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1. Introduction

Most of the practical problems in economics, engineering, environmental sci-
ence, social science, medical science and so forth cannot be dealt with classical
methods because of various types of uncertainties present in these problems. Several
theories, for example, probability theory, fuzzy set theory, rough set theory, interval
analysis etc. are evolved to address the different kinds of uncertainty problems. But
each of these theories has their own difficulties and limitations, perhaps, due to the
lack of the parametrization tools of the theory as it was indicated by Molodtsov in
[24]. Molodtsov initiated a new mathematical tool, namely, soft set as a generaliza-
tion of fuzzy set, for dealing with uncertainties and applied it in many different fields
such as smoothness of functions, game theory, Riemann integration, Perron integra-
tion, probability theory etc. Maji et al. [20, 21] dealt with the algebraic operations
over soft sets. Recently investigations are going on in developing different mathe-
matical structures such as algebraic, topological, algebraico-topological etc. over soft
sets. To mention some of them, Aktas and Cagman [1] have introduced soft groups;
Jun [17, 18] applied soft sets to the theory of BCK/BCI algebras and introduced the
concept of soft BCK/BCI-algebras; Feng et al. [13] defined soft semi-rings; Shabir
and Ali [29] studied soft semi-groups and soft ideals; Babitha and Sunil [3] studied
soft set relations and functions; Kharal and Ahmed [19] as well as Majumdar and
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Samanta [22] studied soft mappings. Shabir and Naz [30] came up with an idea of
soft topological spaces. Afterwords Zorlutuna et al. [32], Cagman et al. [5], Hussain
and Ahmed [16], Hazra et al. [15], Georgiou et al.[14], Aygunoglu et al. [2], Babitha
et al. [4], Mondal et al. [25], M. Chiney et al. [8] and many other authors studied
on soft topological spaces. Recently metric space, linear space, topological group,
Banach algebra, topological vector space structures in soft setting are also studied
[6, 9, 10, 11, 12, 26, 28, 31]. In this paper, we introduce a notion of soft topological
vector space. For doing this we consider the vector space to be a soft vector space
and the underlying topology is taken to be a new type of soft topology which is
defined and developed by using the concepts of elementary union, intersection and
complement of soft sets although, interestingly, with respect to these operations the
relevant distributive properties and the law of excluded middle do not hold. Also in
this paper, we study some basic properties of this space and finally the problem of
soft normability of soft topological vector space is addressed to.
This paper is organized as follows: In Section 2, we briefly review some basic notions
and facts on soft sets which are used to prove or illustrate results in subsequence
sections. Section 3 is devoted to study some properties of balanced, convex and
absorbing soft sets. The concept of a soft topological vector space is introduced in
section 4 along with some basic properties of such spaces. In section 5, we introduce
soft seminorm, soft Minkowski functional and study the problem of soft normabil-
ity of soft topological vector spaces. Finally, in Section 6, we present the conclusion.

2. Preliminaries

Definition 2.1 ([24]). Let X be a universal set and E be a set of parameters. Let
P (X) denote the power set of X and A be a subset of E. A pair (F,A) is called a
soft set over X, where F is a mapping given by F : A → P (X). In other words, a
soft set over X is a parametrized family of subsets of the universe X. For λ ∈ A,
F (λ) may be considered as the set of λ - approximate elements of the soft set (F,A).

In [23] the soft sets are redefined as follows:
Let E be the set of parameters and A ⊆ E. Then for each soft set (F,A) over X a
soft set (H,E) is constructed over X, where for every λ ∈ E,

H(λ) =

{
F (λ) if λ ∈ A
φ if λ ∈ E \A.

Thus the soft sets (F,A) and (H,E) are equivalent to each other and the usual
set operations of the soft sets (Fi, Ai), i ∈ ∆ is the same as those of the soft sets
(Hi, E), i ∈ ∆. For this reason, in this paper, we have considered our soft sets over
the same parameter set A.

Definition 2.2 ([21]). A soft set (F,A) over X is said to be

(i) an absolute soft set denoted by (X̃, A), if for all λ ∈ A, F (λ) = X,

(ii) a null soft set, denoted by (Φ̃, A) if for all λ ∈ A, F (λ) = φ.

Following Molodtsov and Maji et al. [20, 21, 24] definitions of soft subset, com-
plement, arbitrary union, arbitrary intersection of soft sets etc. are presented in [27]
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considering the same parameter set.

Definition 2.3 ([9]). Let X be a non-empty set and A be a non-empty parameter
set. Then a function e : A → X is said to be a soft element of X. A soft element
e of X is said to belong to a soft set (F,A) of X , which is denoted by e∈̃(F,A),
if e(λ) ∈ F (λ), for all λ ∈ A. Thus for a soft set (F,A) over X with respect to the
index set A with F (λ) 6= φ, for all λ ∈ A, we have F (λ) = {e(λ) : e∈̃(F,A)}, for all
λ ∈ A. In general, soft elements are denoted by x̃, ẽ etc.

Definition 2.4 ([9]). Let R be the set of real numbers and B(R), the collection of
all non-empty bounded subsets of R and A be taken as a set of parameters. Then a
mapping F : A→ B(R) is called a soft real set. It is denoted by (F,A). If specifically
(F,A) is a singleton soft set, then after identifying (F,A) with the corresponding
soft element, it will be called a soft real number.
The set of all soft real numbers is denoted by R(A) and set of all non-negative soft
real numbers by R(A)∗.

Definition 2.5 ([10]). Let C be the set of complex numbers and ℘(C), the collection
of all non-empty bounded subsets of complex numbers and A be taken as a set of
parameters. Then a mapping F : A→ ℘(C) is called a soft complex set. It is denoted
by (F,A). If in particular (F,A) is a singleton soft set, then after identifying (F,A)
with the corresponding soft element, it will be called a soft complex number.
The set of all soft complex numbers is denoted by C(A).

To avoid ambiguity of notations we use r̂,ŝ,t̂ to denote soft real numbers or soft
complex numbers whereas r̄,s̄,t̄ will denote a particular type of soft real numbers
such that r̄(λ) = r, for all λ ∈ A etc. For example 0̄ is the soft real number where
0̄(λ) = 0, 1̄(λ) = 1 for all λ ∈ A.

Definition 2.6 ([9]). For two soft real numbers r̂,ŝ we define
(i) r̂≤̃ŝ if r̂(λ) ≤ ŝ(λ), for all λ ∈ A,
(ii) r̂≥̃ŝ, if r̂(λ) ≥ ŝ(λ), for all λ ∈ A,
(iii) r̂<̃ŝ, if r̂(λ) < ŝ(λ), for all λ ∈ A,
(iv) r̂>̃ŝ, if r̂(λ) > ŝ(λ), for all λ ∈ A.

Definition 2.7. The inverse of any soft real or soft complex number r̂, denoted by
r̂−1, defined by r̂−1(λ) = (r̂(λ))

−1
, for each λ ∈ A.

Proposition 2.8 ([11]). Any collection of soft elements of a soft set can generate
a soft subset of that soft set.

Remark 2.9 ([11]). Let X be any non-empty set. By S(X̃) we denote the collection
of all soft sets (F,A) over X for which F (λ) 6= φ, for all λ ∈ A together with the

null soft set (Φ̃, A). For any soft set (F,A)( 6= (Φ̃, A)) ∈ S(X̃), the collection of all
soft elements of (F,A) is denoted by SE(F,A). For a collection B of soft elements

of (X̃, A), the soft set generated by B is denoted by SS(B).

Proposition 2.10 ([11]). For any soft sets (F,A), (G,A)( 6= (Φ̃, A)) ∈ S(X̃),
(F,A)⊆̃(G,A) iff every soft element of (F,A) is also a soft element of (G,A).
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Definition 2.11 ([11]). For any two soft sets (F,A), (G,A)( 6= (Φ̃, A)) ∈ S(X̃),
(i) elementary union of (F,A) and (G,A) is denoted by (F,A) d (G,A) and is

defined by (F,A)d(G,A) = SS(B), where B = {x̃∈̃(X̃, A) : x̃∈̃(F,A) or x̃∈̃(G,A)},
(ii) elementary intersection of (F,A) and (G,A) is denoted by (F,A)e (G,A) and

is defined by (F,A) e (G,A) = SS(B), where

B = {x̃∈̃(X̃, A) : x̃∈̃(F,A) and x̃∈̃(G,A)},
(iii) the elementary complement of (F,A) is denoted by (F,A)C and is defined

by (F,A)C = SS(B), where B = {x̃∈̃(X̃, A) : x̃∈̃(F,A)C} and (F,A)C is the
complement of (F,A).

Remark 2.12. (1) The operations elementary union and elementary intersection

are not distributive over S(X̃) (See [7]).

(2) In general,(F,A) d (F,A)C⊆̃(X̃, A), (F,A) d (F,A)C 6= (X̃, A). However if

(F,A)C 6= (Φ̃, A), then (F,A) d (F,A)C = (X̃, A) (See [11]).

(3) In general,
(
(F,A)C

)C 6= (F,A). However if (F,A)C 6= (Φ̃, A), then
(
(F,A)C

)C
= (F,A) (See [11]).

Proposition 2.13 ([11]). For any two soft sets (F,A), (G,A) ∈ (6= (Φ̃, A))S(X̃),
(1) (F,A) d (G,A) = (F,A)∪̃(G,A),

(2) (F,A) e (G,A) = (F,A)∩̃(G,A), if (F,A) e (G,A) 6= (Φ̃, A),
where the notations ∪̃ and ∩̃ are used for usual soft set union and soft set intersec-
tion.

Definition 2.14 ([10]). Let (F,A), (G,A) ∈C(A)orR(A). Then the sum, difference,
product and division are defined by

(F +G)(λ) = z + w; z ∈ F (λ), w ∈ G(λ), for each λ ∈ A,
(F −G)(λ) = z − w; z ∈ F (λ), w ∈ G(λ), for each λ ∈ A,
(F ·G)(λ) = zw; z ∈ F (λ), w ∈ G(λ), for each λ ∈ A,
(F/G)(λ) = z/w; z ∈ F (λ), w(6= 0) ∈ G(λ), for each λ ∈ A ,provided G(λ) 6= φ

for each λ ∈ A.

Definition 2.15 ([11]). A mapping d : SE(X̃) × SE(X̃) → R(A)∗, is said to be a

soft mapping on the soft set (X̃, A) if d satisfies the following conditions:

(M1) d(x̃, ỹ)≥̃0̄, for all x̃, ỹ∈̃X̃,
(M2) d(x̃, ỹ) = 0̄ if and only if x̃ = ỹ,

(M3) d(x̃, ỹ) = d(ỹ, x̃), for all x̃, ỹ∈̃(X̃, A),

(M4) For all x̃, ỹ, z̃∈̃(X̃, A), d(x̃, z̃)≤̃d(x̃, ỹ) + d(ỹ, z̃).

The soft set (X̃, A) with a soft metric d on (X̃, A) is said to be a soft metric space

and is denoted by (X̃, d, A) or (X̃, d). (M1), (M2), (M3) and (M4) are said to be
soft metric axioms.

Theorem 2.16 ([11], Decomposition Theorem). Let a soft metric d satisfy the
condition:

(M5) For (ξ, η) ∈X × X, and λ ∈ A, {d(x̃, ỹ)(λ) : x̃(λ) = ξ, ỹ(λ) = η} is a
singleton set and if for λ ∈ A, dλ : X ×X → R+ is defined by

dλ(x̃(λ), ỹ(λ)) = d(x̃, ỹ)(λ), x̃, ỹ∈̃X̃.
Then dλ is a metric on X.
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Remark 2.17 ([11]). Every crisp metric d on a crisp set X can be extended to a

soft metric on the soft set (X̃, A). The soft metric defined using the crisp metric d,
is said to be the soft metric generated by d. This type of soft metric always satisfies
(M5).

Definition 2.18 ([11]). Let (X̃, d, A) be a soft metric space, r̂ be a non-negative

soft real number and ã∈̃X̃. By an open ball with centre ã and radius r̂, we mean the
collection of soft elements of (X̃, A) satisfying d(x̃, ã)≤̃r̂. The open ball centered at
ã and radius r̂ is denoted by B(ã, r̂). Thus

B(ã, r̂) = {x̃∈̃X̃ : d(x̃, ã)≤̃r̂} ⊂ SE(X̃).

SS(B(ã, r̂)) will be called a soft open ball centered ã and radius r̂.

Proposition 2.19 ([11]). Let (X̃, d, A) be a soft metric space satisfying (M5). Then

for every open ball B(ã, r̂) in (X̃, d), SS(B(ã, r̂))(λ) = B(ã(λ), r̂(λ)), an open ball
in (X, dλ), for each λ ∈ A.

Definition 2.20 ([11]). Let B be a collection of soft elements of (X̃, A) in a soft

metric space (X̃, d, A). Then a soft element ã is said to be an interior soft element
of B, if there exists a positive soft real number r̂ such that ã ∈ B(ã, r̂) ⊆ B.

Definition 2.21 ([11]). Let (X̃, d, A) be a soft metric space and B be a non-null

collection of soft elements of (X̃, A). Then B is said to be open in (X̃, A) with

respect to d or open in (X̃, d, A), if all elements of B are interior element of B.

Definition 2.22 ([11]). Let (X̃, d, A) be a soft metric space and (Y,A) be a non-null

soft subset of S(X̃) in (X̃, d, A). Then (Y,A) is said to be ‘soft open in (X̃, A) with

respect to d’ or ‘soft open in (X̃, d, A)’, if there is a collection B of soft elements of

(Y,A) such that B is open in (X̃, A) with respect to d and (Y,A) = SS(B).

Definition 2.23 ([11]). Let (X̃, d, A) be a soft metric space satisfying (M5). Then

the collection τ of all soft open sets form a topology on (X̃, A) with respect to
elementary union and elementary intersection of soft sets. This topology will be
called “soft metric topology” on (X̃, A).

Definition 2.24 ([12]). Let X be a vector space over a field K and A be the

parameter set. Let (F1, A), (F2, A), ........., (Fn, A) be n soft sets in (X̃, A). Then

(F,A) = (F1, A) + (F2, A) + ....... + (Fn, A) is a soft set over (X̃, A) and is defined
as F (λ) = {x1 + x2 + ...... + xn : xi ∈ Fi(λ), i = 1, 2, ..., n}, for each λ ∈ A. Let

α ∈ K be any scalar and (F,A) be a soft set over (X̃, A), then αF is a soft set over
(X,A) and is defined as follows: α(F,A) = (G,A), G(λ) = {αx : x ∈ F (λ)}, for
each λ ∈ A.

Definition 2.25 ([12]). Let X be a vector space over a field K and A be the
parameter set. Let (G,A) be a soft set over X. Then G is said to be a soft vector
space or a soft linear space of X over K, if G(λ) is a vector subspace of X, for each
λ ∈ A.

Definition 2.26 ([12]). Let (F,A) be a soft vector space of X over K.
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(i) (F,A) is said to be null soft vector space, if F (λ) = {θ} , for each λ ∈ A, where
θ is the null element of X.

(ii) (F,A) is said to be absolute soft vector space, if F (λ) = X, for each λ ∈ A.

Definition 2.27 ([12]). Let (F,A) be a soft vector space of X over K. Let (G,A)
be a soft set over (X,A). Then (G,A) is said to be a soft vector subspace of (F,A)
if it satisfies the following conditions:

(i) for each λ ∈ A, G(λ) is a vector subspace of X over K,
(ii)F (λ) ⊇ G(λ), for each λ ∈ A.

Definition 2.28 ([12]). Let (F,A) be a soft vector space of X over K. Then a soft
element of (F,A) is said to be a soft vector of (F,A). In a similar manner a soft
element of the soft set (K,A) is said to be a soft scalar, K being the scalar field.

Definition 2.29 ([12]). A soft vector x̃ in a soft vector space (F,A) is said to be
the null soft vector, if x̃(λ) = θ, for each λ ∈ A, θ being the zero element of X. It
will be denoted by Θ.

Definition 2.30 ([12]). Let x̃, ỹ be soft vectors of (F,A) and k̂ be a soft scalar.

Then the addition x̃+ ỹ of x̃, ỹ and scalar multiplication k̂.x̃ of k̂ and x̃ are defined
by

(x̃+ ỹ)(λ) = x̃(λ) + ỹ(λ), (k̂.x̃)(λ) = k̂(λ).x̃(λ), for each λ ∈ A.
Obviously, x̃+ ỹ and k̂.x̃ are soft vectors of (F,A).

Remark 2.31 ([12]). However k̂.x̃ = Θ does not necessarily imply that either k̂ = 0̄
or x̃ = Θ.

Definition 2.32 ([12]). Let (X̃, A) be the absolute soft vector space i.e. X̃(λ) = X,

for all λ ∈ A. Then a mapping ‖.‖ :SE(X̃) →R(A)∗ is said to be a soft norm on the

soft vector space X̃ if ‖.‖ satisfies the following conditions:

(N1) ‖x̃‖≥̃0̄, for all x̃∈̃X̃,
(N2) ‖x̃‖ = 0̄ if and only if x̃ = Θ,

(N3) ‖α̂x̃‖ =| α̂ | ‖x̃‖, for all x̃ ∈ X̃ and for every soft scalar α̂,

(N4) For all x̃, ỹ ∈ (X̃, A), ‖x̃+ ỹ‖≤̃‖x̃‖+ ‖ỹ‖.
The soft vector space (X̃, A) with a soft norm ‖.‖ on (X̃, A) is said to be a soft

normed linear space and is denoted by (X̃, ‖.‖, A) or (X̃, ‖.‖). (N1), (N2), (N3) and
(N4) are said to be soft norm axioms.

Theorem 2.33 ([12], Decomposition Theorem). Every soft norm ‖.‖ satisfies the
condition

(N5) For ξ ∈ X and λ ∈ A, {‖x̃‖(λ) : x̃(λ) = ξ} is a singleton set.
And hence each soft norm ‖‖ can be decomposed into a family of crisp norms
{‖.‖λ, λ ∈ A}, where ‖.‖λ : X→R+ is defined by the following:

for each ξ ∈ X, ‖ξ‖λ = ‖x̃‖(λ), with x̃∈̃X̃ such that x̃(λ) = ξ.

Proposition 2.34 ([12]). Let (X̃, ‖.‖, A) be a soft normed linear space. Let us define

d : SE(X̃)× SE(X̃)→ R(A)∗ by d(x̃, ỹ) = ‖x̃− ỹ‖ for all x̃, ỹ ∈ (X̃, A). Then d is

a soft metric on (X̃, A).
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Definition 2.35 ([12]). Let (X̃, A) be an absolute soft vector space. A soft set

(F,A) ∈ S(X̃) is said to be convex soft set, if for all x̃, ỹ∈̃(F,A) and for all soft real
numbers t̂ with t̂(λ) ∈ [0, 1], for all λ ∈ A, t̂x̃+ (1− t̂)ỹ∈̃(F,A).

Proposition 2.36 ([12]). A soft open or closed ball in a soft normed linear space,
is a convex soft set.

Proposition 2.37 ([12]). The elementary intersection of arbitrary number of convex
soft sets is a convex soft set.

Definition 2.38 ([7]). Let τ be the collection of soft sets of S(X̃). Then τ is said

to be a soft topology on (X̃, A), if it satisfies the following axioms:

(i) (Φ̃, A) and (X̃, A) belong to τ ,
(ii) The elementary union of any number of soft sets in τ belongs to τ,
(iii) The elementary intersection of two soft sets in τ belongs to τ.

The triplet (X̃, τ, A) is called a soft topological space and the members of τ are
called soft open sets.

Definition 2.39 ([7]). Let (X̃, τ, A) be a soft topological space. Then a subcollec-

tion B of τ containing (Φ̃, A), is said to be an open base τ , if for all x̃∈̃(X̃, A) and
for any soft open set (F,A) containing the soft element x̃, there exists (G,A) ∈ B
such that x̃∈̃(G,A)⊆̃(F,A). The members of B are called soft basic open sets in

(X̃, τ, A).

Definition 2.40 ([7]). Let (X̃, τ, A) be a soft topological space and (F,A) ∈ S(X̃).
The interior of the soft set (F,A), denoted by Int(F,A), is defined by

Int(F,A) = {x̃∈̃(F,A) : x̃∈̃(G,A)⊆̃(F,A) for some (G,A) ∈ τ}.
SS[Int(F,A)] is said to be soft interior of (F,A) and denoted by (F,A)

◦
.

Proposition 2.41 ([7]). Let (X̃, τ, A) be a soft topological space and (F,A) ∈ S(X̃).

Then (F,A)
◦

is the elementary union of all soft open sets contained in (F,A). It is

the largest soft open set in (X̃, τ, A) contained in (F,A).

Definition 2.42 ([7]). Let (X̃, τ, A) be a soft topological space. Then (F,A)(6=
(Φ̃, A)) ∈ S(X̃) is a soft neighbourhood (soft nbd) of the soft element x̃, if there
exists a soft set (G,A) ∈ τ such that x̃∈̃(G,A)⊆̃(F,A).

Proposition 2.43 ([7]). Let (X̃, τ, A) be a soft topological space. Then (F,A)( 6=
(Φ̃, A)) ∈ S(X̃) is soft open if and only if (F,A) is soft nbd of all of its soft elements.

Definition 2.44 ([7]). LetX and Y be two non-empty sets and {fλ : X → Y, λ ∈ A}
be a collection of functions. Then a function f : SE(X̃)→ SE(Ỹ ), associated with
the family of functions {fλ : X → Y, λ ∈ A}, defined by [f(x̃)](λ) = fλ(x̃(λ)), for
each λ ∈ A, is called a soft function.

Definition 2.45 ([7]). Let f : SE(X̃)→ SE(Ỹ ) be a soft function associated with
the family of functions {fλ : X → Y, λ ∈ A}.

(i) The image of a soft set (F,A) over X under the soft function f , denoted by
f [(F,A)], is defined by f [(F,A)] = SS{f(SE(F,A))}.
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(ii) The inverse image of a soft set (G,A) over Y under the soft function f ,
denoted by f−1[(G,A)], is defined by f−1[(G,A)] = SS{f−1(SE(G,A))}.

Definition 2.46 ([7]). Let f : SE(X̃)→ SE(Ỹ ) be a soft function associated with
the family of functions {fλ : X → Y, λ ∈ A}. Then f is said to be

(i) injective, if x̃ 6= ỹ implies f(x̃) 6= f(ỹ),

(ii) surjective, if f(X̃, A) = (Ỹ , A),
(iii) bijective, if both injective and surjective.

Definition 2.47 ([7]). Let (X̃, τ, A) and (Ỹ , ν, A) be two soft topological spaces

and f : SE(X̃)→ SE(Ỹ ) be a soft function associated with the family of functions

{fλ : X → Y, λ ∈ A}. Then we denote this soft function as f : (X̃, τ, A)→ (Ỹ , ν, A).

(i) f is said to be soft continuous at x̃0∈̃(X̃,A), if for every (V,A) ∈ ν such that
f(x̃0)∈̃(V,A), there exists (U,A) ∈ τ such that x̃0∈̃(U,A) and f(U,A)⊆̃(V,A).

(ii) f is said to be soft continuous in (X̃, τ, A), if it is soft continuous at each soft

element x̃0∈̃(X̃,A).

Proposition 2.48 ([7]). Let (X̃, τ, A) and (Ỹ , ν, A) be two soft topological spaces

and f : (X̃, τ, A)→ (Ỹ , ν, A) be a soft function. Then the following relation holds:
(1)⇔ (2)⇔ (3) and (2)⇒ (4).

(1) f is soft continuous.
(2) For all (V,A) ∈ ν, f−1(V,A) ∈ τ.
(3) There exists a subbase ℘ for ν such that f−1(V,A) ∈ τ for all (V,A) ∈ ℘.
(4) for any closed soft set (F,A) in (Ỹ , ν, A), f−1(F,A) is soft closed in (X̃, τ, A).

Definition 2.49 ([7]). A soft function f : (X̃, τ, A) → (Ỹ , ν, A) is said to be soft
open if for all (V,A) ∈ τ, f(V,A) ∈ ν.

Definition 2.50 ([7]). A soft function f : (X̃, τ, A) → (Ỹ , ν, A) is said to be soft
homeomorphism if it satisfioes the following conditions:

(i) f is bijective,
(ii) f is soft continuous,
(iii) f−1 is soft continuous.

Proposition 2.51 ([7]). Let f : (X̃, τ, A) → (Ỹ , ν, A) be a soft function. Then the
followings are equivalent:

(1) f is a soft homeomorphism,
(2) f is bijective, soft open and soft continuous,
(3) f−1 is a soft homeomorphism.

Proposition 2.52. Let f : (X̃, τ, A) → (Ỹ , ν, A) be a soft homeomorphism. Then

for any (F,A) ∈ S(X̃), f [(F,A)
◦
] = [f(F,A)]

◦
.

Proof. Let (F,A) ∈ S(X̃). Then, by the hypothesis, f is soft open and soft contin-
uous. Thus

f [(F,A)
◦
]⊆̃ [f(F,A)]

◦
and f−1

(
[f(F,A)]

◦)
⊆̃
[
f−1f(F,A)

]◦
.

So, f [(F,A)
◦
]⊆̃ [f(F,A)]

◦
and [f(F,A)]

◦
⊆̃f [(F,A)

◦
]. Hence f [(F,A)

◦
] = [f(F,A)]

◦
.
�
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Definition 2.53 ([26]). Let (F,A) and (G,A) be two soft sets over X. Then
the product of (F,A) and (G,A) is defined as (F,A)×̃(G,A) = (F ×̃G,A), where
[F ×̃G](λ) = F (λ)×G(λ), for each λ ∈ A.
Definition 2.54. Let (F,A), (G,A) ∈ S(X̃) and B = {(x̃, ỹ) : x̃∈̃(F,A), ỹ∈̃(G,A)}.
Now to each λ ∈ A, consider the set {(x̃(λ), ỹ(λ)) : x̃∈̃(F,A), ỹ∈̃(G,A)} and define a
soft set (H,A) such that H(λ) = {(x̃(λ), ỹ(λ)) : x̃∈̃(F,A), ỹ∈̃(G,A)}. Then (H,A) =
SS(B).

Proposition 2.55. If (F,A), (G,A) ∈ S(X̃) then (F ×̃G,A) = SS(B), where B =
{(x̃, ỹ) : x̃∈̃(F,A), ỹ∈̃(G,A)}.
Proof. Let B = {(x̃, ỹ) : x̃∈̃(F,A), ỹ∈̃(G,A)}. If any one of (F,A) and (G,A) is null

soft set, then B is empty and obviously (F ×̃G,A) = (Φ̃, A).

Let (F,A) and (G,A)(6= (Φ̃, A)) be two members of S(X̃). Then for each λ ∈ A,
SS(B)(λ) = {(x̃(λ), ỹ(λ)) : x̃∈̃(F,A), ỹ∈̃(G,A)}

= {(x̃(λ), ỹ(λ)) : x̃(λ)∈̃F (λ), ỹ(λ)∈̃G(λ), for all λ ∈ A}
= F (λ)×G(λ)
= [F ×̃G](λ).

Thus, (F ×̃G,A) = SS(B). �

Remark 2.56. Obviously B = {(x̃, ỹ) : x̃∈̃(F,A), ỹ∈̃(G,A)} = SE(F ×̃G,A).

Proposition 2.57. Let {(Vi, A) : i ∈ 4} be any collection of soft sets over a linear

space X over the field K and A be the parameter set. Then for any α̂∈̃(K̃, A),
(1) α̂ d

i∈4
(Vi, A) = d

i∈4
α̂(Vi, A),

(2) α̂ e
i∈4

(Vi, A) = e
i∈4

α̂(Vi, A), if e
i∈4

(Vi, A) 6= (Φ̃, A).

Proof. (1) Let λ ∈ A. Then(
α̂ d
i∈4

(Vi, A)

)
(λ) = α̂(λ)

[
d
i∈4

(Vi, A)

]
(λ)

= α̂(λ)

[
∪̃
i∈4

(Vi, A)

]
(λ)

= α̂(λ) ∪
i∈4

Vi(λ)

= ∪
i∈4

α̂(λ)Vi(λ)

=

[
∪̃
i∈4

α̂(Vi, A)

]
(λ)

=

[
d
i∈4

α̂(Vi, A)

]
(λ).

Thus, α̂ d
i∈4

(Vi, A) = d
i∈4

α̂(Vi, A).

(2) If e
i∈4

(Vi, A) 6= (Φ̃, A), then e
i∈4

(Vi, A) = ∩̃
i∈4

(Vi, A). Thus, by similar argu-

ments as above, we have α̂ e
i∈4

(Vi, A) = e
i∈4

α̂(Vi, A). �

3. Balanced, convex and absorbing soft sets

Definition 3.1. Let (X̃, A) be an absolute soft vector space. A soft set (F,A) ∈
S(X̃) is said to be
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(i) balanced, if for all x̃∈̃(F,A) and α̂∈̃(K̃, A) with | α̂ | ≤̃1̄ , α̂(λ) 6= 0, forallλ ∈
A or | α̂ |= 0̄, α̂x̃∈̃(F,A),

(ii) absorbing, if for all x̃∈̃(F,A), there exists a soft real number t̂ with t̂(λ) > 0,
for each λ ∈ A such that t̂−1x̃∈̃(F,A),

(iii) symmetrical, if (−1)(F,A) = (F,A).

Proposition 3.2. Let (X̃, A) be an absolute soft vector space. A soft set (F,A) ∈
S(X̃) is

(1) a convex soft set iff for each λ ∈ A, F (λ) is a convex set of X,
(2) a balanced soft set iff for each λ ∈ A, F (λ) is a balanced set of X,
(3) an absorbing soft set iff for each λ ∈ A, F (λ) is an absorbing set of X.

Proof. (1) Let (F,A) be a convex soft set and choose λ ∈ A. Let ξ, η ∈ F (λ) and
r ∈ [0, 1]. Then there exist x̃, ỹ∈̃(F,A) such that x̃(λ) = ξ, ỹ(λ) = η. Define a
soft scalar r̄ such that r̄(λ) = r, for each λ ∈ A. Since (F,A) is a convex soft set,
r̄x̃+(1− r̄)ỹ∈̃(F,A), i.e., r̄(λ)x̃(λ)+(1− r̄(λ))ỹ(λ)∈̃F (λ), for all λ ∈ A. In particular,
ξ+ (1− r)η ∈ F (λ). Thus F (λ) is convex set of X. Since λ ∈ A is arbitrary, for each
λ ∈ A, F (λ) is convex set of X.

Conversely, let (F,A) ∈ S(X̃) and for each λ ∈ A, F (λ) be convex set of X. Let

x̃, ỹ∈̃(F,A) and k̂∈̃(K̃, A) with k̂(λ) ∈ [0, 1], for each λ ∈ A. Then x̃(λ), ỹ(λ) ∈ F (λ),
for each λ ∈ A. Since F (λ) is convex set of X for each λ ∈ A,

[k̂x̃+ (1− k̂)ỹ](λ) = k̂(λ)x̃(λ) + (1− k̂(λ))ỹ(λ)∈̃F (λ),

for each λ ∈ A. Thus k̂x̃+ (1− k̂)ỹ∈̃(F,A). So (F,A) is a convex soft set of (X̃, A).
(2) Let (F,A) be a balanced soft set and choose λ ∈ A. Let ξ ∈ F (λ) and | k |≤ 1.

Then there exists x̃∈̃(F,A) such that x̃(λ) = ξ. Define a soft scalar k̄ such that
k̄(λ) = k, for all λ ∈ A. Then either | k̄ | ≤̃1̄ with k̄(λ) 6= 0, for each λ ∈ A or
| k̄ |= 0̄, Then since (F,A) is a balanced soft set, k̄x̃∈̃(F,A), i.e., k̄(λ)x̃(λ) ∈ F (λ),
for all λ ∈ A. In particular, kξ ∈ F (λ). Thus F (λ) is a balanced set of X. Since
λ ∈ A is arbitrary, for each λ ∈ A, F (λ) is balanced set of X.

Conversely, let (F,A) ∈ S(X̃) and for each λ ∈ A, F (λ) be a balanced set of X.

Let x̃∈̃(F,A) and k̂∈̃(K̃, A) with | k̂ | ≤̃1̄, k̂(λ) 6= 0, for each λ ∈ A or | k̂ |= 0̄. Then
x̃(λ) ∈ F (λ), for all λ ∈ A. Since F (λ)for each λ ∈ A, is a balanced set of X

for | k̂ | ≤̃1̄, k̂(λ) 6= 0, for each λ ∈ A or | k̂ |= 0̄, [k̂x̃](λ) = k̂(λ)x̃(λ)∈̃F (λ),

for each λ ∈ A. Thus (F,A) is a balanced soft set of (X̃, A).
Proof of (3) is similar. �

Example 3.3. Consider the vector spce R3 over R and let N, the set of natural

numbers, be the parameter set. Then (R̃3,N) is an absolute soft vector space over

R. Define (F,N) ∈ S(R̃3) such that for each n ∈ N, F (n) is a closed ball of radius
1 + 1

n with center at θ(= (0, 0, 0)) in R3. Then F (n) is balanced and absorbing for
each n ∈ N and hence, by Proposition 3.2, (F,N) is a balanced and absorbing soft

set in (R̃3,N).

Remark 3.4. If a soft set (F,A) ∈ S(X̃) is absorbing, then Θ∈̃(F,A).
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Proposition 3.5. Let (X̃, A) be an absolute soft vector space and (F,A) ∈ S(X̃).
Then

(1) (F,A) is a balanced soft set iff α̂(F,A)⊆̃(F,A), for all α̂∈̃(K̃, A) with | α̂ |
≤̃1̄, α̂(λ) 6= 0, for each λ ∈ A or | α̂ |= 0̄,

(2) If (F,A) is a balanced soft set and α̂, β̂∈̃(K̃, A) with | α̂ | ≤̃ | β̂ | and either

α̂(λ), β̂(λ) 6= 0, for each λ ∈ A or | α̂ |, | β̂ |= 0̄, then | α̂ | (F,A)⊆̃ | β̂ | (F,A),

(3) If (F,A) is a balanced soft set and α̂∈̃(K̃, A) with | α̂ |= 1̄, then | α̂ | (F,A) =
(F,A). Hence every balanced soft set is symmetrical,

(4) If {(Fi, A) : i ∈ 4} be a collection of balanced soft sets in (X̃, A), then

e
i∈4

(Fi, A) is also a balanced soft set in (X̃, A),

(5) If {(Fi, A) : i ∈ 4} be a collection of balanced soft sets in (X̃, A), then

d
i∈4

(Fi, A) is also a balanced soft set in (X̃, A).

Proof. (1) Suppose (F,A) is a balanced soft set. Let α̂∈̃(K̃, A) with | α̂ | ≤̃1̄, α̂(λ) 6=
0, for each λ ∈ A or | α̂ |= 0̄. Then, by the hypothesis, F (λ) is a balanced set, for
each λ ∈ A. Thus α̂(λ)F (λ) ⊆ F (λ), for each λ ∈ A. So α̂(F,A)⊆̃(F,A).

Conversely, suppose the necessary condition holds and choose λ ∈ A and let

α ∈ K with | α |≤ 1. Let ᾱ(λ) = α, for each λ ∈ A. Then ᾱ∈̃(K̃, A) with | ᾱ |
≤̃1̄, ᾱ(λ) 6= 0, for each λ ∈ A or | ᾱ |= 0̄. By given condition, ᾱ(F,A)⊆̃(F,A), i.e.,
ᾱ(λ)F (λ) ⊆ F (λ), for each λ ∈ A. Thus F (λ) is a balanced set. This is true for all
λ ∈ A, i.e., F (λ) is a balanced set, for each λ ∈ A. So, by Proposition 3.2, (F,A) is
a balanced soft set.

Proof of (2) and (3) are similar as of (1).

(4) Let (F,A) = e
i∈4

(Fi, A) and let x̃∈̃(F,A) and α̂∈̃(K̃, A) with | α̂ | ≤̃1̄, α̂(λ) 6=

0, for each λ ∈ A or | α̂ |= 0̄. Then x̃∈̃(Fi, A), for all i ∈ 4. Since each (Fi, A) is
balanced soft set, α̂x̃∈̃(Fi, A), for all i ∈ 4. Thus α̂x̃∈̃(F,A). So (F,A) is a balanced
soft set.

(5) Let (F,A) = d
i∈4

(Fi, A) = ∪̃
i∈4

(Fi, A). Since (Fi, A) is balanced soft set for

each i ∈ 4, for each λ ∈ A, Fi(λ) is balanced for each i ∈ 4. Thus F (λ) = ∪
i∈4

Fi(λ)

is balanced, for each λ ∈ A. So, by Proposition 3.2, (F,A) is balanced soft set. �

4. Soft topological vector space

Definition 4.1. Let K be the field of real or complex numbers and d be the usual

metric on K. Let (K̃, d, A) be the soft metric space generated by the crisp metric
space (K, d) as in Remark 2.17, where A be the set of parameter. Let ν be the soft

metric topology on (K̃, A) as in Definition 2.23. Then ν is a soft topology as in

Definition 2.38 and it is called usual soft topology on (K̃, A).

Thus d(x̃, ỹ) =| x̃−ỹ |, x̃, ỹ∈̃(K̃, A), is the soft metric and B(x̃, r̂) = {ỹ : | x̃−ỹ | <̃r̂}
are open balls and SS{B(x̃, r̂)} are soft open balls on (K̃, A). Also we see that

SS{B(x̃, r̂)} are soft basic open set in (K̃, τ, A) as per Definition 2.39.
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Definition 4.2. Let X be a vector space over the field of real or complex numbers
and (X̃, A) be the absolute soft vector space of X, i.e., X̃(λ) = X, for all λ ∈ A. Let

τ be a soft topology on (X̃, A) as in Definition 2.38 and ν be the usual soft topology

on (K̃, A). Then (X̃, τ, A) is called a soft topological vector space, if the mappings

f : SE(X̃)× SE(X̃) → SE(X̃) defined by

f(x̃, ỹ) = x̃+ ỹ

and

g : SE(K̃)× SE(X̃) → SE(X̃) defined by

g(α̂, x̃) = α̂x̃

are continuous in the sense that
for any soft nbd (W,A) of x̃+ ỹ, there exist soft nbds (V1, A), (V2, A) of x̃ and ỹ

respectively such that (V1, A) + (V2, A)⊆̃(W,A)
and

for any soft nbd (U,A) of α̂x̃, there exist soft nbds (U1, A) of α̂ in (K̃, ν, A) and

(U2, A) of x̃ in (X̃, τ, A) such that (U1, A) · (U2, A)⊆̃(U,A).
By definition of ν, there exists r̂>̃0 such that α̂ where B(α̂, r̂) is the open ball

centred at α̂.
Let SS{B(α̂, r̂)} = (G1, A). Then (G1, A) · (U2, A)⊆̃(U,A). Thus, g is continuous

iff there exists r̂>̃0 such that β̂ · ỹ∈̃(U,A), for all β̂∈̃(K̃, A) with | β̂ − α̂ | <̃r̂ and
for all ỹ∈̃(U2, A).

Definition 4.3. Let (X̃, A) be the absolute soft vector space and (K̃, A) be the

absolute soft set over K, the field of real or complex numbers. For a fixed ã∈̃(X̃, A)

and k̂∈̃(K̃, A), define operators Tã and Mk̂ from SE(X̃) to SE(X̃) by Tã(x̃) = ã+ x̃

and Mk̂(x̃) = k̂ · x̃ , for all x̃∈̃(X̃, A).
Operators Tã and Mk̂ are called soft translation operator and soft multiplication

operator, respectively.

Remark 4.4. The operators Tã and Mk̂ in Definition 4.3 can be interpreted as soft
functions as per Definition 2.44 associated with the families of functions {(Tã)λ : λ ∈ A}
and

{(
Mk̂

)
λ

: λ ∈ A
}
, where (Tã)λ : X → X and

(
Mk̂

)
λ

: X → X are defined by

(Tã)λ (ξ) = ã(λ) + ξ and
(
Mk̂

)
λ

(ξ) = k̂(λ) · ξ, for all λ ∈ A and ξ ∈ X.

Proposition 4.5. Let (X̃, τ, A) be a soft topological vector space. For ã∈̃(X̃, A) and

k̂∈̃(K̃, A) with k̂(λ) 6= 0, for each λ ∈ A then soft translation operator Tã and soft

multiplication operator Mk̂ are soft homeomorphism from (X̃, τ, A) to (X̃, τ, A).

Proof. Clearly Tã and Mk̂ are bijective mappings on SE(X̃) and thus inverses exist.
In fact (Tã)−1 = T−ã and (Mk̂)−1 = M(k̂)−1 .

Consider the mapping Tã and take a soft nbd (W,A) of Tã(x̃)(= ã + x̃). Then,
by continuity of the function f at (x̃, ã), there exist soft nbds (U,A) and (V,A) of x̃
and ã respectively such that (U,A) + (V,A)⊆̃(W,A). Thus, in particular, (U,A) +
ã⊆̃(W,A), i.e., Tã(U,A)⊆̃(W,A). So, Tã is soft continuous. Similarly, (Tã)−1 is soft
continuous. Hence Tã is a soft homeomorphism.
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By the continuity of the function g at (k̂, x̃), for any soft nbd (W,A) of k̂ · x̃,

there exist r̂>̃0̄ and a soft nbd (U,A) of x̃ such that ŝỹ∈̃(W,A), for all ŝ∈̃(K̃, A)

with | ŝ − k̂ | <̃r̂ and for all ỹ∈̃(U,A). Then, in particular, k̂ · (U,A)⊆̃(W,A), i.e.,
Mk̂(U,A)⊆̃(W,A). Thus, Mk̂ is soft continuous. Since (Mk̂)−1 = M(k̂)−1 , it follows

that M(k̂)−1 is also soft continuous. So Mk̂ is a soft homeomorphism. �

Proposition 4.6. Let (X̃, τ, A) be a soft topological vector space. Then

(1) If (C,A) is convex soft set, then (C,A)
◦

is also convex soft set,

(2) If (B,A) is balanced soft set and Θ∈̃(B,A)
◦
, then (B,A)

◦
is also balanced

soft set.

Proof. (1) Let t̂∈̃R(A) with t̂(λ) ∈ [0, 1], for each λ ∈ A. Since (C,A) is convex soft

set and (C,A)
◦⊂̃(C,A), we have

t̂(λ)C
◦
(λ) + (1− t̂(λ))C

◦
(λ) ⊂ t̂(λ)C(λ) + (1− t̂(λ))C(λ) ⊂ C(λ),

i.e., t̂(C,A)
◦

+(1̄− t̂)(C,A)
◦⊂̃(C,A). Since (C,A)

◦
is soft open, by Proposition 2.51,

t̂(C,A)
◦

+ (1̄− t̂)(C,A)
◦

is a soft open subset of (C,A). Since (C,A)
◦

is the largest

soft open subset of (C,A), t̂(C,A)
◦

+(1̄− t̂)(C,A)
◦⊂̃(C,A)

◦
. Thus (C,A)

◦
is convex

soft set.

(2) Since soft multiplication Mk̂ is a soft homeomorphism, by Proposition 2.52,

Mk̂[(B,A)
◦
] =

(
Mk̂[(B,A)]

)◦
, for all k̂∈̃(K̃, A) with | k̂ | ≤̃1̄, k̂(λ) 6= 0, for each

λ ∈A. Since (B,A) is a balanced soft set, k̂(B,A)
◦

=
(
k̂(B,A)

)◦

⊆̃(B,A)
◦
.

Now, if Θ∈̃(B,A)
◦
, then 0̄.(B,A)

◦
= Θ⊆̃(B,A)

◦
. Thus, k̂(B,A)

◦⊆̃(B,A)
◦
, for all

k̂∈̃(K̃, A) with | k̂ | ≤̃1̄, k̂(λ) 6= 0, for each λ ∈A and k̂ = 0̄. So (B,A)
◦

is a balanced
soft set. �

Proposition 4.7. Let (X̃, τ, A) be a soft topological vector space. Then
(1) Every soft nbd of Θ contains a balanced soft nbd of Θ,
(2) Every convex soft nbd of Θ contains a balanced convex soft nbd of Θ.

Proof. (1) Let (V,A) be any soft nbd of Θ. By continuity of the mapping g(α̂, x̃) =
α̂x̃ at (0̄,Θ), for any soft nbd (V,A) of Θ, there exists a soft nbd (W,A) of Θ and

δ̂>̃0̄ such that α̂ỹ∈̃(V,A) for all soft scalar | α̂ | <̃δ̂ and for all ỹ∈̃(W,A). Then

α̂(W,A)⊆̃(V,A), for all | α̂ | <̃δ̂.
Let (W ′, A) = d

|α̂|<̃δ̂
α̂(W,A). Then (W ′, A) is a soft nbd of Θ. Let β̂ be any soft

scalar with | β̂ | ≤̃1̄, β̂(λ) 6= 0, for each λ ∈ A or β̂ = 0̄. Then | α̂β̂ | <̃δ̂. Thus

β̂(W ′, A) = d
|α̂|<̃δ̂

α̂β̂(W,A)⊆̃(W ′, A). So, (W ′, A) is a balanced soft nbd of Θ such

that (W ′, A)⊆̃(V,A).

(2) Let (U,A) be any convex soft nbd of Θ and let (V,A) = e
|δ̂|=1̄

δ̂(U,A). We shall

show that (V,A) is a convex soft set.
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Let x̃, ỹ∈̃δ̂(U,A). Then there exist x̃′, ỹ′∈̃(U,A) such that x̃ = δ̂x̃′, ỹ = δ̂ỹ′. Now
for any soft scalar α̂ with α̂(λ) ∈ [0, 1],

α̂x̃+ (1− α̂)ỹ = α̂δ̂x̃′ + (1− α̂)δ̂ỹ′ = δ̂(α̂x̃′ + (1− α̂)ỹ′)∈̃δ̂(U,A).

Thus δ̂(U,A) is convex soft set. Since arbitary elementary intersection of convex soft
sets is also convex, it follows that (V,A) is convex.

We now show that (V,A) is a soft nbd of Θ. By (1), there exists a balanced soft

nbd of Θ such that (W,A)⊆̃(U,A). Since (W,A) is balanced, δ̂(W,A) = (W,A) for

all soft scalar δ̂ with | δ̂ |= 1̄. Then, (W,A) = δ̂(W,A)⊆̃δ̂(U,A) for all soft scalar δ̂

with | δ̂ |= 1̄. Thus, (W,A)⊆̃ e
|δ̂|=1̄

δ̂(U,A) = (V,A). So (V,A) is a soft nbd of Θ and

(V,A)⊆̃(U,A).

Let | β̂ | ≤̃1̄, with β̂(λ) 6= 0, for each λ ∈ A or β̂ = 0̄. If β̂ = 0̄, β̂(V,A) = Θ⊂̃(V,A).

For | β̂ | ≤̃1̄ such that β̂(λ) 6= 0, for each λ ∈ A, β̂ can be expressed as β̂ = r̂γ̂ where

0̄<̃r̂≤̃1̄, | γ̂ |= 1̄. Since | δ̂γ̃ |= 1̄,

r̂γ̂(V,A) = e
|δ̂|=1̄

δ̂r̂γ̂(U,A) = e
|δ̂|=1̄

r̂δ̂(U,A).

Now, let ỹ∈̃r̂δ̂(U,A). Since δ̂(U,A) is convex soft set containing Θ, there exists

x̃∈̃δ̂(U,A) such that

ỹ = r̂x̃ = r̂x̃+ (1̄− r̂)Θ∈̃δ̂(U,A).

Then r̂δ̂(U,A)⊆̃δ̂(U,A). Therefore e
|δ̂|=1̄

r̂δ̂(U,A)⊆̃ e
|δ̂|=1̄

δ̂(U,A) = (V,A). So (V,A)

is a balanced soft set. Hence (U,A) contains a convex balanced soft nbd (V,A) of
Θ. �

Definition 4.8. Let (X̃, τ, A) be a soft topological vector space. A soft set (F,A) ∈
S(X̃) is said to be bounded soft set, if for any soft nbd (V,A) of Θ, there exists t̂ > 0̄
such that (F,A)⊆̃ŝ(V,A), for every ŝ≥̃t̂.

Definition 4.9. A soft nbd base at Θ in a soft topological vector space (X̃, τ, A) is
a collection F of soft nbds of Θ such that every soft nbd of Θ contains a member of
F .

Proposition 4.10. Let (V,A) be any bounded soft nbd of Θ and {δ̂n(>̃0̄)} be a
sequence of soft scalars tending to 0̄ as n → ∞. Then for any soft nbd (U,A) of

Θ, there exists a member δ̂n0(V,A), of {δ̂n(V,A)} such that δ̂n0(V,A)⊆̃(U,A) i.e.,

{δ̂n(V,A)} forms a soft nbd base at Θ.

Proof. Let (U,A) be a soft nbd of Θ. Since (V,A) is bounded, there exists α̂>̃0̄

such that (V,A)⊆̃β̂(U,A) for each β̂>̃α̂. Since δ̂n → 0̄, there exists n0 ∈ N such that
1̄
δ̂n
>̃α̂, for all n ≥ n0. Then, (V,A)⊆̃ 1̄

δ̂n
(U,A), for all n ≥ n0. Thus δ̂n0

(V,A)⊆̃(U,A).

So {δ̂n(V,A)} forms a soft nbd base at Θ. �
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5. Soft seminorm and soft normability

Definition 5.1. Let (X̃, A) be an absolute soft vector space of X over K. A

mapping p : SE(X̃) → R(A) is said to be a soft seminorm on (X̃, A), if it satisfies
the following axioms:

(SN1) p(x̃+ ỹ)≤̃p(x̃) + p(ỹ),

(SN2) p(α̂x̃) =| α̂ | p(x̃), for all x̃, ỹ∈̃(X̃, A), for each α̂∈̃(K̃, A).

Proposition 5.2. Let p be a soft seminorm on the absolute soft vector space (X̃, A).
Then

(1) If x̃ = Θ, then p(x̃) = 0̄,
(2) p(x̃− ỹ)≥̃ | p(x̃)− p(ỹ) |,
(3) p(x̃)≥̃0̄,

(4) If p(x̃) = 0̄ ⇒ x̃ = Θ, then p is a soft norm on (X̃, A).

Proof. (1) Follows from definition, taking α̂ = 0̄.
(2) Clearly, p(x̃) = p(x̃− ỹ+ ỹ)≤̃p(x̃− ỹ) + p(ỹ) Then, p(x̃)− p(ỹ)≤̃p(x̃− ỹ). On

one hand,
p(ỹ)− p(x̃)≤̃p(ỹ − x̃)

= p((−1̄)(x̃− ỹ))
=| −1̄ | p(x̃− ỹ)
= p(x̃− ỹ).

Thus, p(x̃− ỹ)≥̃ | p(x̃)− p(ỹ) |.
(3) By (1), p(x̃)≥̃ | p(x̃)− p(Θ) |=| p(x̃) | ≥̃0̄.
(4) It follows from (1) and (3). �

Theorem 5.3. (Decomposition Theorem) Every soft seminorm on a soft vector
space satisfies the following condition

(I) For ξ ∈ X and λ ∈ A, {[p(x̃)](λ) : x̃(λ) = ξ} is a singleton set.
And hence each soft seminorm p can be decomposed into a family of crisp seminorms
{pλ : λ ∈ A}, where pλ : X → R+ is defined by the following:

for each ξ ∈ X, pλ(ξ) = [p(x̃)](λ) with x̃∈̃(X̃, A) such that x̃(λ) = ξ.

Proof. Let µ ∈ A and x̃∈̃(X̃, A) be such that x̃(µ) = θ. Let us consider a soft
scalar α̂ such that α̂(µ) = 1 and α̂(λ) = 0, for each λ ∈ A \ {µ}. Then α̂ · x̃ = Θ.
By definition, p(α̂x̃) =| α̂ | p(x̃). Thus p(Θ) =| α̂ | p(x̃). Hence 0̄ =| α̂ | p(x̃). In
particular, 0 =| α̂(µ) | [p(x̃)](µ), i.e., 0 = 1 · [p(x̃)](µ). So, 0 = [p(x̃)](µ). Hence we

see that for any soft element x̃∈̃(X̃, A), x̃(µ) = θ implies that [p(x̃)](µ) = 0.

Next let ξ ∈ X and µ ∈ A be arbitrary. Let x̃, ỹ∈̃(X̃, A) be any two soft elements
such that x̃(µ) = ỹ(µ) = ξ. Then (x̃− ỹ)(µ) = θ. Thus, by the above argument, we
get [p(x̃− ỹ)](µ) = 0.

On one hand, by Proposition 5.2, | p(x̃)− p(ỹ) | ≤̃p(x̃− ỹ). In particular,
| [p(x̃)](µ)− [p(ỹ)](µ) | ≤̃[p(x̃− ỹ)](µ). Since [p(x̃− ỹ)](µ) = 0, we have
| [p(x̃)](µ)− [p(ỹ)](µ) |= 0. Thus [p(x̃)](µ) = [p(ỹ)](µ).
So, {[p(x̃)](λ) : x̃(λ) = ξ} is a singleton set. Hence the condition (I) is satisfied.

Now we prove the second part of the theorem.
Clearly, pλ : X → R+ is a rule that assign a vector of X to a non-negative real
number, for all λ ∈ A. Now for each λ ∈ A, the well defined property of pλ follows
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from condition (I) and the soft seminorm axioms gives the seminorm conditions of
pλ. Thus every soft seminorm gives a parametrized family of crisp seminorms. With
this point of view, it also follows that, a soft seminorm, is a ‘soft function’ as per
Definition 2.44. �

Proposition 5.4. Every parametrized family of crisp seminorm {pλ : λ ∈ A} on a
crisp linear space X can be considered as a soft seminorm on the soft vector space
(X̃, A).

Proof. Let (X̃, A) be the absolute soft vector space of X over a field K, where A be
a non-empty set of parameters and {pλ : λ ∈ A} be a family of crisp seminorms on

the vector space X. If x̃∈̃
(
X̃, A

)
, then x̃(λ) ∈ X, for each λ ∈ A. We define a soft

mapping p : SE(X̃)→ R(A)∗ by

p(x̃)(λ) = pλ(x̃(λ)), for each λ ∈ A and x̃∈̃
(
X̃, A

)
.

Let us show that p satisfies the conditions (SN1), (SN2) for soft seminorm.

(SN1) Let x̃, ỹ∈̃
(
X̃, A

)
. Then for each λ ∈ A,

[p(x̃+ ỹ)] (λ)
= pλ(x̃(λ) + ỹ(λ))
≤ pλ(x̃(λ)) + pλ(ỹ(λ)) [Since pλ is a seminorm, for each λ ∈ A]
= [p(x̃)] (λ) + [p(ỹ)] (λ).

Thus, p(x̃+ ỹ)≤̃p(x̃) + p(ỹ).

(SN2). Let x̃, ỹ∈̃(X̃, A), α̂∈̃(K̃, A). Then for each λ ∈ A,
[p(α̂x̃)] (λ)

= pλ((α̂x̃)(λ))
= pλ(α̂(λ)x̃(λ))
=| α̂(λ) | [p(x̃)] (λ) [Since pλ is a seminorm, for each λ ∈ A]
= [| α̂ | p(x̃)] (λ).

Thus p(α̂x̃) =| α̂ | p(x̃).

So p is a soft seminorm on(X̃, A). �

Proposition 5.5. Let p : SE(X̃)→ R(A) be a soft seminorm on (X̃, A). Then

(1) SS(B) is a soft subspace of the soft vector space (X̃, A), where
B = {x̃ : p(x̃) = 0̄},

(2) if B = {x̃ : p(x̃) <̃ 1̄}, then SS(B) is a convex, balanced and absorbing soft
set.

Proof. (1) Let x̃, ỹ∈̃SS(B) be any two soft elements and α̂, β̂ be any two soft scalars.
Let λ ∈ A. Since pλ is a seminorm,

[p(α̂x̃+ β̂ỹ)](λ) = pλ(α̂(λ)x̃(λ) + β̂(λ)ỹ(λ))

≤ α̂(λ)pλ(x̃(λ)) + β̂(λ)pλ(ỹ(λ))
= 0.

Then p(α̂x̃ + β̂ỹ) = 0̄. Thus α̂x̃ + β̂ỹ∈̃SS(B). So SS(B) is a soft subspace of the

soft vector space (X̃, A).
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(2) Let x̃, ỹ∈̃SS(B) be any two soft elements and t̂ be any soft real number with
t̂(λ) ∈ [0, 1], for all λ ∈ A. Let λ ∈ A. Since pλ is a seminorm,

[p(t̂x̃+ (1̄− t̂)ỹ)](λ) = pλ(t̂(λ)x̃(λ) + (1̄− t̂)(λ)ỹ(λ))
≤ t̂(λ)pλ(x̃(λ)) + (1− t̂(λ))pλ(ỹ(λ)
< t̂(λ) + (1− t̂(λ))
= 1.

Then t̂x̃+ (1̄− t̂)ỹ∈̃SS(B). Thus SS(B) is a convex soft set.
Similarly, it can be shown that SS(B) is balanced and absorbing soft set. �

Definition 5.6. Let (X̃, A) be an absolute soft vector space and (F,A) ∈ S(X̃)

be a convex absorbing soft set. Then a mapping µ(F,A) : SE(X̃) → R(A)∗, where
R(A)∗ is the set of all non-negative soft real numbers, defined by

[µ(F,A)(x̃)](λ) = inf{t > 0 : t−1(x̃(λ)) ∈ F (λ)}, for each λ ∈ A,

is called soft Minkowski functional associated with (F,A).

Proposition 5.7. Let (X̃, A) be an absolute soft vector space and p be a soft seni-

norm on (X̃, A). Then

(1) For any convex absorbing soft set (F,A) ∈ S(X̃) and any soft real number
t̂>̃0̄, µ(F,A)(t̂

−1x̃) = t̂−1µ(F,A)(x̃),
(2) Let (F,A) = SS(B), where B = {x̃ : 1̄>̃p(x̃)}. Then µ(F,A)(x̃) = p(x̃), for all

x̃∈̃(X̃, A).

Proof. (1) For each λ ∈ A and soft real number t̂>̃0̄,[
µ(F,A)(t̂

−1x̃)
]

(λ) = inf{s > 0 : s−1t̂−1(λ)x̃(λ) ∈ F (λ)}
= inf{t̂−1(λ)t̂(λ)s > 0 : s−1t̂−1(λ)x̃(λ) ∈ F (λ)}
= t̂−1(λ)inf{t̂(λ)s > 0 :

(
t̂(λ)s

)−1
x̃(λ) ∈ F (λ)}

= t̂−1(λ)inf{r > 0 : r−1x̃(λ) ∈ F (λ)}
= t̂−1(λ)

[
µ(F,A)(x̃)

]
(λ). Then, µ(F,A)(t̂

−1x̃) = t̂−1µ(F,A)(x̃).

(2) Choose λ ∈ A and x̃∈̃(X̃, A). Then[
µ(F,A)(x̃)

]
(λ) = inf{t > 0 : t−1(x̃(λ)) ∈ F (λ)}

= inf{t > 0 : pλ(t−1x̃(λ)) < 1}
= inf{t > 0 :

[
p(t̄−1x̃)

]
(λ) < 1}

= inf{t > 0 : t̄−1(λ) [p(x̃)] (λ) < 1}
= inf{t > 0 : [p(x̃)] (λ) < t}
= [p(x̃)] (λ).

Then µ(F,A)(x̃) = p(x̃), for all x̃∈̃(X̃, A). �

Proposition 5.8. Let (X̃, A) be an absolute soft vector space and (F,A) ∈ S(X̃) be

a convex absorbing soft set. Then for all x̃, ỹ∈̃(X̃, A),
(1) µ(F,A)(x̃+ ỹ)≤̃µ(F,A)(x̃) + µ(F,A)(ỹ),

(2) µ(F,A)(t̂x̃) = t̂µ(F,A)(x̃), t̂≥̃0̄,
(3) µ(F,A) is a soft seminorm, if (F,A) is a balanced soft set,
(4) If Bλ = {ξ = x̃(λ) ∈ X : [µ(F,A)(x̃)](λ) < 1} and Cλ = {η = x̃(λ) ∈ X :

[µ(F,A)(x̃)](λ) ≤ 1}, then Bλ ⊆ F (λ) ⊆ Cλ, for each λ ∈ A.
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If we define soft sets (B,A) and (C,A) such that B(λ) = Bλ and C(λ) = Cλ, for
each λ ∈ A, then (B,A)⊆̃(F,A)⊆̃(C,A) and for any x̃∈̃(B,A), µ(B,A)(x̃)<̃1̄ and for

any x̃∈̃(C,A), µ(F,A)(x̃)≤̃1̄.

Proof. Let
[
H(F,A)(x̃)

]
(λ) = {t > 0 : t−1x̃(λ) ∈ F (λ)}, for each λ ∈ A.

(1) Choose λ ∈ A and t > [µ(F,A)(x̃)](λ), s > [µ(F,A)(ỹ)](λ). Then

t > [µ(F,A)(x̃)](λ) = inf{u > 0 : u−1x̃(λ) ∈ F (λ)}.

Thus, there exists u
◦
> 0 such that t > u

◦
and u

◦−1x̃(λ) ∈ F (λ). Since (F,A) is
convex and absorbing soft set,

t−1x̃(λ) =
(
t−1u

◦
)
u

◦−1x̃(λ) +
(

1−
(
t−1u

◦
))

θ ∈ F (λ).

Similarly, s−1ỹ(λ) ∈ F (λ).
On one hand,

(t+ s)−1[x̃(λ) + ỹ(λ)]
=
[
(t+ s)−1x̃(λ)

]
+
[
(t+ s)−1ỹ(λ)

]
=
[
(t+ s)−1tt−1x̃(λ)

]
+
[
(t+ s)−1ss−1ỹ(λ)

]
= t

(t+s) t
−1x̃(λ) + s

(t+s)s
−1ỹ(λ)

= t
(t+s) t

−1x̃(λ) +
[
1− t

(t+s)

]
s−1ỹ(λ)

∈ F (λ) [Since t−1x̃(λ), s−1ỹ(λ) ∈ F (λ) and (F,A) is convex soft set].
So,

[
µ(F,A)(x̃+ ỹ)

]
(λ) ≤ t + s. Since t > [µ(F,A)(x̃)](λ) and s > [µ(F,A)(ỹ)](λ) are

arbitrary, we have[
µ(F,A)(x̃+ ỹ)

]
(λ) ≤

[
µ(F,A)(x̃)

]
(λ) +

[
µ(F,A)(ỹ)

]
(λ).

Since λ ∈ A is arbitrary, we have,

µ(F,A)(x̃+ ỹ)≤̃µ(F,A)(x̃) + µ(F,A)(ỹ).

(2) Let t̂≥̃0̄. Then t̂(λ)≥0, for all λ ∈ A.
If λ ∈ A such that t̂(λ)>0, then for s > 0,

s ∈
[
H(F,A)(t̂x̃)

]
(λ)

⇔ s−1(t̂x̃)(λ) ∈ F (λ)

⇔
(
st̂−1(λ)

)−1
x̃(λ) ∈ F (λ)

⇔ st̂−1(λ) ∈
[
H(F,A)(x̃)

]
(λ)

⇔ s ∈ t̂(λ)
[
H(F,A)(x̃)

]
(λ).

Thus,
[
H(F,A)(t̂x̃)

]
(λ) = t̂(λ)

[
H(F,A)(x̃)

]
(λ). So[

µ(F,A)(t̂x̃)
]

(λ) = inf
{[
H(F,A)(t̂x̃)

]
(λ)
}

= inf
{
t̂(λ)

[
H(F,A)(x̃)

]
(λ)
}

= t̂(λ)
[
µ(F,A)(x̃)

]
(λ).

Also, if t̂(λ) = 0, then[
µ(F,A)(t̂x̃)

]
(λ) = inf

{
s > 0 : s−1(t̂x̃)(λ) ∈ F (λ)

}
= inf

{
s > 0 : s−1θ ∈ F (λ)

}
= 0 [Since (F,A) is absorbing soft set and Θ∈̃(F,A)]
= t̂(λ)

[
µ(F,A)(x̃)

]
(λ).

So
[
µ(F,A)(t̂x̃)

]
(λ) = t̂(λ)

[
µ(F,A)(x̃)

]
(λ), for t̂(λ)≥0.
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Since λ ∈ A is arbitrary, we have,[
µ(F,A)(t̂x̃)

]
(λ) = t̂(λ)

[
µ(F,A)(x̃)

]
(λ),

for all λ ∈ A. Hence (2) is proved.
(3) Let α̂ be any scalar and λ ∈ A. Then either α̂(λ) 6= 0 or α̂(λ) = 0.
If α̂(λ) = 0, then[

µ(F,A)(α̂x̃)
]

(λ) = inf
{
s > 0 : s−1(α̂x̃)(λ) ∈ F (λ)

}
= inf

{
s > 0 : s−1θ ∈ F (λ)

}
= 0 [Since (F,A) is absorbing soft set and Θ∈̃(F,A)]
= α̂(λ).

[
µ(F,A)(x̃)

]
(λ).

If α̂(λ) 6= 0, then[
µ(F,A)(α̂x̃)

]
(λ) = inf

{
s > 0 : s−1(α̂x̃)(λ) ∈ F (λ)

}
= inf

{
s > 0 : s−1 | α̂(λ) | α̂(λ)

|α̂(λ)| x̃(λ) ∈ F (λ)
}

= inf
{
s > 0 : s−1 | α̂(λ) | x̃(λ) ∈ F (λ)

}
[Since | α̂(λ)

|α̂(λ)| |= 1

and (F,A) is balanced implies that α̂(λ)
|α̂(λ)|F (λ) = F (λ) ]

= inf
{
s > 0 :

(
s | α̂(λ) |−1

)−1
x̃(λ) ∈ F (λ)

}
=| α̂(λ) | inf

{
s > 0 : s−1x̃(λ) ∈ F (λ)

}
=| α̂(λ) |

[
µ(F,A)(x̃)

]
(λ).

Thus
[
µ(F,A)(α̂x̃)

]
(λ) = α̂(λ).

[
µ(F,A)(x̃)

]
(λ). Since λ ∈ A is arbitrary, we have,

µ(F,A)(α̂x̃) =| α̂ | µ(F,A)(x̃). So (3) is proved.

(4) Let ξ ∈ Bλ. Then there exists x̃∈̃(X̃, A) such that x̃(λ) = ξ and
[
µ(F,A)(x̃)

]
(λ) <

1. Thus, there exists t > 0 such that
[
µ(F,A)(x̃)

]
(λ) < t < 1. So approaching as

in (1), t
−1

x̃(λ) ∈ F (λ). Since 1 > t and F (λ) is absorbing, 1.x̃(λ) ∈ F (λ). Hence
x̃(λ) = ξ ∈ F (λ). Therefore Bλ ⊂ F (λ).

Next let η ∈ F (λ). Then there exists ỹ∈̃(X̃, A) such that ỹ(λ) = η and ỹ(λ) ∈
F (λ). Thus, 1.ỹ(λ) ∈ F (λ) and this imlpies that

[
µ(F,A)(ỹ)

]
(λ) ≤ 1. So ỹ(λ) ∈ Cλ.

Hence F (λ) ⊂ Cλ. Since λ ∈ A is arbitrary, Bλ ⊂ F (λ) ⊂ Cλ, for each λ ∈ A.
Therefore if we define soft sets (B,A) and (C,A) such that (B,A)(λ) = Bλ and
(C,A)(λ) = Cλ, for each λ ∈ A, then (B,A)⊆̃(F,A)⊆̃(C,A).

Again, x̃∈̃(B,A) implies that for all λ ∈ A, x̃(λ) ∈ Bλ = B(λ). Then, by
definition, µ(F,A)(x̃)<̃1̄.

Similarly, for any x̃∈̃(C,A), µ(F,A)(x̃)≤̃1̄. �

Proposition 5.9. Let (X̃, A) be an absolute soft vector space, (F,A) ∈ S(X̃) be a
convex absorbing soft set and µ(F,A) be the soft Minkowski functional associated with
(F,A). Then for any r̂>̃0̄, (W,A) = r̂ · (V,A), where (W,A) = SS{x̃ : µ(F,A)(x̃)<̃r̂}
and (V,A) = SS{x̃ : µ(F,A)(x̃)<̃1̄}.

Proof. Choose λ ∈ A and ξ ∈W (λ). Then there exists x̃∈̃(W,A) such that µ(F,A)(x̃)<̃r̂

and x̃(λ) = ξ. Thus µ(F,A)(
r̂·x̃
r̂ )<̃r̂. By Proposition 5.8 (2), r̂µ(F,A)(

x̃
r̂ )<̃r̂.

So µ(F,A)(
x̃
r̂ )<̃ r̂

r̂ = 1̄. Hence x̃
r̂ ∈̃(V,A), i.e., x̃∈̃r̂ · (V,A). Therefore x̃(λ) ∈ r̂(λ)V (λ),

for all λ ∈ A. In particular, ξ ∈ r̂(λ)V (λ) and thus W (λ) ⊆ r̂(λ)V (λ).
Since λ ∈ A is arbitrary, (W,A)⊆̃r̂ · (V,A).

Reverse inclusion is similar. Hence, (W,A) = r̂ · (V,A). �
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Definition 5.10. Let (X̃, τ, A) be a soft topological vector space. Then (X̃, τ, A)

is said to be soft normable, if there exists a soft norm on (X̃, A) such that the soft

topology on (X̃, A) is the soft metric topology induced from the soft norm. In that
case τ is said to be the soft topology induced by the soft norm.

Definition 5.11. A soft topological vector space (X̃, τ, A) is said to satisfy the

property (∗), if for any r̂(>̃0̄)∈̃(K̃, A) and for any bounded soft nbd (V,A) of Θ,
er̂(V,A) = Θ.

Proposition 5.12. A soft topological vector space (X̃, τ, A) with the property (∗) as
in Definition 5.11, is soft normable iff there is a bounded convex soft nbd of Θ.

Proof. Let (X̃, τ, A) be a soft topological vector space which satisfies the property

(∗) and normable. Then there exists a soft norm ‖ · ‖ on (X̃, A) such that the
induced soft topology from ‖ · ‖ coincides with the topology of the soft topological

vector space (X̃, τ, A). Then the soft open ball SS(B(Θ, 1̄)) will be a bounded
soft open set. By Proposition 2.36, SS(B(Θ, 1̄)) convex soft set containing Θ. Since
SS(B(Θ, 1̄)) is soft open, it is a nbd of Θ.

Conversely, suppose that (X̃, τ, A) is a soft topological vector space with the
property that there is a bounded convex soft nbd (U,A) of Θ. By Proposition 4.7,
(U,A) contains a balanced convex soft nbd (V,A) of Θ. Clearly (V,A) is bounded
as (U,A) is so. Then the soft Minkowski functional µ(V,A) associated with (V,A) is
a soft seminorm by Proposition 5.8. Since er̂(V,A) = Θ, if x̃ 6= Θ, then there exists

r̂0>̃0̄ such that x̃ /̃∈r̂0(V,A), i.e., r̂−1
0 x̃ /̃∈(V,A).

Now µ(V,A)(r̂
−1
0 x̃)<̃1̄ implies r̂−1

0 x̃∈̃(V,A). Then there exists λ ∈ A such that[
µ(V,A)(r̂

−1
0 x̃)

]
(λ) ≥ 1. Thus, r̂−1

0 (λ)
[
µ(V,A)(x̃)

]
(λ) ≥ 1. So

[
µ(V,A)(x̃)

]
(λ) ≥

r̂0(λ) > 0. Hence x̃ 6= Θ implies that µ(V,A)(x̃) 6= 0̄. This shows that µ(V,A) is a soft

norm on (X̃, A).
Let µ(V,A)(x̃) =‖ x̃ ‖ and let (W,A) = SS{x̃ : µ(V,A)(x̃)<̃1̄}. Taking x̃ be

such that µ(V,A)(x̃)<̃1̄. Then x̃∈̃(V,A). Thus {x̃ : µ(V,A)(x̃)<̃1̄} ⊆ SE(V,A). So

SS{x̃ : µ(V,A)(x̃)<̃1̄}⊆̃SS(SE(V,A)). Hence (W,A)⊆̃(V,A).
Conversely, suppose x̃∈̃(V,A). By continuity of scalar multiplication, we can say

that there exists t̂>̃0̄ such that 1̄>̃t̂ and t̂−1x̃∈̃(V,A). Then, by Proposition 5.8 (4),
µ(V,A)(t̂

−1x̃)≤̃1̄. Thus, t̂−1µ(V,A)(x̃)≤̃1̄. So µ(V,A)(x̃)≤̃t̂<̃ 1̄. Hence x̃∈̃(W,A). There-
fore (V,A) = (W,A).

Further, since (V,A) is bounded, {r̂(V,A) : r̂>̃0̄} will form a soft nbd base of Θ.
Then, by Proposition 5.9,

r̂(V,A) = r̂(W,A) = SS{x̃ : µ(V,A)(x̃)<̃r̂} = SS{x̃ :‖ x̃ ‖ <̃r̂}.
Thus the soft topology induced by ‖ . ‖ coincides with the soft topology of the soft

topological vector space (X̃, τ, A). �

6. Conclusion

In this paper, we introduce soft topological vector space, soft semi-norm, soft
Minkowski functional and study some basic properties of those concepts. Also, we
study the problem of soft normability of soft topological vector spaces. There is an
ample scope for further research on many problems such as the problems of finite
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dimensionality, metrizability, open mapping theorem, closed graph theorem etc. in
soft topological vector spaces.
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