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Abstract. In this paper, we first introduce some open and closed sets in
fuzzy m-space and give some interrelations between them. Afterwards, dif-
ferent types of continuity between fuzzy m-spaces have been introduced and
characterized and also found the mutual relationships among themselves.
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1. Introduction

In [1], the notion of fuzzy minimal structure (in the sense of Lowen) has been
introduced as follows : A familyM of fuzzy sets in X is said to be a fuzzy minimal
structure on X if α1X ∈ M for every α ∈ [0, 1]. A more general version of fuzzy
minimal structure (in the sense of Chang) are introduced in [3, 6] as follows : A
family F of fuzzy sets in X is a fuzzy minimal structure on X if 0X ∈ F and
1X ∈ F . In this paper we use the notion of fuzzy minimal structure in the sense of
Chang.

2. Preliminaries

In 1965, Zadeh introduced the notion of fuzzy set [8] A which is a mapping from
a non-empty set X into the closed interval [0, 1], i.e., A ∈ IX . The support [7] of
a fuzzy set A, denoted by suppA and is defined by suppA = {x ∈ X : A(x) 6= 0}.
The fuzzy set with the singleton support {x} ⊆ X and the value t (0 < t ≤ 1) will
be denoted by xt. 0X and 1X are the constant fuzzy sets taking values 0 and 1
respectively in X. The complement [8] of a fuzzy set A in X is denoted by 1X \ A
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and is defined by (1X \ A)(x) = 1 − A(x), for each x ∈ X. For any two fuzzy sets
A,B in X, A ≤ B means A(x) ≤ B(x), for all x ∈ X [8] while AqB means A is
quasi-coincident (q-coincident, for short) [7] with B, i.e., there exists x ∈ X such
that A(x) + B(x) > 1. The negation of these two statements will be denoted by
A 6≤ B and A 6 qB respectively. For a fuzzy point xα and a fuzzy set A in X, xα ∈ A
means xα ≤ A, i.e., A(x) ≥ α.

3. Some Different Types of Open and Closed Sets in Fuzzy m-Space

Let X be a non-empty set and mIX ⊆ IX . Then mIX is said to be a fuzzy
minimal structure [3, 6] on X if 0X , 1X ∈ mIX . The members of mIX are called
fuzzy mIX -open sets and the complement of a fuzzy mIX -open set is called fuzzy
mIX -closed set. The pair (X,mIX ) is called fuzzy m-space.

Definition 3.1 ([2]). Let X be a non-empty set and mIX , a fuzzy minimal structure
on X. For A ∈ IX , the fuzzy mIX -closure and fuzzy mIX -interior of A, denoted by
mIX -clA and mIX -intA respectively, are defined as follows :

mIX -clA =
∧
{F : A ≤ F, 1X \ F ∈ mIX}

mIX -intA =
∨
{D : D ≤ A,D ∈ mIX}.

It can be observed that given a fuzzy minimal structure mIX on X, if A ∈ IX ,
the mIX -intA may not be an element of mIX .

Proposition 3.2 ([2]). Let X be a non-empty set and mIX , a fuzzy minimal struc-
ture on X. Then for any A ∈ IX , a fuzzy point xα ∈ mIX -clA iff for any U ∈ mIX

with xαqU , UqA.

Lemma 3.3 ([2]). Let X be a non empty set and mIX , a fuzzy minimal structure
on X. For A,B ∈ IX , the following hold:

(1) A ≤ B which implies that mIX -intA ≤ mIX -intB, mIX -clA ≤ mIX -clB.
(2) mIX -cl0X = 0X , mIX -cl1X = 1X , mIX -int0X = 0X , mIX -int1X = 1X .
(3) mIX -intA ≤ A ≤ mIX -clA.
(4) mIX -clA = A if 1X \A ∈ mIX , mIX -intA = A, if A ∈ mIX .
(5) mIX -cl(1X \A) = 1X \mIX -intA, mIX -int(1X \A) = 1X \mIX -clA.
(6) mIX -cl(mIX -clA) = mIX -clA, mIX -int(mIX -intA) = mIX -intA.

It is clear from Lemma 3.3 that

Theorem 3.4. Let (X,mIX ) be a fuzzy m-space and A,B ∈ IX . Then the following
statements are true:

(1) mIX -clA
∨
mIX -clB ≤ mIX -cl(A

∨
B).

(2) mIX -int(A
∧
B) ≤ mIX -intA

∧
mIX -intB.

We now introduce the following definitions.

Definition 3.5. Let (X,mIX ) be a fuzzy m-space. A ∈ IX is said to be fuzzy
(i) mIX -regular open, if A = mIX -int(mIX -clA),
(ii) mIX -semiopen, if A ≤ mIX -cl(mIX -intA),
(iii) mIX -α-open, if A ≤ mIX -int(mIX -cl(mIX -intA)),
(iv) mIX -β-open, if A ≤ mIX -cl(mIX -int(mIX -clA)),
(v) mIX -preopen, if A ≤ mIX -int(mIX -clA).
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The complements of the above mentioned fuzzy sets are called their respective
closed sets.

The infimum of all fuzzy mIX -semiclosed (resp., fuzzy mIX -α-closed, fuzzy mIX -
preclosed) sets containing a fuzzy set A in X is called fuzzy mIX -semiclosure (resp.,
fuzzy mIX -α-closure, fuzzy mIX -preclosure) of A and is denoted by mIX -sclA (resp.,
mIX -αclA, mIX -pclA).

We denote by mIX -RO(X) (resp., mIX -RC(X), mIX -SO(X), mIX -αO(X), mIX -
PO(X), mIX -βO(X)) the family of all fuzzy mIX -regular open (resp., fuzzy mIX -
regular closed, fuzzy mIX -semiopen, fuzzy mIX -α-open, fuzzy mIX -preopen, fuzzy
mIX -β-open) sets in X.

Definition 3.6. Let (X,mIX ) be a fuzzy m-space and A ∈ IX . A fuzzy point xα
in X is said to be fuzzy mIX -θ-semicluster point of A, if mIX -clUqA for every fuzzy
mIX -semiopen set U with xαqU . The union of all fuzzy mIX -θ-semicluster points
of A is called fuzzy mIX -θ-semiclosure of A and is denoted by mIX -θ-sclA.
A(∈ IX) is said to be fuzzy mIX -θ-semiclosed if A = mIX –θ-sclA. The comple-

ment of a fuzzy mIX -θ-semiclosed set is called fuzzy mIX -θ-semiopen.

Definition 3.7. Let (X,mIX ) be a fuzzy m-space and A ∈ IX . The mIX -r-kernel
of A, denoted by mIX -r-KerA, is defined as follows:

mIX -r-KerA =
∧
{U : U ∈ mIX -RO(X), A ≤ U}.

Definition 3.8. Let (X,mIX ) be a fuzzy m-space and A ∈ IX . The fuzzy mIX -δ-
closure and fuzzy mIX -δ-interior of A, denoted by mIX -δclA and mIX -δintA resp.,
are defined by

mIX -δclA = {xα ∈ X : AqmIX -int(mIX -clU), for all U ∈ mIX with xαqU},
mIX -δintA =

∨
{W : W ∈ mIX -RO(X),W ≤ A}.

It is clear from Definition 3.8 that

Theorem 3.9. Let (X,mIX ) be a fuzzy m-space and A ∈ IX . The following state-
ments are true:

(1) If A ≤ B, then mIX -δclA ≤ mIX -δclB.
(2) If A ≤ B, then mIX -δintA ≤ mIX -δintB.
(3) mIX -δintA ≤ mIX -intA ≤ mIX -clA ≤ mIX -δclA
(4) 1X \mIX -δintA = mIX -δcl(1X \A).
(5) mIX -δint(1X \A) = 1X \mIX -δclA.

Definition 3.10. Let (X,mIX ) be a fuzzy m-space and A ∈ IX . Then A is said to
be fuzzy

(i) mIX -δ-open (resp., mIX -δ-closed), if A = mIX -δintA (resp., A = mIX -δclA),
(ii) mIX -δ-preopen, if A ≤ mIX - int(mIX -δclA),
(iii) mIX -δ-semiopen, if A ≤ mIX -cl(mIX -δintA).

The complements of the above mentioned fuzzy sets are called their respective
closed sets.

The collection of all fuzzy mIX -δ-open (resp., fuzzy mIX -δ-preopen, fuzzy mIX -
δ-semiopen) sets is denoted by mIX -δO(X) (resp., mIX -δPO(X), mIX -δSO(X)).

The collection of all fuzzy mIX -δ-closed (resp., fuzzy mIX -δ-preclosed, fuzzy mIX -
δ-semiclosed) sets is denoted by mIX -δC(X) (resp., mIX -δPC(X), mIX -δSC(X)).

215



Anjana Bhattacharyya /Ann. Fuzzy Math. Inform. 13 (2017), No. 2, 213–229

Definition 3.11. Let (X,mIX ) be a fuzzy m-space and A ∈ IX . Then A is said to
be fuzzy (i) mIX -e-open, if A ≤ mIX -cl(mIX -δintA)

∨
mIX -int(mIX -δclA),

(ii) mIX -e∗-open, if A ≤ mIX -cl(mIX -int(mIX -δclA)),
(iii) mIX -a-open, if A ≤ mIX -int(mIX -cl(mIX -δintA)).

The complements of the above mentioned sets are called their respective closed
sets.

The collection of all fuzzy mIX -e-open (resp., fuzzy mIX -e∗-open, fuzzy mIX -a-
open) sets is denoted by mIX -eO(X) (resp., mIX -e∗O(X), mIX -aO(X)).

The collection of all fuzzy mIX -e-closed (resp., fuzzy mIX -e∗-closed, fuzzy mIX -
a-closed) sets is denoted by mIX -eC(X) (resp., mIX -e∗C(X), mIX -aC(X)).

The above definitions show the following relationships.

Example 3.12. Let X = {a, b},mIX = {0X , 1X , A,B} where A(a) = 0.4, A(b) =
0.6, B(a) = 0.6, B(b) = 0.4. Then (X,mIX ) is a fuzzy m-space. Clearly mIX = mIX -
RO(X). Consider the fuzzy set C defined by C(a) = C(b) = 0.6. Now

C =
∨
{U ∈ IX : U ∈ mIX -RO(X), U ≤ C} = mIX -δintC.

Then C is fuzzy mIX -δ-open in X, but C 6∈ mIX as well as C 6∈ mIX -RO(X).

Example 3.13. Let X = {a, b},mIX = {0X , 1X , A} where A(a) = A(b) = 0.6.
Then (X,mIX ) is a fuzzy m-space. Then A ∈ mIX but A 6∈ mIX -δO(X). Again
A ∈ mIX -αO(X).

Example 3.14. Let X = {a, b},mIX = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.6.
Then (X,mIX ) is a fuzzy m-space. Consider the fuzzy set B defined by B(a) =
B(b) = 0.6. Then mIX -int(mIX -cl(mIX -intB)) = 1X ≥ B. Thus B ∈ mIX -αO(X),
but B 6∈ mIX .

Example 3.15. Let X = {a, b},mIX = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4.
Then (X,mIX ) is a fuzzy m-space. Consider the fuzzy set B defined by B(a) =
B(b) = 0.5. Then mIX -cl(mIX -intB) = 1X \ A ≥ B. Thus B ∈ mIX -SO(X). But
mIX -int(mIX -cl(mIX -intB)) = A < B. So B 6∈ mIX -αO(X).

Again mIX -cl(mIX -int(mIX -clB)) = 1X \ A ≥ B. Then B ∈ mIX -βO(X), but
mIX -int(mIX -clB) = A < B. Thus B 6∈ mIX -PO(X).

Example 3.16. Let X = {a, b},mIX = {0X , 1X , A} where A(a) = 0.5, A(b) = 0.4.
Then (X,mIX ) is a fuzzy m-space. Now mIX -δO(X) = {0X , 1X , A}. Consider the
fuzzy set B defined by B(a) = 0.5, B(b) = 0.3. Then mIX -int(mIX -δclB) = mIX -
int(1X \A) = A ≥ B. Thus B ∈ mIX -δPO(X), but B 6∈ mIX .

Again mIX -cl(mIX -int(mIX -δclB)) = 1X \ A > B. Then B ∈ mIX -e∗O(X),
but mIX -cl(mIX -intB) = 0X 6≥ B. Thus B 6∈ mIX -SO(X). Also mIX -int(mIX -
clB) = A > B. So B ∈ mIX -PO(X), but mIX -int(mIX -cl(mIX -intB)) = 0X 6≥ B.
Hence B 6∈ mIX -αO(X).

Example 3.17. Consider Example 3.16 and the fuzzy set C defined by C(a) =
C(b) = 0.5. ThenmIX -int(mIX -δclC) = mIX -int(1X\A) = A < C. Thus C 6∈ mIX -
δPO(X). But mIX -cl(mIX -δintC) = mIX -clA = 1X \A > C. So C ∈ mIX -eO(X).

Again mIX -int(mIX -cl(mIX -intC)) = A < C. Then C 6∈ mIX -αO(X). But
mIX -cl(mIX -δintC) > C. Thus C ∈ mIX -δSO(X). Also C 6∈ mIX -δO(X) and
mIX -int(mIX -cl(mIX -δintC)) = A < C. So C 6∈ mIX -aO(X).
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Example 3.18. Let X = {a, b},mIX = {0X , 1X , A,B} where A(a) = 0.5, A(b) =
0.4, B(a) = 0.5, B(b) = 0.7. Then (X,mIX ) is a fuzzy m-space. Here mIX -δO(X) =
{0X , 1X , A}. Consider the fuzzy set C defined by C(a) = 0.5, C(b) = 0.3. Then
mIX -int(mIX -δclC) = mIX -int(1X \ A) = A ≥ C. Thus C ∈ mIX -δPO(X), but
mIX -int(mIX -clC) = 0X 6≥ C. So C 6∈ mIX -PO(X).

Now mIX -int(mIX -δclC) = A > C. Then C ∈ mIX -eO(X).
Again mIX -cl(mIX -int(mIX -δclC)) = 1X \ A > C. Then C ∈ mIX -e∗O(X), but

mIX -cl(mIX -int(mIX -clC)) = mIX -cl(mIX -int(1X \B)) = 0X 6≥ C. Thus C 6∈ mIX -
βO(X). Also mIX -int(mIX -cl(mIX -intC)) = 0X 6≥ C. So C 6∈ mIX -αO(X).

Example 3.19. Consider Example 3.12 and the fuzzy set D defined by D(a) =
0.6, D(b) = 0.61. Then mIX -δintD =

∨
{U ∈ mIX -RO(X) : U ≤ D} = C and

thus mIX -int(mIX -cl(mIX -δintD)) = 1X ≥ D. So D ∈ mIX -aO(X), but D 6∈ mIX -
δO(X).

Theorem 3.20. Let (X,mIX ) be a fuzzy m-space. Then the following statements
are true:

(1) The union of any collection of fuzzy mIX -e∗-open sets is fuzzy mIX -e∗-open.
(2) The union of any collection of fuzzy mIX -e-open sets is fuzzy mIX -e-open.
(3) The union of any collection of fuzzy mIX -a-open sets is fuzzy mIX -a-open.

Proof. Let {Gα : α ∈ Λ} be any collection of fuzzy mIX -e∗-open sets. Then for any

α ∈ Λ, Gα ≤ mIX -cl(mIX -int(mIX -δclGα)). Also, Gα ≤
∨
α∈Λ

Gα. Thus,

Gα ≤ mIX -cl(mIX -int(mIX -δclGα))

≤ mIX -cl(mIX -int(mIX -δcl(
∨
α∈Λ

Gα))),

for all α ∈ Λ. So
∨
α∈Λ

Gα ≤ mIX -cl(mIX -int(mIX -δcl(
∨
α∈Λ

Gα))). Hence
∨
α∈Λ

Gα is a

fuzzy mIX -e∗-open.
The proofs of (2) and (3) are same as that of (1). �

Definition 3.21. Let (X,mIX ) be a fuzzy m-space and A ∈ IX . Then fuzzy
mIX -e-closure (resp., fuzzy mIX -e∗-closure, fuzzy mIX -a-closure) of A, denoted by
mIX -e-clA (resp., mIX -e∗-clA, mIX -a-clA), is defined by

mIX -e-clA =
∧
{F ∈ IX : A ≤ F, 1X \ F ∈ mIX -eO(X)}

(resp., mIX -e∗-clA =
∧
{F ∈ IX : A ≤ F, 1X \ F ∈ mIX -e∗O(X)},

mIX -a-clA =
∧
{F ∈ IX : A ≤ F, 1X \ F ∈ mIX -aO(X)}).

Lemma 3.22. Let (X,mIX ) be a fuzzy m-space. Then the following statements
hold:

(1) For any fuzzy point xα and any U ∈ IX , xα ∈ mIX -e∗-clU ⇒ for any V ∈
mIX -e∗O(X) with xαqV , V qU .

(2) For any two fuzzy sets U, V where V ∈ mIX -e∗O(X), U 6 qV ⇒ mIX -e∗-
clU 6 qV .

(3) For any A ∈ mIX , mIX -sclA = mIX -int(mIX -clA).
(4) For any A ∈ mIX -RO(X),mIX -θ-sclA = A.
(5) For any A ∈ mIX -βO(X),mIX -clA = mIX -αclA.
(6) For any A ∈ mIX -SO(X),mIX -clA = mIX -pclA.
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(7) For any A ∈ mIX , mIX -sclA = mIX -θ-sclA.

Proof. (1) Let V ∈ mIX -e∗O(X) with xαqV . Then V (x)+α > 1. Thus xα 6∈ 1X \V
which is mIX -e∗-closed in X. So U 6≤ 1X \ V . Hence there exists y ∈ X such that
U(y) > 1− V (y). Therefore UqV .

(2) If possible, let mIX -e∗-clUqV , but U 6 qV . Then there exists x ∈ X such that
(mIX -e∗-clU)(x)+V (x) > 1. Thus V (x)+t > 1, where t = (mIX -e∗-clU)(x). So xt ∈
mIX -e∗-clU , where xtqV, V ∈ mIX -e∗O(X). By definition, V qU , a contradiction.

(3) We first prove that mIX -clA = mIX -cl(mIX -sclA), for A ∈ mIX .
Now A ≤ mIX -sclA ≤ mIX -clA. Then mIX -clA ≤ mIX -cl(mIX -sclA) ≤ mIX -

clA. Thus mIX -clA = mIX -cl(mIX -sclA). Since infimum of any two fuzzy mIX -
semiclosed sets in a fuzzy m-space is fuzzy mIX -semiclosed, mIX -sclA is fuzzy mIX -
semiclosed in X. So mIX -int(mIX -cl(mIX -sclA)) ≤ mIX -sclA and so by above,
(3.22.1) mIX -int(mIX -clA) ≤ mIX -sclA.

To prove the converse, let xα 6∈ mIX -int(mIX -clA). Then [mIX -int(mIX -clA)](x)
< α. Thus xαq(1X \ mIX -int(mIX -clA)) = mIX -cl(mIX -int(1X \ A)). Since A ∈
mIX , A ≤ mIX -int(mIX -clA). Thus
(3.22.2) A 6 qmIX -cl(mIX -int(1X \A)).

Now mIX -cl(mIX -int(mIX -cl(mIX -int(1X \ A)))) ≥ mIX -cl(mIX -int(1X \ A)).
Thus mIX -cl(mIX -int(1X \ A)) ∈ mIX -SO(X). So by (3.22.2), xα 6∈ mIX -sclA.
Consequently,
(3.22.3) mIX -sclA ≤ mIX -int(mIX -clA).
Combining (3.22.1) and (3.22.3), we get the result.

(4) It is obvious that A ≤ mIX -θ-sclA. To prove the converse, let xα ∈ mIX -θ-
sclA, but xα 6∈ A. Then A(x) < α. Thus xαq(1X \A) = mIX -cl(mIX -int(1X \A)).
So 1X \A ∈ mIX -SO(X). Also,
(3.22.4) mIX -cl(1X \A) = mIX -cl(mIX -cl(mIX -int(1X \A)))

= mIX -cl(mIX -int(1X \A)) = 1X \A.
As xα ∈ mIX -θ-sclA,mIX -cl(1X \A)qA. So (1X \A)qA by (3.22.4) which is absurd.
Hence mIX -θ-sclA ≤ A, for A ∈ mIX -RO(X).

(5) Clearly, mIX -αclA ≤ mIX -clA. To prove the converse, let xα ∈ mIX -clA,
where A ∈ mIX -βO(X). Then A ≤ mIX -cl(mIX -int(mIX -clA)). Thus
(3.22.5) mIX -int(mIX -cl(mIX -int(1X \A))) ≤ 1X \A.

Let U ∈ mIX -αO(X) with xαqU ≤ mIX -int(mIX -cl(mIX -intU)). Then xαq(mIX -
int(mIX -cl(mIX -intU))). Then there exists V ∈ mIX such that xαqV ≤ mIX -
cl(mIX -intU). So V qA. Hence
(3.22.6) V = mIX -intV ≤ mIX -int(mIX -cl(mIX -intU))qA.

If possible, let U 6 qA. Then U ≤ 1X \A. Thus by (3.22.5),
mIX -int(mIX -cl(mIX -intU)) ≤ mIX -int(mIX -cl(mIX -int(1X \A))) ≤ 1X \A. So

mIX -int(mIX -cl(mIX -intU)) 6 qA. This is contradicts (3.22.6).
(6) It is similar to that of (5).
(7) It is clear that mIX -sclA ≤ mIX -θ-sclA, for any A ∈ IX . To prove the

converse, let xα ∈ mIX -θ-sclA, but xα 6∈ mIX -sclA. Then there exists U ∈ mIX -
SO(X) with xαqU , U 6 qA ⇒ U ≤ 1X \ A. Thus clU ≤ cl(1X \ A) = 1X \ A. So
clU 6 qA. This is a contradiction, as xα ∈ mIX -θ-sclA. �
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4. Continuous functions in fuzzy m-space

In this section, a new class of continuous functions between fuzzy m-spaces are
introduced and characterized and found the mutual relationships among themselves.

Definition 4.1. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be a function between fuzzy m-spaces. Then f is called fuzzy

(i) contra R-map, if f−1(A) ∈ mIX -RC(X) for all A ∈ mIY -RO(Y ),
(ii) (δ, r)-continuous, if f−1(A) ∈ mIX -δC(X) for all A ∈ mIY -RO(Y ),
(iii) (δ-semi, r)-continuous, if f−1(A) ∈ mIX -δSC(X) for all A ∈ mIY -RO(Y ),
(iv) (δ-pre, r)-continuous, if f−1(A) ∈ mIX -δPC(X) for all A ∈ mIY -RO(Y ),
(v) (e∗, r)-continuous, if f−1(A) ∈ mIX -e∗C(X) for all A ∈ mIY -RO(Y ),
(vi) (e, r)-continuous, if f−1(A) ∈ mIX -eC(X) for all A ∈ mIY -RO(Y ),
(vii) (a, r)-continuous, if f−1(A) ∈ mIX -aC(X) for all A ∈ mIY -RO(Y ).

Theorem 4.2. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be a function between fuzzy m-spaces. Then the following statements are true:

(1) If f is fuzzy (δ, r)-continuous, then f is (a, r)-continuous.
(2) If f is fuzzy (a, r)-continuous, then f is fuzzy (δ-semi, r)-continuous.
(3) If f is fuzzy (a, r)-continuous, then f is fuzzy (δ-pre, r)-continuous.
(4) If f is fuzzy (δ-semi, r)-continuous, then f is fuzzy (e, r)-continuous.
(5) If f is fuzzy (δ-pre, r)-continuous, then f is fuzzy (e, r)-continuous.
(6) If f is fuzzy (e, r)-continuous, then f is fuzzy (e∗, r)-continuous.

Proof. (1) Let A ∈ mIY -RO(Y ). Then f−1(A) ∈ mIX -δC(X). Thus
mIX -δcl(f−1(A)) = f−1(A). Now

mIX -cl(mIX -int(mIX -δcl(f−1(A))))
= mIX -cl(mIX -int(f−1(A)))
≤ mIX -cl(f−1(A))
≤ mIX -δcl(f−1(A))
= f−1(A).

Then f−1(A) ∈ mIX -aC(X). Thus f is fuzzy (a, r)-continuous.
(2) The proof follows from the fact that A ∈ mIX -aC(X)⇒ A ∈ mIX -δSC(X).
(3) The proof follows from the fact that A ∈ mIX -aO(X)⇒ A ∈ mIX -δPO(X).
(4) The proof follows from the fact that A ∈ mIX -δSC(X)⇒ A ∈ mIX -eC(X).
(5) The proof follows from the fact that A ∈ mIX -δPC(X)⇒ A ∈ mIX -eC(X).
(6) The proof follows from the fact that A ∈ mIX -eC(X) ⇒ A ∈ mIX -e∗C(X).

�

But the converses are not true, in general, follow from the following examples.

Example 4.3. Fuzzy (a, r)-continuity 6⇒ fuzzy (δ, r)-continuity.

Let X = {a, b}, mIX = {0X , 1X , A,B,C,D}, m
′

IX = {0X , 1X , E}, where A(a) =
0.4, A(b) = 0.55, B(a) = 0.5, B(b) = 0.45, C(a) = 0.45, C(b) = 0.55, D(a) = 0.55,

D(b) = 0.4, E(a) = E(b) = 0.5. Then (X,mIX ) and (X,m
′

IX ) are fuzzy m-spaces.
Thus mIX -δO(X) = {0X , 1X , B,C, T}, where T (a) = 0.5, T (b) = 0.55.
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Consider the identity function i : (X,mIX ) → (X,m
′

IX ). Now E ∈ m
′

IX -

RO(X). Then i−1(E) = E. Thus mIX -cl(mIX -int(mIX -δclE)) = mIX -cl(mIX -
int(1X \ B)) = B < E. So E ∈ mIX -aC(X), but mIX -δclE = 1X \ B 6= E. Hence
E 6∈ mIX -δC(X).

Example 4.4. Fuzzy (δ-semi, r)-continuity 6⇒ fuzzy (a, r)-continuity.

Let X = {a, b}, mIX = {0X , 1X , A}, m
′

IX = {0X , 1X , C}, where A(a) = 0.5, A(b) =

0.4, C(a) = C(b) = 0.5. Then (X,mIX ) and (X,m
′

IX ) are fuzzy m-spaces.

Consider the identity function i : (X,mIX )→ (X,m
′

IX ). Now C ∈ m′

IX -RO(X).

i−1(C) = C = 1X \ C ∈ mIX -δSO(X), but 1X \ C 6∈ mIX -aO(X). Thus C ∈ mIX -
δSC(X), but C 6∈ mIX -aC(X).

Example 4.5. Fuzzy (δ-pre, r)-continuity 6⇒ fuzzy (a, r)-continuity.

Let X = {a, b}, mIX = {0X , 1X , A}, m
′

IX = {0X , 1X , B}, where A(a) = 0.5, A(b) =

0.4, B(a) = 0.5, B(b) = 0.3. Then (X,mIX ) and (X,m
′

IX ) are fuzzy m-spaces.

Consider the identity function i : (X,mIX ) → (X,m
′

IX ). Now mIX -δO(X) =

{0X , 1X , A} and m
′

IX -δO(X) = {0X , 1X , B}. Now B ∈ m′

IX -RO(X). i−1(B) = B.
Then mIX -cl(mIX -δintB) = 0X < B. Thus B ∈ mIX -δPC(X), but mIX -cl(mIX -
int(mIX -δclB)) = mIX -cl(mIX -int(mIX -clB)) = mIX -cl(mIX -int(1X \A)) = mIX -
clA = 1X \A 6≤ B. So B 6∈ mIX -aC(X).

Example 4.6. Fuzzy (e, r)-continuity 6⇒ fuzzy (δ-semi, r)-continuity.

Consider Example 4.5. Here B ∈ m′

IX -RO(X). i−1(B) = B. Then mIX -int(mIX -
δclB) = mIX -int(1X \ A) = A 6≤ B. Thus B 6∈ mIX -δSC(X), but mIX -int(mIX -
δclB)

∧
mIX -cl(mIX -δintB) = A

∧
0X = 0X < B. So B ∈ mIX -eC(X).

Example 4.7. Fuzzy (e, r)-continuity 6⇒ fuzzy (δ-pre, r)-continuity.
Consider Example 4.4. Here mIX -cl(mIX -δintC) = mIX -clA = 1X \ A 6≤ C. Thus
C 6∈ mIX -δPC(X). But mIX -int(mIX -δclC)

∧
mIX -cl(mIX -δintC) = A

∧
(1X \

A) = A < C. So C ∈ mIX -eC(X).

Example 4.8. Fuzzy (e∗, r)-continuity 6⇒ fuzzy (e, r)-continuity.

LetX = {a, b}, mIX = {0X , 1X , A,B}, m
′

IX = {0X , 1X , C}, whereA(a) = 0.5, A(b) =

0.6, B(a) = B(b) = 0.4, C(a) = 0.4, C(b) = 0.5. Then (X,mIX ) and (X,m
′

IX ) are
fuzzy m-spaces.

Consider the identity function i : (X,mIX ) → (X,m
′

IX ). Here mIX -δO(X) =

{0X , 1X , A,B}. Now C ∈ m′

IX -RO(X). i−1(C) = C. Now mIX -int(mIX -cl(mIX -
δintC)) = mIX -int(mIX -clB) = mIX -int(1X \ A) = B < C. Then C ∈ mIX -
e∗C(X). ButmIX -int(mIX -δclC)

∧
mIX -cl(mIX -δintC) = mIX -int(1X\B)

∧
mIX -

clB = A
∧

(1X \A) = 1X \A 6≤ C. Thus C 6∈ mIX -eC(X).

Definition 4.9. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be a function between fuzzy m-spaces. Then f is said to be fuzzy

(i) e∗-continuous, if f−1(A) ∈ mIX -e∗O(X), for all A ∈ mIY ,
(ii) almost-e∗-continuous, if f−1(A) ∈ mIX -e∗O(X), for all A ∈ mIY -RO(Y ),
(iii) almost-e-continuous, if f−1(A) ∈ mIX -eO(X), for all A ∈ mIY -RO(Y ),
(iv) almost-a-continuous, if f−1(A) ∈ mIX -aO(X), for all A ∈ mIY -RO(Y ).
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Theorem 4.10. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be a function between fuzzy m-spaces. Then the following statements hold:

(1) If f is fuzzy e∗-continuous, then f is fuzzy almost-e∗-continuous.
(2) If f is fuzzy almost-e-continuous, then f is fuzzy almost-e∗-continuous.
(3) If f is fuzzy almost-a-continuous, then f is fuzzy almost-e-continuous.

Proof. The proof is obvious. �

But the converses are not true, in general, follow from the next examples.

Example 4.11. Fuzzy almost-e∗-continuity 6⇒ fuzzy e∗-continuity.
Let X = {a, b},mIX = {0X , 1X , A,B},m

′

IX = {0X , 1X , E, F} where A(a) = 0.4,
A(b) = 0.6, B(a) = 0.6, B(b) = 0.4, E(a) = E(b) = 0.4, F (a) = 0.5, F (b) =

0.45. Then (X,mIX ) and (X,m
′

IX ) are fuzzy m-spaces. Now mIX -δO(X) =

{0X , 1X , A,B,C}, where C(a) = C(b) = 0.6, m
′

IX -RO(X) = {0X , 1X , F}.
Now consider the identity function i : (X,mIX ) → (X,m

′

IX ). Then i−1(F ) =
F . Now mIX -cl(mIX -int(mIX -δclF )) = 1X > F . Then F ∈ mIX -e∗O(X). But
i−1(E) = E, mIX -cl(mIX -int(mIX -δclE)) = mIX -cl(mIX -int(1X \ C)) = mIX -
cl0X = 0X 6≥ E ⇒ E 6∈ mIX -e∗O(X). Thus i is fuzzy almost-e∗-continuous but not
fuzzy e∗-continuous.

Example 4.12. Fuzzy almost-e∗-continuity 6⇒ fuzzy almost-e-continuity.
LetX = {a, b},mIX = {0X , 1X , A},m

′

IX = {0X , 1X , B, C}, whereA(a) = 0.5, A(b) =

0.4, B(a) = 0.4, B(b) = 0.6, C(a) = 0.6, C(b) = 0.4. Then (X,mIX ) and (X,m
′

IX )

are fuzzy m-spaces. Now mIX -δO(X) = mIX ,m
′

IX -RO(X) = m
′

IX .

Now consider the identity function i : (X,mIX )→ (X,m
′

IX ). Then i−1(B) = B.

Now mIX -cl(mIX -int(mIX -δclB)) = 1X \A > B. Then B ∈ mIX -e∗O(X), i−1(C) =
C,mIX -cl(mIX -int(mIX -δclC)) = 1X > C. Thus C ∈ mIX -e∗O(X). So i is fuzzy
almost-e∗-continuous. But mIX -cl(mIX -δintB)

∨
mIX -int(mIX -δclB) = 0X

∨
A =

A 6≥ B. Hence B 6∈ mIX -eO(X). Therefore i is not fuzzy almost e-continuous.

Example 4.13. Fuzzy almost-e-continuity 6⇒ fuzzy almost-a-continuity.
Let X = {a, b},mIX = {0X , 1X , A},m

′

IX = {0X , 1X , C}, where A(a) = 0.5, A(b) =

0.4, C(a) = C(b) = 0.5. Then (X,mIX ) and (X,m
′

IX ) are fuzzy m-spaces. Now

mIX -δO(X) = {0X , 1X , A}, m
′

IX -RO(X) = m
′

IX .

Consider the identity function i : (X,mIX ) → (X,m
′

IX ). Now i−1(C) = C,
mIX -cl(mIX -δintC)

∨
mIX -int(mIX -δclC) = (1X \ A)

∨
A = 1X \ A > C. Then

C ∈ mIX -eO(X). Thus i is fuzzy almost-e-continuous. But mIX -int(mIX -cl(mIX -
δintC)) = mIX -int(mIX -clA) = A < C. So C 6∈ mIX -aO(X). Hence i is not fuzzy
almost-e-continuous.

Definition 4.14. A fuzzy m-space (X,mIX ) is said to be fuzzy mIX -extremally
disconnected, if the fuzzy mIX -closure of all fuzzy mIX -interior of a fuzzy set in X
is fuzzy mIX -open.

Example 4.15. Let X = {a, b},mIX = {0X , 1X , A}, where A(a) = A(b) = 0.5.
Then (X,mIX ) is a fuzzy m-space. Now mIX -clA = A ∈ mIX ⇒ X is fuzzy mIX -
extremally disconnected.
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Theorem 4.16. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X →
Y be a function. If (Y,mIY ) is a fuzzy mIY -extremally disconnected, then f is
fuzzy (e∗, r)-continuous (resp., fuzzy (e, r)-continuous, fuzzy (a, r)-continuous) iff
f is fuzzy almost-e∗-continuous (resp., fuzzy almost-e-continuous, fuzzy almost-a-
continuous).

Proof. First suppose that f is fuzzy (e∗, r)-continuous. Let U(∈ IY ) ∈ mIY -RO(Y ).
Then U = mIY -int(mIY -clU). As Y is fuzzy mIY -extremally disconnected, mIY -
clU ∈ mIY and so U ∈ mIY as well as 1Y \ U ∈ mIY , i.e., U is fuzzy mIY -open as
well as fuzzy mIY -closed and so U = mIY -cl(mIY -intU), i.e., U ∈ mIY -RC(Y ). As
f is fuzzy (e∗, r)-continuous, f−1(U) ∈ mIX -e∗O(X). Then f is fuzzy almost-e∗-
continuous.

Conversely, suppose that f is fuzzy almost-e∗-continuous and let W ∈ mIY -
RC(Y ). Since Y is fuzzy mIY -extremally disconnected, W ∈ mIY -RO(Y ). By
hypothesis, f−1(W ) ∈ mIX -e∗O(X)⇒ f is fuzzy (e∗, r)-continuous.

The other two cases are similar to that of first case. �

Definition 4.17. A fuzzy m-space (X,mIX ) is said to be fuzzy
(i) mIX -e∗-T1/2-space, if all fuzzy mIX -e∗-closed set in X is fuzzy mIX -δ-closed

in X,
(ii) mIX -e-T1/2-space, if all fuzzy mIX -e∗-closed set in X is fuzzy mIX -e-closed

in X,
(iii) mIX -a-T1/2-space, if all fuzzy mIX -e∗-closed set in X is fuzzy mIX -a-closed

in X.

Example 4.18. Consider Example 4.15. Here (X,mIX ) is a fuzzy mIX -e∗-T1/2-
space.

Theorem 4.19. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be a function. If X is fuzzy mIX -e∗-T1/2-space, then the following statements are
equivalent:

(1) f is fuzzy (e∗, r)-continuous.
(2) f is fuzzy (e, r)-continuous.
(3) f is fuzzy (δ-semi, r)-continuous.
(4) f is fuzzy (δ-pre, r)-continuous.
(5) f is fuzzy (a, r)-continuous.
(6) f is fuzzy (δ, r)-continuous.

Proof. (1) ⇒ (4): Let W ∈ mIY -RO(Y ). By (1), f−1(W ) ∈ mIX -eC(X). As X is
fuzzy mIX -e∗-T1/2-space, f−1(W ) ∈ mIX -δC(X). Then f−1(W ) ∈ mIX -δPC(X).
Thus f is fuzzy (δ-pre, r)-continuous.

(4) ⇒ (6): Let W ∈ mIY -RO(Y ). By (4), f−1(W ) ∈ mIX -δPC(X). Then
f−1(W ) ∈ mIX -e∗C(X). As X is fuzzy mIX -e∗-T1/2-space, f−1(W ) ∈ mIX -δC(X).
Thus f is fuzzy (δ, r)-continuous.

(6) ⇒ (5): Let W ∈ mIY -RO(Y ). By (6), f−1(W ) ∈ mIX -δC(X). Then
f−1(W ) = mIX -δcl(f−1(W )). Thus, mIX -cl(mIX -int(mIX -δcl(f−1(W )))) ≤ mIX -
cl(mIX -δcl(f−1(W ))) ≤ mIX -δcl(mIX -δcl(f1(W ))) = mIX -δcl(f−1(W )) = f−1(W ).
So f−1(W ) ∈ mIX -aC(X). Hence f is fuzzy (a, r)-continuous.
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(5) ⇒ (3): Let W ∈ mIY -RO(Y ). By (5), f−1(W ) ∈ mIX -aC(X). Then 1X \
f−1(W ) ∈ mIX -aO(X). Thus 1X \ f−1(W ) ≤ mIX -int(mIX -cl(mIX -δint(1X \
f−1(W )))) ≤ mIX -cl(mIX -δint(1X \ f−1(W ))). So 1X \ f−1(W ) ∈ mIX -δSO(X).
Hence f−1(W ) ∈ mIX -δSC(X). Therefore f is fuzzy (δ-semi, r)-continuous.

(3) ⇒ (2): Let W ∈ mIY -RO(Y ). By (3), f−1(W ) ∈ mIX -δSC(X). Then
f−1(W ) ∈ mIX -eC(X) as every fuzzy mIX -δ-semiclosed set is fuzzy mIX -e-closed.
Therefore, f is fuzzy (e, r)-continuous.

(2) ⇒ (1): Let W ∈ mIY -RO(Y ). By (2), f−1(W ) ∈ mIX -eC(X). Then
f−1(W ) ∈ mIX -e∗C(X) (as every fuzzy mIX -e-closed set is fuzzy mIX -e∗-closed).
Thus f is fuzzy (e∗, r)-continuous. �

Theorem 4.20. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be a function. Then the following statements are equivalent:

(1) f is fuzzy (e∗, r)-continuous.
(2) f−1(A) ∈ mIX -e∗O(X), for all A ∈ mIY -RC(Y ).
(3) f(mIX -e∗-clU) ≤ mIY -r-ker(f(U)), for all U ∈ IX .
(4) mIX -e∗-cl(f−1(A)) ≤ f−1(mIY -r-ker(A)), for all A ∈ IY .
(5) For each fuzzy point xα in X and each A ∈ mIY -SO(Y ) with f(xα)qA, there

exists U ∈ mIX -e∗O(X) with xαqU , f(U) ≤ mIY -clA.
(6) f(mIX -e∗-clP ) ≤ mIY -θ-scl(f(P )), for all P ∈ IX .
(7) mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -θ-sclR)), for all R ∈ IY .
(8) mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -θ-sclR)), for all R ∈ mIY .
(9) mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -sclR)), for all R ∈ mIY .
(10) mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -int(mIY -clR)), for all R ∈ mIY .
(11) For each fuzzy point xα in X and each A ∈ mIY -SO(Y ) with f(xα) ∈ A,

there exists U ∈ mIX -e∗O(X) such that xα ∈ U and f(U) ≤ mIY -clA.
(12) f−1(A) ≤ mIX -e∗-int(f−1(mIY -clA)), for all A ∈ mIY -SO(Y ).
(13) f−1(mIY -int(mIY -clA)) ∈ mIX -e∗C(X), for all A ∈ mIY .
(14) f−1(mIY -cl(mIY -intF )) ∈ mIX -e∗O(X), for all 1X \ F ∈ mIY .
(15) f−1(mIY -clU) ∈ mIX -e∗O(X), for all U ∈ mIY -βO(Y ).
(16) f−1(mIY -clU) ∈ mIX -e∗O(X), for all U ∈ mIY -SO(Y ).
(17) f−1(mIY -int(mIY -clU)) ∈ mIX -e∗C(X), for all U ∈ mIY -PO(Y ).
(18) f−1(mIY -αclU) ∈ mIX -e∗O(X), for all U ∈ mIY -βO(Y ).
(19) f−1(mIY -pclU) ∈ mIX -e∗O(X), for all U ∈ mIY -SO(Y ).
(20) mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -θ-sclR)), for all R ∈ mIY -SO(Y ).
(21) mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -θ-sclR)), for all R ∈ mIY -PO(Y ).
(22) mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -θ-sclR)), for all R ∈ mIY -βO(Y ).

Proof. (1) ⇒ (2): Let W ∈ mIY -RC(Y ). Then 1Y \W ∈ mIY -RO(Y ). By (1),
f−1(1Y \W ) = 1X \ f−1(W ) ∈ mIX -e∗C(X). Thus f−1(W ) ∈ mIX -e∗O(X).

(2)⇒ (1): Let W ∈ mIY -RO(Y ). Then 1Y \W ∈ mIY -RC(Y ). By (2), f−1(1Y \
W ) = 1X \ f−1(W ) ∈ mIX -e∗O(X). Thus f−1(W ) ∈ mIX -e∗C(X).

(2)⇒ (3): Let U ∈ IX and suppose that yα be a fuzzy point in Y with yα 6∈ mIY -
r-ker(f(U)). Then there exists V ∈ mIY -RO(Y ) such that f(U) ≤ V and yα 6∈ V .
Thus V (y) < α. So yαq(1Y \ V ) ∈ mIY -RC(Y ) and 1Y \ f(U) ≥ 1Y \ V . Hence
f(U) 6 q(1Y \ V ). Therefore U 6 qf−1(1Y \ V ). By (2), f−1(1Y \ V ) = 1X \ f−1(V ) ∈
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mIX -e∗O(X). By Lemma 3.22(2), mIX -e∗-clU 6 q(1X \ f−1(U)). Then mIX -e∗-
clU ≤ f−1(V ), i.e., f(mIX -e∗-clU) ≤ V . Thus 1Y \ f(mIX -e∗-clU) ≥ 1Y \ V. So
1 − f(mIX -e∗-clU)(y) > 1 − V (y) > 1 − α, i.e., α > f(mIX -e∗-clU)(y). Hence
yα 6∈ f(mIX -e∗-clU). Therefore, f(mIX -e∗-clU) ≤ mIY -r-ker(f(U)).

(3)⇒ (4): Let A ∈ IY . Then f−1(A) ∈ IX . By (3), f(mIX -e∗-clf−1(A)) ≤ mIY -
r-ker(A). Then mIX -e∗-cl(f−1(A)) ≤ f−1(mIY -r-ker(A)).

(4) ⇒ (1): Let A ∈ mIY -RO(Y ). By (4), mIX -e∗-cl(f−1(A)) ≤ f−1(mIY -r-
ker(A)) = f−1(A). But f−1(A) ≤ mIX -e∗-cl(f−1(A)) and thus f−1(A) = mIX -e∗-
cl(f−1(A)). So f−1(A) ∈ mIX -e∗C(X).

(5) ⇒ (6). Let P ∈ IX and xα be any fuzzy point in X such that xα ∈ mIX -e∗-
clP and let G ∈ mIY -SO(Y ) with f(xα)qG. By (5), there exists U ∈ mIX -e∗O(X)
with xαqU , f(U) ≤ mIY -clG. As xα ∈ mIX -e∗-clP , by Lemma 3.22(1), UqP and
so f(U)qf(P ). Then f(P )qmIY -clG ⇒ f(xα) ∈ mIY -θ-scl(f(P )). Thus f(mIX -e∗-
clP ) ≤ mIY -θ-scl(f(P )).

(6)⇒ (7): LetR ∈ IY . By (6), f(mIX -e∗-cl(f−1(R))) ≤ mIY -θ-scl(f(f−1(R))) ≤
mIY -θ-sclR. Then mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -θ-sclR).

(7) ⇒ (5): Let xα be any fuzzy point in X and A ∈ mIY -SO(Y ) with f(xα)qA.
Since, (mIY -clA) 6 q(1Y \mIY -clA), by definition f(xα) 6∈ mIY -θ-scl(1Y \mIY -clA).
Then xα 6∈ f−1(mIY -θ-scl(1Y \mIY -clA)). By (7), xα 6∈ mIX -e∗-cl(f−1(1Y \mIY -
clA)). Thus there exists U ∈ mIX -e∗O(X) with xαqU , U 6 qf−1(1Y \mIY -clA). So
f(U) 6 q(1Y \mIY -clA). Hence f(U) ≤ mIY -clA.

(7) ⇒ (8): Let A ∈ mIY . By (7), mIX -e∗-cl(f−1(A)) ≤ f−1(mIY -θ-sclA).
(8) ⇒ (9): It follows from Lemma 3.22(7).
(9) ⇒ (10): It follows from Lemma 3.22(3).
(10) ⇒ (1): Let A ∈ mIY -RO(Y ). By (10), mIX -e∗-cl(f−1(A)) ≤ f−1(mIY -

int(mIY -clA)) = f−1(A).Then f−1(A) ∈ mIX -e∗C(X). Thus f is fuzzy (e∗, r)-
continuous.

(1) ⇒ (10): Let A ∈ mIY . Then mIY -int(mIY -clA) ∈ mIY -RO(Y ). By (1),
f−1(mIY -int(mIY -clA)) ∈ mIX -e∗C(X). Thus

mIX -e∗-cl(f−1(A)) ≤ mIX -e∗-cl(f−1(mIY -int(mIY -clA)))
= f−1(mIY -int(mIY -clA)).

(10) ⇒ (9): It follows from lemma 3.22(3).
(9) ⇒ (8): It follows from Lemma 3.22(7).
(7) ⇒ (1): Let R ∈ mIY -RO(Y ). By (7), mIX -e∗-cl(f−1(R)) ≤ f−1(mIY -θ-

sclR) = f−1(R). Then f−1(R) ∈ mIX -e∗C(X). Thus f is fuzzy (e∗, r)-continuous.
(5) ⇒ (12): Let A ∈ mIY -SO(Y ) and xα be any fuzzy point in X such that

xαqf
−1(A). Then f(xα)qA. By (5), there exists U ∈ mIX -e∗O(X) such that xαqU ,

f(U) ≤ mIY -clA. Thus xαqU ≤ f−1(mIY -clA). So xαqmIX -e∗-int(f−1(mIY -clA)),
as mIX -e∗-int(f−1(mIY -clA)) is the union of all fuzzy mIX -e∗-open sets in X con-
tained in f−1(mIY -clA). Hence f−1(A) ≤ mIX -e∗-int(f−1(mIY -clA)).

(12) ⇒ (5): Let xα be any fuzzy point in X and A ∈ mIY -SO(Y ) with f(xα)qA.
Then xαqf

−1(A) ≤ mIX -e∗-int(f−1(mIY -clA)) (by (12)) implies there exists U ∈
mIX -e∗O(X) with xαqU , U ≤ f−1(mIY -clA). Thus f(U) ≤ mIY -clA.

(11) ⇒ (12): Let A ∈ mIY -SO(Y ) and xα be any fuzzy point in X such that
xα ∈ f−1(A). Then f(xα) ∈ A. By (11), there exists U ∈ mIX -e∗O(X) with xα ∈ U
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and f(U) ≤ mIY -clA. Thus U ≤ f−1(mIY -clA). So xα ∈ mIX -e∗-int(f−1(mIY -
clA)). Hence f−1(A) ≤ mIX -e∗-int(f−1(mIY -clA)).

(12)⇒ (11): Let xα be any fuzzy point inX andA ∈ mIY -SO(Y ) with f(xα) ∈ A.
Then xα ∈ f−1(A) ≤ mIX -e∗-int(f−1(mIY -clA)) (by (12)) implies there exists
U ∈ mIX -e∗O(X) with xα ∈ U and U ≤ f−1(mIY -clA). Thus f(U) ≤ mIY -clA.

(1) ⇒ (13): Let A ∈ mIY . Then mIY -int(mIY -clA) ∈ mIY -RO(Y ). By (1),
f−1(mIY -int(mIY -clA)) ∈ mIX -e∗C(X).

(13) ⇒ (1): Let A ∈ mIY -RO(Y ). Then A ∈ mIY . By (13), f−1(A) = f−1(mIY -
int(mIY -clA)) ∈ mIX -e∗C(X).

(12) ⇒ (2): Let F ∈ mIY -RC(Y ). Then F ∈ mIY -SO(Y ). By (12), f−1(F ) ≤
mIX -e∗-int(f−1((mIY -clF )) = mIX -e∗-int(f−1(F )).

(2)⇒ (14): Let F ∈ mIY -RC(Y ). By (2), f−1(F ) ∈ mIX -e∗O(X). But f−1(F ) =
f−1(mIY -cl(mIY -intF )). Then f−1(mIY -cl(mIY -intF )) ∈ mIX -e∗O(X).

(14)⇒ (2): Let F ∈ mIY -RC(Y ). By (14), f−1(F ) = f−1(mIY -cl(mIY -intF )) ∈
mIX -e∗O(X).

(2) ⇒ (15): Let U ∈ mIY -βO(Y ). Then U ≤ mIY -cl(mIY -int(mIY -clU)) ≤
mIY -clU . Thus mIY -clU ≤ mIY -cl(mIY -cl(mIY -int(mIY -clU))) = mIY -cl(mIY -
int(mIY -clU)) ≤ mIY -cl(mIY -clU) = mIY -clU ⇒ mIY -clU = mIY -cl(mIY -int(mIY -
clU)). So mIY -clU ∈ mIY -RC(Y ). Hence by (2), f−1(mIY -clU) ∈ mIX -e∗O(X).

(15) ⇒ (16): Since mIY -SO(Y ) ⊆ mIY -βO(Y ), by (15), f−1(mIY -clU) ∈ mIX -
e∗O(X), for all U ∈ mIY -SO(Y ).

(16) ⇒ (17): Let U ∈ mIY -PO(Y ). Then U ≤ mIY -int(mIY -clU). We claim
that mIY -int(mIY -clU) ∈ mIY -RO(Y ). Indeed,
mIY -int(mIY -clU) ≤ mIY -int(mIY -cl(mIY -int(mIY -clU))) ≤ mIY -int(mIY -clU).

Thus mIY -int(mIY -clU) = mIY -int(mIY -cl(mIY -int(mIY -clU))) ⇒ mIY -int(mIY -
clU) ∈ mIY -RO(Y ). So 1Y \mIY -int(mIY -clU) ∈ mIY -RC(Y ). Hence 1Y \mIY -
int(mIY -clU) ∈ mIY -SO(Y ). By (16), f−1(mIY -cl(1Y \ mIY -int(mIY -clU))) ∈
mIX -e∗O(X). Thus 1X \ f−1(mIY -int(mIY -int(mIY -clU))) = 1X \ f−1((mIY -
int(mIY -clU)) ∈ mIX -e∗O(X). So f−1(mIY -int(mIY -clU)) ∈ mIX -e∗C(X).

(17) ⇒ (1): Let U ∈ mIY -RO(Y ). Then U ∈ mIY -PO(Y ). By (17), f−1(mIY -
int(mIY -clU)) ∈ mIX -e∗C(X). Thus f−1(U) = f−1(mIY -int(mIY -clU)) ∈ mIX -
e∗C(X). So (1) holds.

(15) ⇔ (18): The proof follows from Lemma 3.22(5).
(15) ⇔ (19): The proof follow from Lemma 3.22(6).
(7) ⇒ (20): Obvious.
(20)⇒ (8): LetA ∈ mIY . SincemIY -SO(Y ) ⊇ mIY , by (20), mIX -e∗-cl(f−1(A)) ≤

f−1(mIY -θ-sclA).
(7) ⇒ (22): Obvious.
(22) ⇒ (20): Since mIY -SO(Y ) ⊆ mIY -βO(Y ), the result follows.
(7) ⇒ (21). Obvious.
(21) ⇒ (8): Since mIY ⊆ mIY -PO(Y ), the result follows. �

Remark 4.21. In a similar manner we can characterize fuzzy (e, r)-continuous
(resp., fuzzy (a, r)-continuous) function by changing e∗ by e (resp., by a) in the
Theorem 4.20.
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5. Fuzzy compact sets and fuzzy s-closed sets in fuzzy m-Space

Definition 5.1 ([5, 4]). Let A be a fuzzy set in X. A collection U of fuzzy sets in
X is called a fuzzy cover of A, if sup{U(x) : U ∈ U} = 1, for each x ∈ suppA. In
particular, if A = 1X , we get the definition of fuzzy cover of X.

Definition 5.2 ([5, 4]). A fuzzy cover U of a fuzzy set A in X is said to have a
finite subcover U0, if U0 is a finite subcollection of U such that

⋃
U0 ≥ A, i.e., U0 is

also a fuzzy cover of A. In particular, if A = 1X , we get
⋃
U0 = 1X .

Definition 5.3. A fuzzy set A in a fuzzy m-space (X,mIX ) is said to be fuzzy
m-compact (resp., fuzzy m-e∗-compact, fuzzy m-e-compact, fuzzy m-a-compact), if
every fuzzy covering U of A by fuzzy mIX -open (resp., fuzzy mIX -e∗O(X), fuzzy
mIX -eO(X), fuzzy mIX -aO(X)) sets in X has a finite subcovering U0 of U . In
particular, if A = 1X , we get the definition of fuzzy m-compact (resp., fuzzy m-e∗-
compact, fuzzy m-e-compact, fuzzy m-a-compact) space.

Since every fuzzy mIX -open (resp., fuzzy mIX -e-open, fuzzy mIX -a-open) set
is fuzzy mIX -e∗-open (resp., fuzzy mIX -e∗-open, fuzzy mIX -e-open), the following
theorem is obvious.

Theorem 5.4. Let (X,mIX ) be a fuzzy m-space and A ∈ IX .
(1) If A is fuzzy m-e∗-compact, then A is fuzzy m-compact.
(2) If A is fuzzy m-e∗-compact, then A is fuzzy m-e-compact.
(3) If A is fuzzy m-e-compact, then A is fuzzy m-a-compact.

Definition 5.5. A fuzzy m-space (X,mIX ) is said to be fuzzy m-s-closed, if for
every fuzzy covering of X by fuzzy mIX -regular closed sets in X contains a finite
subcovering.

Theorem 5.6. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be surjective, fuzzy (e∗, r)-continuous function. If X is fuzzy m-e∗-compact space,
then Y is fuzzy m-s-closed space.

Proof. Let U = {Uα : α ∈ Λ} be a fuzzy covering of Y by fuzzy mIY -regular closed
sets of Y . As f is fuzzy (e∗, r)-continuous, V = {f−1(Uα) : α ∈ Λ} covers X by fuzzy
mIX -e∗-open sets ofX. AsX is fuzzym-e∗-compact, there exists a finite subset Λ0 of

Λ such that 1X =
∨
α∈Λ0

f−1(Uα). Then 1Y = f(
∨
α∈Λ0

f−1(Uα)) =
∨
α∈Λ0

f(f−1(Uα)) ≤∨
α∈Λ0

Uα. Thus Y is fuzzy m-s-closed space. �

In a similar manner we can easily state the following two theorems the proof of
which are similar to that of Theorem 5.6.

Theorem 5.7. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be surjective, fuzzy (e, r)-continuous function. If X is fuzzy m-e-compact space, then
Y is fuzzy m-s-closed space.

Theorem 5.8. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y be
surjective, fuzzy (a, r)-continuous function. If X is fuzzy m-a-compact space, then
Y is fuzzy m-s-closed space.
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Theorem 5.9. Every fuzzy mIX -e∗-closed set A in a fuzzy m-e∗-compact space X
is fuzzy m-e∗-compact.

Proof. Let A be a fuzzy mIX -e∗-closed set in a fuzzy m-e∗-compact space X. Let U
be a fuzzy covering of A by fuzzy mIX -e∗-open sets in X. Then V = U

⋃
(1X \A) is a

fuzzy mIX -e∗-open covering of X. By hypothesis, there exists a finite subcollection
V0 of V which also covers X. If V0 contains 1X \ A, we omit it and get a finite
subcovering of A. Consequently, A is fuzzy m-e∗-compact. �

Similarly we can easily state the following two theorems the proof of which are
similar to that of Theorem 5.9.

Theorem 5.10. Every fuzzy mIX -e-closed set A in a fuzzy m-e-compact space X
is fuzzy m-e-compact.

Theorem 5.11. Every fuzzy mIX -a-closed set A in a fuzzy m-a-compact space X
is fuzzy m-a-compact.

Theorem 5.12. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be fuzzy e∗-continuous function. If A is fuzzy m-e∗-compact relative to X, then the
image f(A) is fuzzy m-compact relative to Y .

Proof. Let A be fuzzy m-e∗-compact relative to X and U = {Uα : α ∈ Λ} be a

fuzzy covering of f(A) by fuzzy mIY -open sets of Y , i.e, f(A) ≤
∨
α∈Λ

Uα. Then

A ≤ f−1(
∨
α∈Λ

Uα) =
∨
α∈Λ

f−1(Uα). Thus V = {f−1(Uα) : α ∈ Λ} is a fuzzy covering

of A by fuzzy mIX -e∗-open sets in X. As A is fuzzy m-e∗-compact relative to X,
there exists a finite subcollection V0 = {f−1(Uαi

) : 1 ≤ i ≤ n} of V such that

A ≤
n∨
i=1

f−1(Uαi
). So f(A) ≤ f(

n∨
i=1

f−1(Uαi
)) =

n∨
i=1

f(f−1(Uαi
)) ≤

n∨
i=1

Uαi
. Hence

U0 = {Uαi
: 1 ≤ i ≤ n} is a finite subcovering of f(A). Therefore the result

holds. �

Similarly we can easily state the following two theorems the proof of which are
similar to that of Theorem 5.12.

Theorem 5.13. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces where (X,mIX )
is fuzzy mIX -e-T1/2-space and f : X → Y be fuzzy e∗-continuous function. If A is
fuzzy m-e-compact relative to X, then the image f(A) is fuzzy m-compact relative
to Y .

Theorem 5.14. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces where (X,mIX )
is fuzzy mIX -a-T1/2-space and f : X → Y be fuzzy e∗-continuous function. If A is
fuzzy m-a-compact relative to X, then the image f(A) is fuzzy m-compact relative
to Y .

Definition 5.15. Let (X,mIX ) be a fuzzy m-space. Then X is said to be fuzzy
mIX -T2 (resp., fuzzy mIX -e∗-T2, fuzzy mIX -e-T2, fuzzy mIX -a-T2) space, if for each
pair of distinct fuzzy points xα, yβ ; when x 6= y, there exist fuzzy mIX -open (resp.,
fuzzy mIX -e∗-open, fuzzy mIX -e-open, fuzzy mIX -a-open) sets U1, U2, V1, V2 in X
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such that xα ∈ U1, yβqV1 and U1 6 qV1 and xαqU2, yβ ∈ V2 and U2 6 qV2 ; when
x = y, α < β (say), there exist fuzzy mIX -open (resp., fuzzy mIX -e∗-open, fuzzy
mIX -e-open, fuzzy mIX -a-open) sets U, V in X such that xα ∈ U, yβqV and U 6 qV .

Definition 5.16. A fuzzy m-space (X,mIX ) is said to be fuzzy s-Urysohn if for each
pair of distinct fuzzy points xα, yβ : when x 6= y, there exist fuzzymIX -semiopen sets
U1, U2, V1, V2 in X such that xα ∈ U1, yβqV1 and mIX -clU1 6 qmIX -clV1 and xαqU2,
yβ ∈ V2 and mIX -clU2 6 qmIX -clV2 ; when x = y, α < β (say), there exist fuzzy
mIX -semiopen sets U, V in X such that xα ∈ U, yβqV and mIX -clU 6 qmIX -clV .

Theorem 5.17. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be injective fuzzy (e∗, r)-continuous function and Y is fuzzy s-Urysohn space. Then
X is fuzzy mIX -e∗-T2.

Proof. Let xα and yβ be two distinct fuzzy points in X where x 6= y. Since f is in-
jective, f(xα) 6= f(yβ). Since Y is fuzzy s-Urysohn, there exist fuzzy mIY -semiopen
sets U1, U2, V1, V2 in Y such that f(xα) ∈ U1, f(yβ)qV1 and mIY -clU1 6 qmIY -clV1

and f(xα)qU2, f(yβ) ∈ V2 and mIY -clU2 6 qmIY -clV2. By Theorem 4.20, there exist
W1,W2 ∈ mIX -e∗O(X) such that xα ∈ W1,W1 ≤ f−1(mIY -clU1), yβqW2,W2 ≤
f−1(mIY -clV1) or xαqW2,W2 ≤ f−1(mY -clU2), yβ ∈ W1,W1 ≤ f−1(mIY -clV2). We
claim that W1 6 qW2. Indeed, mIY -clU1 6 qmIY -clV1 and mIY -clU2 6 qmIY -clV2. Then
f−1(mIY -clU1) 6 qf−1(mIY -clV1) and f−1(mIY -clU2) 6 qf−1(mIY -clV2).

Similarly, when x = y, α < β (say), there exist U1, U2 ∈ mIY -SO(Y ) such that
f(xα) ∈ U1, f(yβ)qU2 and mIY -clU1 6 qmIY -clU2. By Theorem 4.20, there exist
W1,W2 ∈ mIX -e∗O(X) such that xα ∈ W1,W1 ≤ f−1(mIY -clU1), yβqW2,W2 ≤
f−1(mIY -clU2). Thus as above, W1 6 qW2. So X is fuzzy mIX -e∗-T2-space. �

Similarly we can easily state the following two theorems the proof of which are
similar to that of Theorem 5.17

Theorem 5.18. Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be injective, fuzzy (e, r)-continuous function and Y is fuzzy s-Urysohn space. Then
X is fuzzy mIX -e-T2.

Theorem 5.19. . Let (X,mIX ) and (Y,mIY ) be two fuzzy m-spaces and f : X → Y
be injective, fuzzy (a, r)-continuous function and Y is fuzzy s-Urysohn space. Then
X is fuzzy mIX -a-T2.
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University of Bacǎu, Faculty of Sciences, Scientific Studies and Research, Series Mathematics

and Informatics 21 (2) (2015) 125–144.
[3] M. Brescan, On quasi-irresolute functions in fuzzy minimal structures, BULETINUL
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