I^X} - int(1_X \setminus A)).$

Now $m_I x - cl(m_I x - int(m_I x - cl(m_I x - int(1_X \setminus A)))) \ge m_I x - cl(m_I x - int(1_X \setminus A))$. Thus $m_I x - cl(m_I x - int(1_X \setminus A)) \in m_I x - SO(X)$. So by (3.22.2), $x_\alpha \notin m_I x - sclA$. Consequently,

 $(3.22.3) \qquad m_{I^X} \cdot sclA \le m_{I^X} \cdot int(m_{I^X} \cdot clA).$

Combining (3.22.1) and (3.22.3), we get the result.

(4) It is obvious that $A \leq m_{I^X} \cdot \theta \cdot sclA$. To prove the converse, let $x_\alpha \in m_{I^X} \cdot \theta \cdot sclA$, but $x_\alpha \notin A$. Then $A(x) < \alpha$. Thus $x_\alpha q(1_X \setminus A) = m_{I^X} \cdot cl(m_{I^X} \cdot int(1_X \setminus A))$. So $1_X \setminus A \in m_{I^X} \cdot SO(X)$. Also,

 $(3.22.4) \qquad m_{I^X} - cl(1_X \setminus A) = m_{I^X} - cl(m_{I^X} - cl(m_{I^X} - int(1_X \setminus A)))$

 $= m_{I^X} - cl(m_{I^X} - int(1_X \setminus A)) = 1_X \setminus A.$

As $x_{\alpha} \in m_{I^X} - \theta - sclA$, $m_{I^X} - cl(1_X \setminus A)qA$. So $(1_X \setminus A)qA$ by (3.22.4) which is absurd. Hence $m_{I^X} - \theta - sclA \leq A$, for $A \in m_{I^X} - RO(X)$.

(5) Clearly, $m_{I^X} \cdot \alpha clA \leq m_{I^X} \cdot clA$. To prove the converse, let $x_\alpha \in m_{I^X} \cdot clA$, where $A \in m_{I^X} \cdot \beta O(X)$. Then $A \leq m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot clA))$. Thus (3.22.5) $m_{I^X} \cdot int(m_{I^X} \cdot cl(m_{I^X} \cdot int(1_X \setminus A))) \leq 1_X \setminus A$.

Let $U \in m_{I^X} - \alpha O(X)$ with $x_{\alpha}qU \leq m_{I^X} - int(m_{I^X} - cl(m_{I^X} - intU))$. Then $x_{\alpha}q(m_{I^X} - int(m_{I^X} - cl(m_{I^X} - intU)))$. Then there exists $V \in m_{I^X}$ such that $x_{\alpha}qV \leq m_{I^X} - cl(m_{I^X} - intU)$. So VqA. Hence

 $(3.22.6) V = m_{I^X} - intV \le m_{I^X} - int(m_{I^X} - cl(m_{I^X} - intU))qA.$

If possible, let $U \not A$. Then $U \leq 1_X \setminus A$. Thus by (3.22.5),

 m_{I^X} -int $(m_{I^X}$ -cl $(m_{I^X}$ -int $U)) \le m_{I^X}$ -int $(m_{I^X}$ -cl $(m_{I^X}$ -int $(1_X \setminus A))) \le 1_X \setminus A$. So m_{I^X} -int $(m_{I^X}$ -cl $(m_{I^X}$ -int $U)) \not A$. This is contradicts (3.22.6).

(6) It is similar to that of (5).

(7) It is clear that m_{I^X} - $sclA \leq m_{I^X}$ - θ -sclA, for any $A \in I^X$. To prove the converse, let $x_{\alpha} \in m_{I^X}$ - θ -sclA, but $x_{\alpha} \notin m_{I^X}$ -sclA. Then there exists $U \in m_{I^X}$ -SO(X) with $x_{\alpha}qU$, $U \not qA \Rightarrow U \leq 1_X \setminus A$. Thus $clU \leq cl(1_X \setminus A) = 1_X \setminus A$. So $clU \not qA$. This is a contradiction, as $x_{\alpha} \in m_{I^X}$ - θ -sclA.

4. Continuous functions in fuzzy *m*-space

In this section, a new class of continuous functions between fuzzy m-spaces are introduced and characterized and found the mutual relationships among themselves.

Definition 4.1. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f: X \to Y$ be a function between fuzzy m-spaces. Then f is called fuzzy

(i) contra *R*-map, if $f^{-1}(A) \in m_{I^X} \cdot RC(X)$ for all $A \in m_{I^Y} \cdot RO(Y)$,

(ii) (δ, r) -continuous, if $f^{-1}(A) \in m_{I^X} - \delta C(X)$ for all $A \in m_{I^Y} - RO(Y)$,

(iii) (δ -semi, r)-continuous, if $f^{-1}(A) \in m_{IX} - \delta SC(X)$ for all $A \in m_{IY} - RO(Y)$,

(iv) $(\delta$ -pre, r)-continuous, if $f^{-1}(A) \in m_{I^X} - \delta PC(X)$ for all $A \in m_{I^Y} - RO(Y)$,

(v) (e^*, r) -continuous, if $f^{-1}(A) \in m_{I^X} - e^*C(X)$ for all $A \in m_{I^Y} - RO(Y)$,

(vi) (e, r)-continuous, if $f^{-1}(A) \in m_{I^X} - eC(X)$ for all $A \in m_{I^Y} - RO(Y)$,

(vii) (a, r)-continuous, if $f^{-1}(A) \in m_{IX} - aC(X)$ for all $A \in m_{IY} - RO(Y)$.

Theorem 4.2. Let (X, m_{IX}) and (Y, m_{IY}) be two fuzzy m-spaces and $f: X \to Y$ be a function between fuzzy m-spaces. Then the following statements are true:

(1) If f is fuzzy (δ, r) -continuous, then f is (a, r)-continuous.

(2) If f is fuzzy (a, r)-continuous, then f is fuzzy $(\delta$ -semi, r)-continuous.

(3) If f is fuzzy (a, r)-continuous, then f is fuzzy $(\delta$ -pre, r)-continuous.

(4) If f is fuzzy (δ -semi, r)-continuous, then f is fuzzy (e,r)-continuous.

(5) If f is fuzzy (δ -pre, r)-continuous, then f is fuzzy (e, r)-continuous.

(6) If f is fuzzy (e, r)-continuous, then f is fuzzy (e^*, r) -continuous.

Proof. (1) Let $A \in m_{IY}$ -RO(Y). Then $f^{-1}(A) \in m_{IX}$ - $\delta C(X)$. Thus $m_{IX} - \delta cl(f^{-1}(A)) = f^{-1}(A)$. Now m_{IX} - $cl(m_{IX}$ - $int(m_{IX}$ - $\delta cl(f^{-1}(A))))$ $= m_{I^X} \text{-} cl(m_{I^X} \text{-} int(f^{-1}(A)))$ $\leq m_{I^X} \cdot cl(f^{-1}(A))$ $\leq m_{I^X} \cdot \delta cl(f^{-1}(A))$ $= f^{-1}(A).$

Then $f^{-1}(A) \in m_{I^X} - aC(X)$. Thus f is fuzzy (a, r)-continuous.

(2) The proof follows from the fact that $A \in m_{IX} - aC(X) \Rightarrow A \in m_{IX} - \delta SC(X)$.

(3) The proof follows from the fact that $A \in m_{I^X} - aO(X) \Rightarrow A \in m_{I^X} - \delta PO(X)$.

- (4) The proof follows from the fact that $A \in m_{IX} \cdot \delta SC(X) \Rightarrow A \in m_{IX} \cdot eC(X)$.
- (5) The proof follows from the fact that $A \in m_{I^X} \delta PC(X) \Rightarrow A \in m_{I^X} eC(X)$.

(6) The proof follows from the fact that $A \in m_{I^X} - eC(X) \Rightarrow A \in m_{I^X} - e^*C(X)$.

But the converses are not true, in general, follow from the following examples.

Example 4.3. Fuzzy (a, r)-continuity \neq fuzzy (δ, r) -continuity. Let $X = \{a, b\}, m_{IX} = \{0_X, 1_X, A, B, C, D\}, m'_{IX} = \{0_X, 1_X, E\},$ where A(a) =0.4, A(b) = 0.55, B(a) = 0.5, B(b) = 0.45, C(a) = 0.45, C(b) = 0.55, D(a) = 0.55,D(b) = 0.4, E(a) = E(b) = 0.5. Then (X, m_{IX}) and (X, m'_{IX}) are fuzzy *m*-spaces. Thus $m_{IX} - \delta O(X) = \{0_X, 1_X, B, C, T\}$, where T(a) = 0.5, T(b) = 0.55.

Consider the identity function $i : (X, m_{I^X}) \to (X, m'_{I^X})$. Now $E \in m'_{I^X}$ -RO(X). Then $i^{-1}(E) = E$. Thus $m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot \delta clE)) = m_{I^X} \cdot cl(m_{I^X} \cdot int(1_X \setminus B)) = B < E$. So $E \in m_{I^X} \cdot aC(X)$, but $m_{I^X} \cdot \delta clE = 1_X \setminus B \neq E$. Hence $E \notin m_{I^X} \cdot \delta C(X)$.

Example 4.4. Fuzzy (δ -semi, r)-continuity \neq fuzzy (a, r)-continuity. Let $X = \{a, b\}, m_{IX} = \{0_X, 1_X, A\}, m'_{IX} = \{0_X, 1_X, C\}$, where A(a) = 0.5, A(b) = 0.4, C(a) = C(b) = 0.5. Then (X, m_{IX}) and (X, m'_{IX}) are fuzzy m-spaces.

Consider the identity function $i: (X, m_{I^X}) \to (X, m'_{I^X})$. Now $C \in m'_{I^X} - RO(X)$. $i^{-1}(C) = C = 1_X \setminus C \in m_{I^X} - \delta SO(X)$, but $1_X \setminus C \notin m_{I^X} - aO(X)$. Thus $C \in m_{I^X} - \delta SC(X)$, but $C \notin m_{I^X} - aC(X)$.

Example 4.5. Fuzzy $(\delta$ -pre, r)-continuity \neq fuzzy (a, r)-continuity. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}, m'_{I^X} = \{0_X, 1_X, B\}$, where A(a) = 0.5, A(b) = 0.4, B(a) = 0.5, B(b) = 0.3. Then (X, m_{I^X}) and (X, m'_{I^X}) are fuzzy m-spaces.

Consider the identity function $i : (X, m_{I^X}) \to (X, m'_{I^X})$. Now $m_{I^X} \cdot \delta O(X) = \{0_X, 1_X, A\}$ and $m'_{I^X} \cdot \delta O(X) = \{0_X, 1_X, B\}$. Now $B \in m'_{I^X} \cdot RO(X)$. $i^{-1}(B) = B$. Then $m_{I^X} \cdot cl(m_{I^X} \cdot \delta intB) = 0_X < B$. Thus $B \in m_{I^X} \cdot \delta PC(X)$, but $m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot clB)) = m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot clB)) = m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot clB)) = m_{I^X} \cdot cl(m_{I^X} \cdot int(1_X \setminus A)) = m_{I^X} \cdot clA = 1_X \setminus A \not\leq B$. So $B \notin m_{I^X} \cdot aC(X)$.

Example 4.6. Fuzzy (e, r)-continuity \neq fuzzy $(\delta$ -semi, r)-continuity. Consider Example 4.5. Here $B \in m'_{I^X}$ -RO(X). $i^{-1}(B) = B$. Then m_{I^X} - $int(m_{I^X} - \delta clB) = m_{I^X}$ - $int(1_X \setminus A) = A \not\leq B$. Thus $B \notin m_{I^X} - \delta SC(X)$, but m_{I^X} - $int(m_{I^X} - \delta clB) \wedge m_{I^X}$ - $cl(m_{I^X} - \delta intB) = A \wedge 0_X = 0_X < B$. So $B \in m_{I^X}$ -eC(X).

Example 4.7. Fuzzy (e, r)-continuity \neq fuzzy $(\delta$ -pre, r)-continuity. Consider Example 4.4. Here m_{I^X} - $cl(m_{I^X}$ - $\delta intC) = m_{I^X}$ - $clA = 1_X \setminus A \not\leq C$. Thus $C \notin m_{I^X}$ - $\delta PC(X)$. But m_{I^X} - $int(m_{I^X}$ - $\delta clC) \wedge m_{I^X}$ - $cl(m_{I^X}$ - $\delta intC) = A \wedge (1_X \setminus A) = A < C$. So $C \in m_{I^X}$ -eC(X).

Example 4.8. Fuzzy (e^*, r) -continuity $\not\Rightarrow$ fuzzy (e, r)-continuity. Let $X = \{a, b\}, m_{IX} = \{0_X, 1_X, A, B\}, m'_{IX} = \{0_X, 1_X, C\}$, where A(a) = 0.5, A(b) = 0.6, B(a) = B(b) = 0.4, C(a) = 0.4, C(b) = 0.5. Then (X, m_{IX}) and (X, m'_{IX}) are fuzzy *m*-spaces.

Consider the identity function $i: (X, m_{I^X}) \to (X, m'_{I^X})$. Here $m_{I^X} \cdot \delta O(X) = \{0_X, 1_X, A, B\}$. Now $C \in m'_{I^X} \cdot RO(X)$. $i^{-1}(C) = C$. Now $m_{I^X} \cdot int(m_{I^X} \cdot cl(m_{I^X} \cdot \delta intC)) = m_{I^X} \cdot int(m_{I^X} \cdot clB) = m_{I^X} \cdot int(1_X \setminus A) = B < C$. Then $C \in m_{I^X} \cdot e^*C(X)$. But $m_{I^X} \cdot int(m_{I^X} \cdot \delta clC) \wedge m_{I^X} \cdot cl(m_{I^X} \cdot \delta intC) = m_{I^X} \cdot int(1_X \setminus B) \wedge m_{I^X} \cdot clB = A \wedge (1_X \setminus A) = 1_X \setminus A \not\leq C$. Thus $C \notin m_{I^X} \cdot eC(X)$.

Definition 4.9. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f: X \to Y$ be a function between fuzzy *m*-spaces. Then *f* is said to be fuzzy

(i) e^* -continuous, if $f^{-1}(A) \in m_{I^X} - e^*O(X)$, for all $A \in m_{I^Y}$,

(ii) almost- e^* -continuous, if $f^{-1}(A) \in m_{I^X} - e^*O(X)$, for all $A \in m_{I^Y} - RO(Y)$,

(iii) almost-e-continuous, if $f^{-1}(A) \in m_{I^X} - eO(X)$, for all $A \in m_{I^Y} - RO(Y)$,

(iv) almost-*a*-continuous, if $f^{-1}(A) \in m_{I^X} - aO(X)$, for all $A \in m_{I^Y} - RO(Y)$.

Theorem 4.10. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f : X \to Y$ be a function between fuzzy *m*-spaces. Then the following statements hold:

- (1) If f is fuzzy e^{*}-continuous, then f is fuzzy almost-e^{*}-continuous.
- (2) If f is fuzzy almost-e-continuous, then f is fuzzy almost- e^* -continuous.
- (3) If f is fuzzy almost-a-continuous, then f is fuzzy almost-e-continuous.

Proof. The proof is obvious.

But the converses are not true, in general, follow from the next examples.

Example 4.11. Fuzzy almost- e^* -continuity \neq fuzzy e^* -continuity. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A, B\}, m'_{I^X} = \{0_X, 1_X, E, F\}$ where A(a) = 0.4, A(b) = 0.6, B(a) = 0.6, B(b) = 0.4, E(a) = E(b) = 0.4, F(a) = 0.5, F(b) = 0.45. Then (X, m_{I^X}) and (X, m'_{I^X}) are fuzzy *m*-spaces. Now m_{I^X} - $\delta O(X) = \{0_X, 1_X, A, B, C\}$, where $C(a) = C(b) = 0.6, m'_{I^X}$ - $RO(X) = \{0_X, 1_X, F\}$.

Now consider the identity function $i : (X, m_{I^X}) \to (X, m'_{I^X})$. Then $i^{-1}(F) = F$. Now $m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot \delta clF)) = 1_X > F$. Then $F \in m_{I^X} \cdot e^*O(X)$. But $i^{-1}(E) = E$, $m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot \delta clE)) = m_{I^X} \cdot cl(m_{I^X} \cdot int(1_X \setminus C)) = m_{I^X} \cdot cl_X = 0_X \not\geq E \Rightarrow E \notin m_{I^X} \cdot e^*O(X)$. Thus i is fuzzy almost- e^* -continuous but not fuzzy e^* -continuous.

Example 4.12. Fuzzy almost- e^* -continuity \neq fuzzy almost-e-continuity. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}, m'_{I^X} = \{0_X, 1_X, B, C\}$, where A(a) = 0.5, A(b) = 0.4, B(a) = 0.4, B(b) = 0.6, C(a) = 0.6, C(b) = 0.4. Then (X, m_{I^X}) and (X, m'_{I^X})

are fuzzy *m*-spaces. Now $m_{I^X} \cdot \delta O(X) = m_{I^X}, m'_{I^X} \cdot RO(X) = m'_{I^X}$. Now consider the identity function $i: (X, m_{I^X}) \to (X, m'_{I^X})$. Then $i^{-1}(B) = B$. Now $m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot \delta clB)) = 1_X \setminus A > B$. Then $B \in m_{I^X} \cdot e^*O(X), i^{-1}(C) = C, m_{I^X} \cdot cl(m_{I^X} \cdot int(m_{I^X} \cdot \delta clC)) = 1_X > C$. Thus $C \in m_{I^X} \cdot e^*O(X)$. So i is fuzzy almost- e^* -continuous. But $m_{I^X} \cdot cl(m_{I^X} \cdot \delta ntB) \bigvee m_{I^X} \cdot int(m_{I^X} \cdot \delta clB) = 0_X \bigvee A = 0$.

 $A \geq B$. Hence $B \notin m_{I^X} - eO(X)$. Therefore *i* is not fuzzy almost *e*-continuous.

Example 4.13. Fuzzy almost-*e*-continuity \neq fuzzy almost-*a*-continuity. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}, m'_{I^X} = \{0_X, 1_X, C\}$, where A(a) = 0.5, A(b) = 0.4, C(a) = C(b) = 0.5. Then (X, m_{I^X}) and (X, m'_{I^X}) are fuzzy *m*-spaces. Now m_{I^X} - $\delta O(X) = \{0_X, 1_X, A\}, m'_{I^X}$ - $RO(X) = m'_{I^X}$.

Consider the identity function $i : (X, m_{I^X}) \to (X, m'_{I^X})$. Now $i^{-1}(C) = C$, $m_{I^X} - cl(m_{I^X} - \delta intC) \bigvee m_{I^X} - int(m_{I^X} - \delta clC) = (1_X \setminus A) \bigvee A = 1_X \setminus A > C$. Then $C \in m_{I^X} - eO(X)$. Thus *i* is fuzzy almost-*e*-continuous. But $m_{I^X} - int(m_{I^X} - cl(m_{I^X} - \delta intC)) = m_{I^X} - int(m_{I^X} - clA) = A < C$. So $C \notin m_{I^X} - aO(X)$. Hence *i* is not fuzzy almost-*e*-continuous.

Definition 4.14. A fuzzy *m*-space (X, m_{IX}) is said to be fuzzy m_{IX} -extremally disconnected, if the fuzzy m_{IX} -closure of all fuzzy m_{IX} -interior of a fuzzy set in X is fuzzy m_{IX} -open.

Example 4.15. Let $X = \{a, b\}, m_{I^X} = \{0_X, 1_X, A\}$, where A(a) = A(b) = 0.5. Then (X, m_{I^X}) is a fuzzy *m*-space. Now m_{I^X} - $clA = A \in m_{I^X} \Rightarrow X$ is fuzzy m_{I^X} -extremally disconnected. **Theorem 4.16.** Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy m-spaces and $f: X \to X$ Y be a function. If (Y, m_{IY}) is a fuzzy m_{IY} -extremally disconnected, then f is fuzzy (e^*, r) -continuous (resp., fuzzy (e, r)-continuous, fuzzy (a, r)-continuous) iff f is fuzzy almost-e^{*}-continuous (resp., fuzzy almost-e-continuous, fuzzy almost-acontinuous).

Proof. First suppose that f is fuzzy (e^*, r) -continuous. Let $U(\in I^Y) \in m_{I^Y}$ -RO(Y). Then $U = m_{IY} - int(m_{IY} - clU)$. As Y is fuzzy m_{IY} -extremally disconnected, m_{IY} $clU \in m_{IY}$ and so $U \in m_{IY}$ as well as $1_Y \setminus U \in m_{IY}$, i.e., U is fuzzy m_{IY} -open as well as fuzzy m_{IY} -closed and so $U = m_{IY}$ - $cl(m_{IY}$ -intU), i.e., $U \in m_{IY}$ -RC(Y). As f is fuzzy (e^*, r) -continuous, $f^{-1}(U) \in m_{I^X} - e^*O(X)$. Then f is fuzzy almost- e^* continuous.

Conversely, suppose that f is fuzzy almost- e^* -continuous and let $W \in m_{IY}$ -RC(Y). Since Y is fuzzy m_{IY} -extremally disconnected, $W \in m_{IY}$ -RO(Y). By hypothesis, $f^{-1}(W) \in m_{I^X} - e^*O(X) \Rightarrow f$ is fuzzy (e^*, r) -continuous.

The other two cases are similar to that of first case.

Definition 4.17. A fuzzy *m*-space (X, m_{I^X}) is said to be fuzzy

(i) $m_{IX}-e^*-T_{1/2}$ -space, if all fuzzy $m_{IX}-e^*$ -closed set in X is fuzzy $m_{IX}-\delta$ -closed in X,

(ii) m_{IX} -e- $T_{1/2}$ -space, if all fuzzy m_{IX} -e*-closed set in X is fuzzy m_{IX} -e-closed in X,

(iii) m_{IX} -a- $T_{1/2}$ -space, if all fuzzy m_{IX} -e^{*}-closed set in X is fuzzy m_{IX} -a-closed in X.

Example 4.18. Consider Example 4.15. Here $(X, m_I x)$ is a fuzzy $m_I x - e^* - T_{1/2}$ space.

Theorem 4.19. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy m-spaces and $f: X \to Y$ be a function. If X is fuzzy m_{I^X} -e^{*}- $T_{1/2}$ -space, then the following statements are equivalent:

(1) f is fuzzy (e^*, r) -continuous.

(2) f is fuzzy (e, r)-continuous.

(3) f is fuzzy (δ -semi, r)-continuous.

(4) f is fuzzy (δ -pre, r)-continuous.

(5) f is fuzzy (a, r)-continuous.

(6) f is fuzzy (δ, r) -continuous.

Proof. (1) \Rightarrow (4): Let $W \in m_{IY}$ -RO(Y). By (1), $f^{-1}(W) \in m_{IX}$ -eC(X). As X is fuzzy $m_{I^X} \cdot e^* \cdot T_{1/2}$ -space, $f^{-1}(W) \in m_{I^X} \cdot \delta C(X)$. Then $f^{-1}(W) \in m_{I^X} \cdot \delta PC(X)$. Thus f is fuzzy (δ -pre, r)-continuous.

(4) \Rightarrow (6): Let $W \in m_{IY}$ -RO(Y). By (4), $f^{-1}(W) \in m_{IX}$ - $\delta PC(X)$. Then $f^{-1}(W) \in m_{I^{X}} \cdot e^{*}C(X)$. As X is fuzzy $m_{I^{X}} \cdot e^{*} \cdot T_{1/2}$ -space, $f^{-1}(W) \in m_{I^{X}} \cdot \delta C(X)$. Thus f is fuzzy (δ, r) -continuous.

(6) \Rightarrow (5): Let $W \in m_{IY}$ -RO(Y). By (6), $f^{-1}(W) \in m_{IX}$ - $\delta C(X)$. Then $f^{-1}(W) = m_{IX} - \delta cl(f^{-1}(W))$. Thus, $m_{IX} - cl(m_{IX} - int(m_{IX} - \delta cl(f^{-1}(W)))) \leq m_{IX} - \delta cl(f^{-1}(W))$ $cl(m_{I^{X}} - \delta cl(f^{-1}(W))) \le m_{I^{X}} - \delta cl(m_{I^{X}} - \delta cl(f^{1}(W))) = m_{I^{X}} - \delta cl(f^{-1}(W)) = f^{-1}(W).$ So $f^{-1}(W) \in m_{I^X} \cdot aC(X)$. Hence f is fuzzy (a, r)-continuous.

 $(5) \Rightarrow (3)$: Let $W \in m_{I^Y} \cdot RO(Y)$. By (5), $f^{-1}(W) \in m_{I^X} \cdot aC(X)$. Then $1_X \setminus f^{-1}(W) \in m_{I^X} \cdot aO(X)$. Thus $1_X \setminus f^{-1}(W) \leq m_{I^X} \cdot int(m_{I^X} \cdot dint(1_X \setminus f^{-1}(W)))) \leq m_{I^X} \cdot cl(m_{I^X} \cdot dint(1_X \setminus f^{-1}(W)))$. So $1_X \setminus f^{-1}(W) \in m_{I^X} \cdot \delta SO(X)$. Hence $f^{-1}(W) \in m_{I^X} \cdot \delta SC(X)$. Therefore f is fuzzy (δ -semi, r)-continuous.

(3) \Rightarrow (2): Let $W \in m_{I^Y} \cdot RO(Y)$. By (3), $f^{-1}(W) \in m_{I^X} \cdot \delta SC(X)$. Then $f^{-1}(W) \in m_{I^X} \cdot eC(X)$ as every fuzzy $m_{I^X} \cdot \delta$ -semiclosed set is fuzzy $m_{I^X} \cdot e$ -closed. Therefore, f is fuzzy (e, r)-continuous.

(2) \Rightarrow (1): Let $W \in m_{IY}$ -RO(Y). By (2), $f^{-1}(W) \in m_{IX}$ -eC(X). Then $f^{-1}(W) \in m_{IX}$ - $e^*C(X)$ (as every fuzzy m_{IX} -e-closed set is fuzzy m_{IX} - e^* -closed). Thus f is fuzzy (e^*, r) -continuous.

Theorem 4.20. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f : X \to Y$ be a function. Then the following statements are equivalent:

(1) f is fuzzy (e^*, r) -continuous.

(2) $f^{-1}(A) \in m_{I^X} \cdot e^* O(X)$, for all $A \in m_{I^Y} \cdot RC(Y)$.

(3) $f(m_{IX} - e^* - clU) \le m_{IY} - r - ker(f(U)), \text{ for all } U \in I^X.$

(4) $m_{I^X} \cdot e^* \cdot cl(f^{-1}(A)) \leq f^{-1}(m_{I^Y} \cdot r \cdot ker(A)), \text{ for all } A \in I^Y.$

(5) For each fuzzy point x_{α} in X and each $A \in m_{IY}$ -SO(Y) with $f(x_{\alpha})qA$, there exists $U \in m_{IX}$ -e^{*}O(X) with $x_{\alpha}qU$, $f(U) \leq m_{IY}$ -clA.

(6) $f(m_{I^X} \cdot e^* \cdot clP) \leq m_{I^Y} \cdot \theta \cdot scl(f(P)), \text{ for all } P \in I^X.$

(7) $m_{I^X} \cdot e^* \cdot cl(f^{-1}(R)) \leq f^{-1}(m_{I^Y} \cdot \theta \cdot sclR)), \text{ for all } R \in I^Y.$

(8) $m_{I^X} \cdot e^* \cdot cl(f^{-1}(R)) \leq f^{-1}(m_{I^Y} \cdot \theta \cdot sclR)), \text{ for all } R \in m_{I^Y}.$

(9) $m_{I^X} - e^* - cl(f^{-1}(R)) \le f^{-1}(m_{I^Y} - sclR)), \text{ for all } R \in m_{I^Y}.$

(10) $m_{I^X} - e^* - cl(f^{-1}(R)) \le f^{-1}(m_{I^Y} - int(m_{I^Y} - clR)), \text{ for all } R \in m_{I^Y}.$

(11) For each fuzzy point x_{α} in X and each $A \in m_{I^Y}$ -SO(Y) with $f(x_{\alpha}) \in A$, there exists $U \in m_{I^X}$ -e^{*}O(X) such that $x_{\alpha} \in U$ and $f(U) \leq m_{I^Y}$ -clA.

 $(10) \quad f^{-1}(A) \quad f^{-1}(A)$

(12) $f^{-1}(A) \le m_{I^X} \cdot e^* \cdot int(f^{-1}(m_{I^Y} \cdot clA)), \text{ for all } A \in m_{I^Y} \cdot SO(Y).$

(13) $f^{-1}(m_{IY} - int(m_{IY} - clA)) \in m_{IX} - e^*C(X)$, for all $A \in m_{IY}$.

(14) $f^{-1}(m_{I^Y} - cl(m_{I^Y} - intF)) \in m_{I^X} - e^*O(X)$, for all $1_X \setminus F \in m_{I^Y}$.

(15) $f^{-1}(m_{IY} - clU) \in m_{IX} - e^*O(X)$, for all $U \in m_{IY} - \beta O(Y)$.

(16) $f^{-1}(m_{I^Y} - clU) \in m_{I^X} - e^*O(X)$, for all $U \in m_{I^Y} - SO(Y)$.

(17) $f^{-1}(m_{IY} - int(m_{IY} - clU)) \in m_{IX} - e^*C(X)$, for all $U \in m_{IY} - PO(Y)$.

(18) $f^{-1}(m_{IY} - \alpha clU) \in m_{IX} - e^*O(X)$, for all $U \in m_{IY} - \beta O(Y)$.

(19) $f^{-1}(m_{I^Y} - pclU) \in m_{I^X} - e^*O(X)$, for all $U \in m_{I^Y} - SO(Y)$.

(20) $m_{I^X} \cdot e^* \cdot cl(f^{-1}(R)) \le f^{-1}(m_{I^Y} \cdot \theta \cdot sclR)), \text{ for all } R \in m_{I^Y} \cdot SO(Y).$

(21) $m_{I^X} \cdot e^* \cdot cl(f^{-1}(R)) \le f^{-1}(m_{I^Y} \cdot \theta \cdot sclR)), \text{ for all } R \in m_{I^Y} \cdot PO(Y).$

(22) $m_{I^X} - e^* - cl(f^{-1}(R)) \le f^{-1}(m_{I^Y} - \theta - sclR)), \text{ for all } R \in m_{I^Y} - \beta O(Y).$

Proof. (1) \Rightarrow (2): Let $W \in m_{IY} \cdot RC(Y)$. Then $1_Y \setminus W \in m_{IY} \cdot RO(Y)$. By (1), $f^{-1}(1_Y \setminus W) = 1_X \setminus f^{-1}(W) \in m_{IX} \cdot e^*C(X)$. Thus $f^{-1}(W) \in m_{IX} \cdot e^*O(X)$. (2) \Rightarrow (1): Let $W \in m_{IY} \cdot RO(Y)$. Then $1_Y \setminus W \in m_{IY} \cdot RC(Y)$. By (2), $f^{-1}(1_Y \setminus W) = 1_X \setminus f^{-1}(W) \in m_{IX} \cdot e^*O(X)$. Thus $f^{-1}(W) \in m_{IX} \cdot e^*C(X)$. (2) \Rightarrow (3): Let $U \in I^X$ and suppose that y_α be a fuzzy point in Y with $y_\alpha \notin m_{IY}$.

(2) \Rightarrow (3): Let $U \in I^X$ and suppose that y_α be a fuzzy point in Y with $y_\alpha \notin m_{I^Y}$ r-ker(f(U)). Then there exists $V \in m_{I^Y}$ -RO(Y) such that $f(U) \leq V$ and $y_\alpha \notin V$. Thus $V(y) < \alpha$. So $y_\alpha q(1_Y \setminus V) \in m_{I^Y}$ -RC(Y) and $1_Y \setminus f(U) \geq 1_Y \setminus V$. Hence $f(U) \not A(1_Y \setminus V)$. Therefore $U \not Af^{-1}(1_Y \setminus V)$. By (2), $f^{-1}(1_Y \setminus V) = 1_X \setminus f^{-1}(V) \in Q_{22}$ $m_{I^{X}} - e^{*}O(X)$. By Lemma 3.22(2), $m_{I^{X}} - e^{*} - clU / q(1_{X} \setminus f^{-1}(U))$. Then $m_{I^{X}} - e^{*} - clU \le f^{-1}(V)$, i.e., $f(m_{I^{X}} - e^{*} - clU) \le V$. Thus $1_{Y} \setminus f(m_{I^{X}} - e^{*} - clU) \ge 1_{Y} \setminus V$. So $1 - f(m_{I^{X}} - e^{*} - clU)(y) > 1 - V(y) > 1 - \alpha$, i.e., $\alpha > f(m_{I^{X}} - e^{*} - clU)(y)$. Hence $y_{\alpha} \notin f(m_{I^{X}} - e^{*} - clU)$. Therefore, $f(m_{I^{X}} - e^{*} - clU) \le m_{I^{Y}} - r - ker(f(U))$.

(3) \Rightarrow (4): Let $A \in I^Y$. Then $f^{-1}(A) \in I^X$. By (3), $f(m_{I^X} - e^* - clf^{-1}(A)) \leq m_{I^Y} - r \cdot ker(A)$. Then $m_{I^X} - e^* - cl(f^{-1}(A)) \leq f^{-1}(m_{I^Y} - r \cdot ker(A))$.

 $(4) \Rightarrow (1)$: Let $A \in m_{I^Y} \cdot RO(Y)$. By (4), $m_{I^X} \cdot e^* \cdot cl(f^{-1}(A)) \leq f^{-1}(m_{I^Y} \cdot r \cdot e^*(A)) = f^{-1}(A)$. But $f^{-1}(A) \leq m_{I^X} \cdot e^* \cdot cl(f^{-1}(A))$ and thus $f^{-1}(A) = m_{I^X} \cdot e^* \cdot cl(f^{-1}(A))$. So $f^{-1}(A) \in m_{I^X} \cdot e^* C(X)$.

 $(5) \Rightarrow (6)$. Let $P \in I^X$ and x_{α} be any fuzzy point in X such that $x_{\alpha} \in m_{I^X} - e^* - clP$ and let $G \in m_{I^Y} - SO(Y)$ with $f(x_{\alpha})qG$. By (5), there exists $U \in m_{I^X} - e^*O(X)$ with $x_{\alpha}qU$, $f(U) \leq m_{I^Y} - clG$. As $x_{\alpha} \in m_{I^X} - e^* - clP$, by Lemma 3.22(1), UqP and so f(U)qf(P). Then $f(P)qm_{I^Y} - clG \Rightarrow f(x_{\alpha}) \in m_{I^Y} - \theta - scl(f(P))$. Thus $f(m_{I^X} - e^* - clP) \leq m_{I^Y} - \theta - scl(f(P))$.

(6) \Rightarrow (7): Let $R \in I^Y$. By (6), $f(m_{I^X} - e^* - cl(f^{-1}(R))) \le m_{I^Y} - \theta - scl(f(f^{-1}(R))) \le m_{I^Y} - \theta - scl R$. Then $m_{I^X} - e^* - cl(f^{-1}(R)) \le f^{-1}(m_{I^Y} - \theta - scl R)$.

(7) \Rightarrow (5): Let x_{α} be any fuzzy point in X and $A \in m_{IY}$ -SO(Y) with $f(x_{\alpha})qA$. Since, $(m_{IY}$ - $clA) \not/(1_Y \setminus m_{IY}$ -clA), by definition $f(x_{\alpha}) \notin m_{IY}$ - θ - $scl(1_Y \setminus m_{IY}$ -clA). Then $x_{\alpha} \notin f^{-1}(m_{IY}$ - θ - $scl(1_Y \setminus m_{IY}$ -clA)). By (7), $x_{\alpha} \notin m_{IX}$ - e^* - $cl(f^{-1}(1_Y \setminus m_{IY}$ -clA)). Thus there exists $U \in m_{IX}$ - $e^*O(X)$ with $x_{\alpha}qU$, $U \not/f^{-1}(1_Y \setminus m_{IY}$ -clA). So $f(U) \not/(1_Y \setminus m_{IY}$ -clA). Hence $f(U) \leq m_{IY}$ -clA.

(7) \Rightarrow (8): Let $A \in m_{I^Y}$. By (7), $m_{I^X} - e^* - cl(f^{-1}(A)) \leq f^{-1}(m_{I^Y} - \theta - sclA)$.

(8) \Rightarrow (9): It follows from Lemma 3.22(7).

 $(9) \Rightarrow (10)$: It follows from Lemma 3.22(3).

 $(10) \Rightarrow (1)$: Let $A \in m_{I^Y} - RO(Y)$. By $(10), m_{I^X} - e^* - cl(f^{-1}(A)) \leq f^{-1}(m_{I^Y} - int(m_{I^Y} - clA)) = f^{-1}(A)$. Then $f^{-1}(A) \in m_{I^X} - e^*C(X)$. Thus f is fuzzy (e^*, r) -continuous.

(1) \Rightarrow (10): Let $A \in m_{I^Y}$. Then $m_{I^Y} - int(m_{I^Y} - clA) \in m_{I^Y} - RO(Y)$. By (1), $f^{-1}(m_{I^Y} - int(m_{I^Y} - clA)) \in m_{I^X} - e^*C(X)$. Thus

 $m_{I^{X}} - e^* - cl(f^{-1}(A)) \le m_{I^{X}} - e^* - cl(f^{-1}(m_{I^{Y}} - int(m_{I^{Y}} - clA)))$

 $= f^{-1}(m_{I^{Y}} - int(m_{I^{Y}} - clA)).$

(10) \Rightarrow (9): It follows from lemma 3.22(3).

 $(9) \Rightarrow (8)$: It follows from Lemma 3.22(7).

 $(7) \Rightarrow (1)$: Let $R \in m_{IY}$ -RO(Y). By (7), m_{IX} - e^* - $cl(f^{-1}(R)) \leq f^{-1}(m_{IY}$ - θ $sclR) = f^{-1}(R)$. Then $f^{-1}(R) \in m_{IX}$ - $e^*C(X)$. Thus f is fuzzy (e^*, r) -continuous.

 $(5) \Rightarrow (12)$: Let $A \in m_{IY}$ -SO(Y) and x_{α} be any fuzzy point in X such that $x_{\alpha}qf^{-1}(A)$. Then $f(x_{\alpha})qA$. By (5), there exists $U \in m_{IX}$ - $e^*O(X)$ such that $x_{\alpha}qU$, $f(U) \leq m_{IY}$ -clA. Thus $x_{\alpha}qU \leq f^{-1}(m_{IY}$ -clA). So $x_{\alpha}qm_{IX}$ - e^* - $int(f^{-1}(m_{IY}$ -clA)), as m_{IX} - e^* - $int(f^{-1}(m_{IY}$ -clA)) is the union of all fuzzy m_{IX} - e^* -open sets in X contained in $f^{-1}(m_{IY}$ -clA). Hence $f^{-1}(A) \leq m_{IX}$ - e^* - $int(f^{-1}(m_{IY}$ -clA)).

 $(12) \Rightarrow (5)$: Let x_{α} be any fuzzy point in X and $A \in m_{I^Y}$ -SO(Y) with $f(x_{\alpha})qA$. Then $x_{\alpha}qf^{-1}(A) \leq m_{I^X}$ - e^* - $int(f^{-1}(m_{I^Y}$ -clA)) (by (12)) implies there exists $U \in m_{I^X}$ - $e^*O(X)$ with $x_{\alpha}qU, U \leq f^{-1}(m_{I^Y}$ -clA). Thus $f(U) \leq m_{I^Y}$ -clA.

(11) \Rightarrow (12): Let $A \in m_{I^Y}$ -SO(Y) and x_{α} be any fuzzy point in X such that $x_{\alpha} \in f^{-1}(A)$. Then $f(x_{\alpha}) \in A$. By (11), there exists $U \in m_{I^X}$ - $e^*O(X)$ with $x_{\alpha} \in U$

and $f(U) \leq m_{IY} - clA$. Thus $U \leq f^{-1}(m_{IY} - clA)$. So $x_{\alpha} \in m_{IX} - e^* - int(f^{-1}(m_{IY} - clA))$. Hence $f^{-1}(A) \leq m_{IX} - e^* - int(f^{-1}(m_{IY} - clA))$.

 $(12) \Rightarrow (11)$: Let x_{α} be any fuzzy point in X and $A \in m_{I^Y}$ -SO(Y) with $f(x_{\alpha}) \in A$. Then $x_{\alpha} \in f^{-1}(A) \leq m_{I^X}$ - e^* - $int(f^{-1}(m_{I^Y}$ -clA)) (by (12)) implies there exists $U \in m_{I^X}$ - $e^*O(X)$ with $x_{\alpha} \in U$ and $U \leq f^{-1}(m_{I^Y}$ -clA). Thus $f(U) \leq m_{I^Y}$ -clA.

(1) \Rightarrow (13): Let $A \in m_{IY}$. Then m_{IY} -int $(m_{IY}$ -cl $A) \in m_{IY}$ -RO(Y). By (1), $f^{-1}(m_{IY}$ -int $(m_{IY}$ -cl $A)) \in m_{IX}$ - $e^*C(X)$.

(13) \Rightarrow (1): Let $A \in m_{IY}$ -RO(Y). Then $A \in m_{IY}$. By (13), $f^{-1}(A) = f^{-1}(m_{IY} - int(m_{IY} - clA)) \in m_{IX} - e^*C(X)$.

(12) \Rightarrow (2): Let $F \in m_{IY}$ -RC(Y). Then $F \in m_{IY}$ -SO(Y). By (12), $f^{-1}(F) \leq m_{IX}$ - e^* - $int(f^{-1}((m_{IY}-clF)) = m_{IX}$ - e^* - $int(f^{-1}(F))$.

(2) \Rightarrow (14): Let $F \in m_{I^Y} \cdot RC(Y)$. By (2), $f^{-1}(F) \in m_{I^X} \cdot e^*O(X)$. But $f^{-1}(F) = f^{-1}(m_{I^Y} \cdot cl(m_{I^Y} \cdot intF))$. Then $f^{-1}(m_{I^Y} \cdot cl(m_{I^Y} \cdot intF)) \in m_{I^X} \cdot e^*O(X)$.

 $(14) \Rightarrow (2)$: Let $F \in m_{IY}$ -RC(Y). By (14), $f^{-1}(F) = f^{-1}(m_{IY}$ - $cl(m_{IY}$ - $intF)) \in m_{IX}$ - $e^*O(X)$.

 $(2) \Rightarrow (15): \text{ Let } U \in m_{IY} \cdot \beta O(Y). \text{ Then } U \leq m_{IY} \cdot cl(m_{IY} \cdot int(m_{IY} \cdot clU)) \leq m_{IY} \cdot clU. \text{ Thus } m_{IY} \cdot clU \leq m_{IY} \cdot cl(m_{IY} \cdot cl(m_{IY} \cdot int(m_{IY} \cdot clU))) = m_{IY} \cdot cl(m_{IY} \cdot cl(m_{IY} \cdot clU)) \leq m_{IY} \cdot cl(m_{IY} \cdot clU) = m_{IY} \cdot clU \Rightarrow m_{IY} \cdot clU = m_{IY} \cdot cl(m_{IY} \cdot int(m_{IY} \cdot clU)). \text{ So } m_{IY} \cdot clU \in m_{IY} \cdot RC(Y). \text{ Hence by } (2), f^{-1}(m_{IY} \cdot clU) \in m_{IX} \cdot e^*O(X).$

(15) \Rightarrow (16): Since m_{IY} - $SO(Y) \subseteq m_{IY}$ - $\beta O(Y)$, by (15), $f^{-1}(m_{IY}$ - $clU) \in m_{IX}$ - $e^*O(X)$, for all $U \in m_{IY}$ -SO(Y).

(16) \Rightarrow (17): Let $U \in m_{IY}$ -PO(Y). Then $U \leq m_{IY}$ - $int(m_{IY}$ -clU). We claim that m_{IY} - $int(m_{IY}$ - $clU) \in m_{IY}$ -RO(Y). Indeed,

 $m_{IY} - int(m_{IY} - clU) \leq m_{IY} - int(m_{IY} - cl(m_{IY} - int(m_{IY} - clU))) \leq m_{IY} - int(m_{IY} - clU).$ Thus $m_{IY} - int(m_{IY} - clU) = m_{IY} - int(m_{IY} - cl(m_{IY} - int(m_{IY} - clU))) \Rightarrow m_{IY} - int(m_{IY} - clU) \leq m_{IY} - RO(Y).$ So $1_Y \setminus m_{IY} - int(m_{IY} - clU) \in m_{IY} - RC(Y).$ Hence $1_Y \setminus m_{IY} - int(m_{IY} - clU) \in m_{IY} - clU) \in m_{IY} - sO(Y).$ By (16), $f^{-1}(m_{IY} - cl(1_Y \setminus m_{IY} - int(m_{IY} - clU))) \in m_{IX} - e^*O(X).$ Thus $1_X \setminus f^{-1}(m_{IY} - int(m_{IY} - clU)) = 1_X \setminus f^{-1}((m_{IY} - int(m_{IY} - clU))) = 1_X \setminus f^{-1}((m_{IY} - int(m_{IY} - clU))) \in m_{IX} - e^*O(X).$

 $(17) \Rightarrow (1)$: Let $U \in m_{IY} \cdot RO(Y)$. Then $U \in m_{IY} \cdot PO(Y)$. By (17), $f^{-1}(m_{IY} \cdot int(m_{IY} \cdot clU)) \in m_{IX} \cdot e^*C(X)$. Thus $f^{-1}(U) = f^{-1}(m_{IY} \cdot int(m_{IY} \cdot clU)) \in m_{IX} \cdot e^*C(X)$. So (1) holds.

 $(15) \Leftrightarrow (18)$: The proof follows from Lemma 3.22(5).

(15) \Leftrightarrow (19): The proof follow from Lemma 3.22(6).

 $(7) \Rightarrow (20)$: Obvious.

 $(20) \Rightarrow (8)$: Let $A \in m_{I^Y}$. Since m_{I^Y} - $SO(Y) \supseteq m_{I^Y}$, by (20), m_{I^X} - e^* - $cl(f^{-1}(A)) \le f^{-1}(m_{I^Y}$ - θ -sclA).

 $(7) \Rightarrow (22)$: Obvious.

(22) \Rightarrow (20): Since m_{IY} -SO(Y) $\subseteq m_{IY}$ - $\beta O(Y)$, the result follows.

 $(7) \Rightarrow (21)$. Obvious.

(21) \Rightarrow (8): Since $m_{IY} \subseteq m_{IY} - PO(Y)$, the result follows.

Remark 4.21. In a similar manner we can characterize fuzzy (e, r)-continuous (resp., fuzzy (a, r)-continuous) function by changing e^* by e (resp., by a) in the Theorem 4.20.

5. Fuzzy compact sets and fuzzy s-closed sets in fuzzy m-Space

Definition 5.1 ([5, 4]). Let A be a fuzzy set in X. A collection \mathcal{U} of fuzzy sets in X is called a fuzzy cover of A, if $sup\{U(x) : U \in \mathcal{U}\} = 1$, for each $x \in suppA$. In particular, if $A = 1_X$, we get the definition of fuzzy cover of X.

Definition 5.2 ([5, 4]). A fuzzy cover \mathcal{U} of a fuzzy set A in X is said to have a finite subcover \mathcal{U}_0 , if \mathcal{U}_0 is a finite subcollection of \mathcal{U} such that $\bigcup \mathcal{U}_0 \ge A$, i.e., \mathcal{U}_0 is also a fuzzy cover of A. In particular, if $A = 1_X$, we get $\bigcup \mathcal{U}_0 = 1_X$.

Definition 5.3. A fuzzy set A in a fuzzy m-space (X, m_{IX}) is said to be fuzzy m-compact (resp., fuzzy m- e^* -compact, fuzzy m-e-compact, fuzzy m-a-compact), if every fuzzy covering \mathcal{U} of A by fuzzy m_{IX} -open (resp., fuzzy m_{IX} - $e^*O(X)$, fuzzy m_{IX} -eO(X), fuzzy m_{IX} -aO(X)) sets in X has a finite subcovering \mathcal{U}_0 of \mathcal{U} . In particular, if $A = 1_X$, we get the definition of fuzzy m-compact (resp., fuzzy m- e^* -compact, fuzzy m-e-compact, fuzzy m-e-compact, fuzzy m-e-compact.

Since every fuzzy m_{Ix} -open (resp., fuzzy m_{Ix} -e-open, fuzzy m_{Ix} -a-open) set is fuzzy m_{Ix} -e*-open (resp., fuzzy m_{Ix} -e*-open, fuzzy m_{Ix} -e-open), the following theorem is obvious.

Theorem 5.4. Let (X, m_{I^X}) be a fuzzy m-space and $A \in I^X$.

- (1) If A is fuzzy m-e^{*}-compact, then A is fuzzy m-compact.
- (2) If A is fuzzy m-e^{*}-compact, then A is fuzzy m-e-compact.
- (3) If A is fuzzy m-e-compact, then A is fuzzy m-a-compact.

Definition 5.5. A fuzzy *m*-space (X, m_{I^X}) is said to be fuzzy *m*-*s*-closed, if for every fuzzy covering of X by fuzzy m_{I^X} -regular closed sets in X contains a finite subcovering.

Theorem 5.6. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f : X \to Y$ be surjective, fuzzy (e^*, r) -continuous function. If X is fuzzy *m*-e^{*}-compact space, then Y is fuzzy *m*-s-closed space.

Proof. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy covering of Y by fuzzy $m_{I^{Y}}$ -regular closed sets of Y. As f is fuzzy (e^{*}, r) -continuous, $\mathcal{V} = \{f^{-1}(U_{\alpha}) : \alpha \in \Lambda\}$ covers X by fuzzy $m_{I^{X}}-e^{*}$ -open sets of X. As X is fuzzy m- e^{*} -compact, there exists a finite subset Λ_{0} of Λ such that $1_{X} = \bigvee_{\alpha \in \Lambda_{0}} f^{-1}(U_{\alpha})$. Then $1_{Y} = f(\bigvee_{\alpha \in \Lambda_{0}} f^{-1}(U_{\alpha})) = \bigvee_{\alpha \in \Lambda_{0}} f(f^{-1}(U_{\alpha})) \leq$

 $\bigvee_{\alpha \in \Lambda_0} U_{\alpha}$. Thus Y is fuzzy *m*-s-closed space.

In a similar manner we can easily state the following two theorems the proof of which are similar to that of Theorem 5.6.

Theorem 5.7. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f : X \to Y$ be surjective, fuzzy (e, r)-continuous function. If X is fuzzy *m*-e-compact space, then Y is fuzzy *m*-s-closed space.

Theorem 5.8. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f : X \to Y$ be surjective, fuzzy (a, r)-continuous function. If X is fuzzy *m*-a-compact space, then Y is fuzzy *m*-s-closed space.

Theorem 5.9. Every fuzzy m_{IX} -e^{*}-closed set A in a fuzzy m-e^{*}-compact space X is fuzzy m- e^* -compact.

Proof. Let A be a fuzzy m_{IX} -e^{*}-closed set in a fuzzy m-e^{*}-compact space X. Let \mathcal{U} be a fuzzy covering of A by fuzzy $m_{IX} - e^*$ -open sets in X. Then $\mathcal{V} = \mathcal{U} \mid |(1_X \setminus A)|$ is a fuzzy $m_{IX}-e^*$ -open covering of X. By hypothesis, there exists a finite subcollection \mathcal{V}_0 of \mathcal{V} which also covers X. If \mathcal{V}_0 contains $1_X \setminus A$, we omit it and get a finite subcovering of A. Consequently, A is fuzzy $m-e^*$ -compact. \square

Similarly we can easily state the following two theorems the proof of which are similar to that of Theorem 5.9.

Theorem 5.10. Every fuzzy m_{IX} -e-closed set A in a fuzzy m-e-compact space X is fuzzy m-e-compact.

Theorem 5.11. Every fuzzy m_{IX} -a-closed set A in a fuzzy m-a-compact space X is fuzzy m-a-compact.

Theorem 5.12. Let (X, m_{IX}) and (Y, m_{IY}) be two fuzzy m-spaces and $f: X \to Y$ be fuzzy e^* -continuous function. If A is fuzzy m- e^* -compact relative to X, then the image f(A) is fuzzy m-compact relative to Y.

Proof. Let A be fuzzy m-e^{*}-compact relative to X and $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ be a fuzzy covering of f(A) by fuzzy m_{IY} -open sets of Y, i.e., $f(A) \leq \bigvee U_{\alpha}$. Then

 $A \leq f^{-1}(\bigvee_{\alpha \in \Lambda} U_{\alpha}) = \bigvee_{\alpha \in \Lambda} f^{-1}(U_{\alpha}). \text{ Thus } \mathcal{V} = \{f^{-1}(U_{\alpha}) : \alpha \in \Lambda\} \text{ is a fuzzy covering}$ of A by fuzzy $m_{I^{X^*}} e^*$ -open sets in X. As A is fuzzy $m \cdot e^*$ -compact relative to X, there exists a finite subcollection $\mathcal{V}_0 = \{f^{-1}(U_{\alpha_i}) : 1 \leq i \leq n\}$ of \mathcal{V} such that $A \leq \bigvee_{i=1}^n f^{-1}(U_{\alpha_i}). \text{ So } f(A) \leq f(\bigvee_{i=1}^n f^{-1}(U_{\alpha_i})) = \bigvee_{i=1}^n f(f^{-1}(U_{\alpha_i})) \leq \bigvee_{i=1}^n U_{\alpha_i}. \text{ Hence}$ $\mathcal{U}_0 = \{U_{\alpha_i} : 1 \leq i \leq n\}$ is a finite subcovering of f(A). Therefore the result holds holds. \square

Similarly we can easily state the following two theorems the proof of which are similar to that of Theorem 5.12.

Theorem 5.13. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces where (X, m_{I^X}) is fuzzy m_{I^X} -e- $T_{1/2}$ -space and $f: X \to Y$ be fuzzy e^* -continuous function. If A is fuzzy m-e-compact relative to X, then the image f(A) is fuzzy m-compact relative to Y.

Theorem 5.14. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy m-spaces where (X, m_{I^X}) is fuzzy m_{I^X} -a- $T_{1/2}$ -space and $f: X \to Y$ be fuzzy e^* -continuous function. If A is fuzzy m-a-compact relative to X, then the image f(A) is fuzzy m-compact relative to Y.

Definition 5.15. Let (X, m_{IX}) be a fuzzy *m*-space. Then X is said to be fuzzy m_{IX} - T_2 (resp., fuzzy m_{IX} - e^* - T_2 , fuzzy m_{IX} -e- T_2 , fuzzy m_{IX} -a- T_2) space, if for each pair of distinct fuzzy points x_{α}, y_{β} ; when $x \neq y$, there exist fuzzy m_{Ix} -open (resp., fuzzy $m_{Ix}-e^*$ -open, fuzzy $m_{Ix}-e$ -open, fuzzy $m_{Ix}-a$ -open) sets U_1, U_2, V_1, V_2 in X such that $x_{\alpha} \in U_1, y_{\beta}qV_1$ and U_1 / qV_1 and $x_{\alpha}qU_2, y_{\beta} \in V_2$ and U_2 / qV_2 ; when $x = y, \alpha < \beta$ (say), there exist fuzzy $m_I x$ -open (resp., fuzzy $m_I x$ -e^{*}-open, fuzzy $m_I x$ -e^{*}-open, fuzzy $m_I x$ -a-open) sets U, V in X such that $x_{\alpha} \in U, y_{\beta}qV$ and U / qV.

Definition 5.16. A fuzzy *m*-space (X, m_{I^X}) is said to be fuzzy *s*-Urysohn if for each pair of distinct fuzzy points x_{α}, y_{β} : when $x \neq y$, there exist fuzzy m_{I^X} -semiopen sets U_1, U_2, V_1, V_2 in X such that $x_{\alpha} \in U_1, y_{\beta}qV_1$ and m_{I^X} - clU_1 / m_{I^X} - clV_1 and $x_{\alpha}qU_2$, $y_{\beta} \in V_2$ and m_{I^X} - clU_2 / qm_{I^X} - clV_2 ; when $x = y, \alpha < \beta$ (say), there exist fuzzy m_{I^X} -semiopen sets U, V in X such that $x_{\alpha} \in U, y_{\beta}qV$ and m_{I^X} - clU / m_{I^X} -clV.

Theorem 5.17. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy m-spaces and $f : X \to Y$ be injective fuzzy (e^*, r) -continuous function and Y is fuzzy s-Urysohn space. Then X is fuzzy m_{I^X} -e^{*}-T₂.

Proof. Let x_{α} and y_{β} be two distinct fuzzy points in X where $x \neq y$. Since f is injective, $f(x_{\alpha}) \neq f(y_{\beta})$. Since Y is fuzzy s-Urysohn, there exist fuzzy m_{IY} -semiopen sets U_1, U_2, V_1, V_2 in Y such that $f(x_{\alpha}) \in U_1, f(y_{\beta})qV_1$ and m_{IY} - clU_1 / qm_{IY} - clV_1 and $f(x_{\alpha})qU_2, f(y_{\beta}) \in V_2$ and m_{IY} - clU_2 / qm_{IY} - clV_2 . By Theorem 4.20, there exist $W_1, W_2 \in m_{IX}$ - $e^*O(X)$ such that $x_{\alpha} \in W_1, W_1 \leq f^{-1}(m_{IY}$ - $clU_1), y_{\beta}qW_2, W_2 \leq f^{-1}(m_{IY}$ - $clV_1)$ or $x_{\alpha}qW_2, W_2 \leq f^{-1}(m_{Y}$ - $clU_2), y_{\beta} \in W_1, W_1 \leq f^{-1}(m_{IY}$ - $clV_2)$. We claim that W_1 / qW_2 . Indeed, m_{IY} - clU_1 / qm_{IY} - clV_1 and m_{IY} - clU_2 / qm_{IY} - clV_2 . Then $f^{-1}(m_{IY}$ - $clU_1) / qf^{-1}(m_{IY}$ - $clV_1)$ and $f^{-1}(m_{IY}$ - $clV_2).$

Similarly, when x = y, $\alpha < \beta$ (say), there exist $U_1, U_2 \in m_{I'} - SO(Y)$ such that $f(x_{\alpha}) \in U_1, f(y_{\beta})qU_2$ and $m_{I'} - clU_1 / qm_{I'} - clU_2$. By Theorem 4.20, there exist $W_1, W_2 \in m_{I'} - e^*O(X)$ such that $x_{\alpha} \in W_1, W_1 \leq f^{-1}(m_{I'} - clU_1), y_{\beta}qW_2, W_2 \leq f^{-1}(m_{I'} - clU_2)$. Thus as above, $W_1 \not AW_2$. So X is fuzzy $m_{I'} - e^* - T_2$ -space. \Box

Similarly we can easily state the following two theorems the proof of which are similar to that of Theorem 5.17

Theorem 5.18. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy m-spaces and $f : X \to Y$ be injective, fuzzy (e, r)-continuous function and Y is fuzzy s-Urysohn space. Then X is fuzzy m_{I^X} -e- T_2 .

Theorem 5.19. Let (X, m_{I^X}) and (Y, m_{I^Y}) be two fuzzy *m*-spaces and $f : X \to Y$ be injective, fuzzy (a, r)-continuous function and Y is fuzzy s-Urysohn space. Then X is fuzzy m_{I^X} -a- T_2 .

Acknowledgements. The author acknowledges the financial support from UGC (Minor Research Project), New Delhi.

References

- M. Alimohammady and M. Roohi, Fuzzy minimal structure and fuzzy minimal vector spaces, Chaos, Solitons and Fractals 27 (2006) 599–605.
- [2] A. Bhattacharyya, Fuzzy upper and lower *M*-continuous multifunctions, Vasile Alecsandri, University of Bacău, Faculty of Sciences, Scientific Studies and Research, Series Mathematics and Informatics 21 (2) (2015) 125–144.
- [3] M. Brescan, On quasi-irresolute functions in fuzzy minimal structures, BULETINUL Universității Petrol Gaze din Ploiești, Seria Matematică-Informatică-Fizică, LXII (1) (2010) 19–25.

- [4] C. L. Chang; Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [5] S. Ganguly and S. Saha; A note on compactness in fuzzy setting, Fuzzy Sets and Systems 34 (1990) 117–124.
- [6] M.J. Nematollahi and M. Roohi, Fuzzy minimal structures and fuzzy minimal subspaces, Italian Journal of Pure and Applied Mathematics 27 (2010) 147–156.
- [7] Pao Ming Pu and Ying Ming Liu, Fuzzy topology I. Neighbourhood structure of a fuzzy point and Moore-Smith Convergence, J. Math Anal. Appl. 76 (1980) 571–599.
- [8] L. A. Zadeh; Fuzzy Sets, Informatin and Control 8 (1965) 338–353.

ANJANA BHATTACHARYYA (anjanabhattacharyya@hotmail.com)

Department of Mathematics, Victoria Institution (College), 78 B, A.P.C.Road, Kolkata - 700009, India