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Abstract. We introduce the concept ofm−polar fuzzy labeling tree Gω

p

generated bym−polar fuzzy spanning subgraph S
ω

p and investigate some of
its properties. We present the concept of bipartite m−polar fuzzy labeling
graphs. Furthermore, we present an algorithm for finding an m−polar
fuzzy spanning subgraph S

ω

p of an m−polar fuzzy labeling tree G
ω
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1. Introduction

In 1965, Zadeh[12] introduced the mathematical frame work to discuss the phe-
nomena of vagueness and uncertainty in real life systems. It is expressed with the
comfort of membership function valued in the real unit interval [0, 1]. In 1994, Zhang
[13] extended the concept of fuzzy sets and introduced the concept of bipolar fuzzy
sets whose membership degrees range belong to interval [−1, 1]. The membership
degree 0 of an element means the element is inconsequent to the analogous property,
the membership degree (0, 1] revels that the element fascinate the assertive property
where as the membership degree [−1, 0) revels that the element fascinates the con-
verse property. But sometimes modeling in actual world investigations often contain
multi-agent, multi-attribute, multi-objects, multi-index, multi-polar information or
uncertainty rather than a single bit. With the analysis to classical, fuzzy and bipo-
lar fuzzy models an m-polar fuzzy model give more efficiency and more preciseness,
extensibility and accuracy. Chen et al. [7] introduced the notion of m-polar fuzzy
set as a generalization of bipolar fuzzy set and showed that bipolar fuzzy sets and
2-polar fuzzy sets are cryptomorphic mathematical notions.
Based on Zadeh’s fuzzy relations [12] Kauffmann defined in [8] a fuzzy graph. Rosen-
feld [11] described the structure of fuzzy graphs obtaining analogs of several graph
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theoretical concepts. Bhattachariya [5] discussed the connectivity ideas between
fuzzy cut nodes and fuzzy bridges named as some remarks on fuzzy graph. Buhtani
and Rosenfeld [6] introduced the concept of strong arcs in fuzzy graphs. Nagoorgani
and Rajalaxami [9, 10] worked on the properties of fuzzy labeling graphs and intro-
duced the idea of fuzzy labeling tree. Akram et al.[1, 2, 3, 4] has initiated several
concepts, including bipolar fuzzy graphs, m-polar fuzzy graphs, certain metrics in
m-polar fuzzy graphs. In this article, we present the concept of m−polar fuzzy la-
beling tree Gω

p generated by m−polar fuzzy spanning subgraph Sω
p and interrogate

some of its properties. We precede the concept of bipartite m−polar fuzzy labeling
graphs. Furthermore, we present an algorithm for finding m−polar fuzzy spanning
subgraph Sω

p of an m−polar fuzzy labeling tree Gω
p .

2. Labeling tree based on m−polar fuzzy set

Definition 2.1 ([7]). An m−polar fuzzy set in a universe X is a function C :
X → [0, 1]m. The degree of membership of each element x ∈ X is denoted by
C(x) = (P1 ◦ C(x), P2 ◦ C(x), . . . , Pm ◦ C(x)), where Pi ◦ C : [0, 1]m → [0, 1] is the
i−th projection mapping.

Note that [0, 1]m (mth-power of [0, 1]) is considered as a poset with the point-wise
order ≤, where m is an arbitrary ordinal number (we make an appointment that
m = {n|n < m} when m > 0), ≤ is defined by x ≤ y ⇔ pi(x) ≤ pi(y) for each i ∈ m

( x, y ∈ [0, 1]m), and Pi : [0, 1]
m → [0, 1] is the i−th projection mapping (i ∈ m).

0 = (0, 0, . . . , 0) is the smallest value in [0, 1]m and 1 = (1, 1, . . . , 1) is the greatest
value in [0, 1]m.

Definition 2.2 ([3]). Let C be an m−polar fuzzy set in a universe X . An m−polar
fuzzy relationD = (P1◦D,P2◦D, . . . , Pm◦D) on C is a mappingD : X×X → [0, 1]m

such that, D(xy) ≤ inf{C(x), C(y)}, for all x, y ∈ X , that is, for all x, y ∈ X and
for each 1 ≤ i ≤ m, Pi ◦D(xy) ≤ inf{Pi ◦C(x), Pi ◦C(y)}, where Pi ◦C(x) denotes
the i−th degree of membership of the element x and Pi ◦D(xy) denotes the i−th
degree of membership of the relation xy ∈ E.

Definition 2.3 ([3, 7]). An m−polar fuzzy graph G = (C,D) on a nonempty set
X is a pair of functions C : X → [0, 1]m and D : X × X → [0, 1]m such that for
all x, y ∈ X , D(uv) ≤ inf{C(u), C(v)}, i.e., Pi ◦D(uv) ≤ inf{Pi ◦ C(u), Pi ◦ C(v)},
1 ≤ i ≤ m. We call C is an m−polar fuzzy vertex set of G and D is an m−polar

fuzzy edge set of G. Note that Pi ◦D(uv) = 0 for all uv ∈ X̃2 − E, 1 ≤ i ≤ m.
D is called an m−polar fuzzy relation on C. An m−polar fuzzy relation D on C is
called symmetric if Pi ◦D(uv) = Pi ◦D(vu) for all u, v ∈ X.

Definition 2.4 ([3]). An m-polar fuzzy path P = x − y is a sequence of distinct
vertices x = x1, x2, · · · , xn = y such that for all j there exists at least one i such
that, Pi ◦ (xjxj+1) > 0.

Definition 2.5. An edge Pi ◦D(xy) where 1 ≤ i ≤ m is called an m−polar fuzzy
bridge of G = (C,D), if its extraction shorten the strength of connectedness between
some other pair of vertices in G.
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Definition 2.6. A vertex y is an m−polar fuzzy cut vertex of G = (C,D), if its
extraction shorten the strength of connectedness between some other pair of vertices
in G.

Definition 2.7. A vertex x is an m−polar fuzzy end vertex of G = (C,D), if there
is absolutely one strong neighbor in G associated with this vertex.

Definition 2.8. An arc Pi ◦D(xy), where 1 ≤ i ≤ m, of an m−polar fuzzy graph
is called strong arc if its weight is as great as the strength of connectedness of its
m−polar fuzzy end nodes.

Definition 2.9. An m−polar fuzzy strong path is a path consisting of all m−polar
fuzzy strong arcs.

Definition 2.10. An m−polar fuzzy path P = x−y is said to be strongestm−polar
fuzzy path, if its strength equals to its connectedness.

Example 2.11. Consider a 3-polar fuzzy graph G as shown in Fig. 1.
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Figure 1. 3-polar fuzzy graph

By computations, it is easy to see, x2x5, x1x2, x2x4 are 3-polar fuzzy bridges.
x2 is 3-polar fuzzy cut vertex. x1, x5, x4 are 3-polar fuzzy end vertices of G.

x1x2, x2x5, x2x4 are 3-polar fuzzy strong arcs. x1 − x2 − x5, x1 − x2 − x4 are
3-polar fuzzy strong paths. x1 − x2 − x5, x1 − x2 − x4, x4 − x2 − x5 are strongest
3-polar fuzzy paths.

Definition 2.12. An m−polar fuzzy labeling graph Gω
p = (Cω

p , D
ω
p ) is defined as,

if the mappings Cω
p : X → [0, 1]m and Dω

p : X × X → [0, 1]m are bijective, where
as all the edges and vertices have distinct membership values and Pi ◦ Dω

p (xy) <

Pi ◦ C
ω
p (x) ∧ Pi ◦ C

ω
p (y) for all x, y ∈ X, 1 ≤ i ≤ m.

Definition 2.13. A cycle is said to be an m−polar fuzzy labeling cycle, if its has
an m−polar fuzzy labeling.
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Definition 2.14. An m−polar fuzzy labeling tree Gω
p = (Cω

p , D
ω
p ) is defined as if

it has an m−polar fuzzy labeling and an m−polar fuzzy spanning subgraph Sω
p =

(Cω
p , F

ω
p ) which is a tree, where for all arcs (x, y) not in Sω

p , Pi ◦ Dω
p (xy) < (Pi ◦

Fω
p (xy))∞, where 1 ≤ i ≤ m.

Example 2.15. A 3−polar fuzzy labeling tree can be seen in Fig.2.
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Figure 2. 3−polar fuzzy labeling tree

Theorem 2.16. If Gω
p is an m−polar fuzzy labeling tree then arcs of m−polar fuzzy

spanning subgraph Sω
p are m−polar fuzzy bridges of Gω

p .

Proof. Given that Gω
p is an m−polar fuzzy labeling tree generated by an m−polar

fuzzy spanning subgraph Sω
p . Let (a, b) be an arc in Sω

p . Then (Pi ◦ D′(ab))∞ <

Pi ◦D(ab) ≤ (Pi ◦D(ab))∞, where 1 ≤ i ≤ m. Thus arc (a, b) is an m−polar fuzzy
bridge of Gω

p . �

Remark 2.17. Every m−polar fuzzy labeling graph is not an m−polar fuzzy la-
beling tree. As shown in Example 2.17.

Example 2.18. Consider a 3−polar fuzzy labeling graph.
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Figure 3. 3−polar fuzzy labeling graph

By direct calculations, it can be seen that a 3−polar fuzzy labeling graph is not
a 3−polar fuzzy labeling tree because it does not have any 3−polar fuzzy spanning
subgraph which fulfill the condition Pi◦D

ω
p (xy) < (Pi ◦F

ω
p (xy))∞, where 1 ≤ i ≤ m.

Proposition 2.19. If Gω
p = (Cω

p , D
ω
p ) is an m−polar fuzzy labeling tree, then its

spanning subgraph Sω
p = (Cω

p , F
ω
p ) is also an m−polar fuzzy labeling graph.

Proof. Let Gω
p = (Cω

p , D
ω
p ) be an m−polar fuzzy labeling tree. Then, by definition

of m−polar fuzzy labeling graph, Cω
p and Dω

p are bijective in Gω
p . Since Sω

p is
anm−polar fuzzy spanning subgraph of Gω

p , D
ω
p = Fω

p if (x, y) ∈ F ∗
p , which implies

that bijection is preserved in Sω
p . Thus S

ω
p is an m−polar fuzzy labeling graph. �

Remark 2.20. Let G∗ be complete and Gω
p is an m−polar fuzzy labeling tree. Then

dGω

p
(x) 6= dSω

p
(x) where Sω

p , is an m−polar fuzzy spanning subgraph of Gω
p .

Example 2.21. Consider a 4−polar fuzzy labeling tree as shown in Fig.4.
In 4−polar fuzzy labeling tree,

dGω

p
(x) = (1.16, 1.73, 0.92, 1.5), dGω

p
(y) = (1.34, 1.79, 1.3, 1.68),

dGω

p
(z) = (1.05, 1.6, 1.15, 1.53), dGω

p
(w) = (1.29, 1.98, 1.21, 1.73).

In 4−polar fuzzy spanning subgraph,

dSω

p
(x) = (0.58, 0.67, 0.50, 0.55), dSω

p
(y) = (1.09, 1.32, 0.95, 1.23),

dSω

p
(z) = (0.50, 0.70, 0.57, 0.59), dSω

p
(w) = (1.01, 1.35, 1.02, 1.27).

Routine calculations show that dGω

p
(x) 6= dSω

p
(x) for all x, y ∈ X.
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Figure 4. 4−polar fuzzy labeling tree

Definition 2.22. Let G = (C,D) be an m−polar fuzzy graph. The height of an
m−polar fuzzy graph G denoted by H(G) is defined as

( sup
1≤j≤n

(P1 ◦D(xy))), ( sup
1≤j≤n

(P2 ◦D(xy))), · · · , ( sup
1≤j≤n

(Pm ◦D(xy)))

Proposition 2.23. If Sω
p = (Cω

p , F
ω
p ) is an m−polar fuzzy spanning subgraph of

an m−polar fuzzy labeling tree Gω
p = (Cω

p , D
ω
p ), then for all (x, y) not in Sω

p , (Pi ◦
F (xy))∞ 6= height of Gω

p .

Proof. Let (x, y) be an arc not in Sω
p . Then (x, y) ∈ Gω

p and (x, y) is not m−polar
fuzzy bridge of Gω

p , because the arcs of Sω
p are m−polar fuzzy bridges of Gω

p . By
definition of m−polar fuzzy labeling tree, if (x, y) is not in Sω

p , then (x, y) < (Pi ◦
F (xy))∞. We know Sω

p is a tree. Thus there will be only one path between x and
y. So strength of connectedness between x and y is equal to strength of m−polar
fuzzy path, i.e.,

( inf
1≤j≤n

(P1 ◦D(xy))), ( inf
1≤j≤n

(P2 ◦D(xy))), · · · , ( inf
1≤j≤n

(Pm ◦D(xy))).

This shows that (Pi ◦ F (xy))∞ is not equal to maximum of Pi ◦ C′s. Hence (Pi ◦
F (xy))∞ 6= height of G. �

Proposition 2.24. If Gω
p is an m−polar fuzzy labeling tree then there exists exactly

one strong path between any two vertices of Gω
p .

Proof. Proof is obvious, if G∗ is a tree.
Now choose a path (x, y) from an m−polar fuzzy labeling tree Gω

p s.t. Pi ◦
D(xjyj) > 0 for all 1 ≤ j ≤ n. As Gω

p is an m−polar fuzzy labeling tree and in
its spanning subgraph the path connecting all the vertices is strong, all the arcs are
strong. Thus between any two vertices arcs are strong. Similarly, choose another
path between x and y, because Gω

p is connected. But Pi ◦ D is bijective. So,
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getting another strong path is impossible. Hence there exists exactly one strong
path between any two vertices. �

3. Bipartite m−polar fuzzy labeling tree

Definition 3.1. A bipartite m−polar fuzzy labeling graph Gω
p = (Cω

p , D
ω
p ) is de-

fined as, if set of vertices X can be distributed into two nonempty m−polar fuzzy
independent sets X1 and X2. Where as, two vertices of an m−polar fuzzy graph are
called m−polar fuzzy independent. If there does not exist any strong arc between
them.

Example 3.2. Consider a 3−polar fuzzy labeling graph as shown in Fig. 5.

b
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Figure 5. bipartite 3−polar fuzzy labeling graph

It is easy to compute that given graph is bipartite 3−polar fuzzy labeling graph,
because set of vertices X can be distributed into two nonempty 3−polar fuzzy inde-
pendent sets X1 and X2. Here, X1 = {x1, x2} and X2 = {x3, x4}.

Proposition 3.3. In any pair of vertices there will be a strong m−polar fuzzy path

if Gω
p is connected m−polar fuzzy labeling graph.

Proposition 3.4. Every m−polar fuzzy labeling tree is a bipartite m−polar fuzzy

graph.

Proof. Suppose Gω
p is an m−polar fuzzy labeling tree and it is connected. Then, by

Proposition 3.3, there exists a strong m−polar fuzzy path between any two vertices
of Gω

p . Thus, there exists m−polar fuzzy independent sets X1 and X2, such that
the strong arc of the path have one vertex in X1 and other in X2. �

Proposition 3.5. If G∗ is K∗
1,n and Gω

p is an m−polar fuzzy labeling tree, then Gω
p

is a complete bipartite m−polar fuzzy graph.

Proof. It is trivial that Gω
p is an m−polar fuzzy labeling tree, if G∗ is a tree. Then,

K∗
1,n is an m−polar fuzzy labeling tree, which is also a complete bipartite graph.

Since K∗
1,n graph can be distributed into two non empty independent sets X1 and

X2, X1 = {x} and X2 = {x1, x2, · · · , xn}. All the arcs of Gω
p are strong arcs. Thus

the vertices x ∈ X is a strong neighbor of {x1, x2, · · · , xn} ∈ X2. �
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Remark 3.6. Every m−polar fuzzy labeling graph is not a complete bipartite
m−polar fuzzy graph. For example k∗2,n is not complete bipartite m−polar fuzzy
graph.

Algorithm for findingm−polar fuzzy spanning subgraph Sω
p of an m−polar

fuzzy labeling tree Gω
p , when degree of membership of edges are in in-

creasing order s.t e1 < e2 < · · · < en and ei = (r1, r2, · · · , rm), where G∗ is

complete.

Step 1. Consider an m−polar fuzzy labeling tree such that G∗ is complete with
|X | = n.

Step 2. Choose an arbitrary cycle and remove an m−polar fuzzy weakest arc
(there exist only one m−polar fuzzy weakest arc because degree of membership of
all the edges are in increasing order as well as Pi ◦D

ω
p is bijective).

Step 3. Repeat step 2 until no cycle remains.
Step 4. The remaining graph is the m−polar fuzzy spanning subgraph Sω

p of an
m−polar fuzzy labeling graph Gω

p , where all arcs of Sω
p are m−polar fuzzy bridges

of Gω
p .

Example 3.7. The above algorithm is explained with the following 3−polar fuzzy
labeling tree as shown in Fig 6.
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Figure 6. 3−polar fuzzy labeling tree when G∗ is complete

4. Conclusion

Fuzzy graph theory plays an important role in many fields including decision
makings, computer networking and management sciences. An m-polar fuzzy graph,
generalization of a fuzzy graph, is useful for handling multi attribute, multi agents
and multipolar information models. In this research article, we have introduced the
concept of an m-polar fuzzy labeling tree Gω

p generated by m−polar fuzzy span-
ning subgraph Sω

p . We also precede the concept of bipartite m−polar fuzzy labeling
graphs. We are extending our research work to (1) m-polar fuzzy magic graphs, (2)
m-polar fuzzy hypergraphs, (3) m-polar fuzzy soft graphs.
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