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Abstract. The notion of lacunary ideal convergence in intuitionistic
fuzzy normed linear space (IFNLS) was introduced by the present corre-
sponding author [P. Debnath, Lacunary ideal convergence in intuitionistic
fuzzy normed linear spaces, Comput. Math. Appl., 63 (2012), 708-715] and
an open problem in that paper was whether every lacunary I-convergent
sequence is lacunary I-Cauchy. Further, a new concept of convergence of
sequences in an intuitionistic fuzzy n-normed linear space (IFnNLS) was
given in [M. Sen, P. Debnath, Lacunary statistical convergence in intu-
itionistic fuzzy n-normed linear spaces, Math. Comput. Modelling, 54
(2011), 2978-2985]. With the help of this new definition of convergence,
the main aim of this paper is to introduce the concept of Iλ-convergence in
an IFnNLS, where I is an ideal of a family of subsets of positive integers N.
We also define Iλ-limit points and Iλ-cluster points and establish relations
between them. Finally we introduce the notion of Iλ-Cauchy sequence in
IFnNLS. We improve and extend some existing results and give a positive
answer to the open problem mentioned above in the setting of an IFnNLS.
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1. Introduction

Many problems that we study in analysis are concerned with large classes of
objects most of which turn out to be vector spaces or linear spaces. Since limit
process is indispensable in such problems, a metric or topology may be induced in
those classes. If the induced metric satisfies the translation invariance property, a
norm can be defined in that linear space and we get a structure of the space which is
compatible with that metric or topology. The resulting structure is a normed linear
space. There are situations where crisp norm can not measure the length of a vector
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accurately and in such cases the notion of fuzzy norm happens to be useful. There
has been a systematic development of fuzzy normed linear spaces (FNLSs) and one
of the important development over FNLS is the notion of intuitionistic fuzzy normed
linear space (IFNLS). The study of analytic propertis of IFNLSs, their topological
structure and generalizations, therefore, remain well motivated areas of research.

The idea of a fuzzy norm on a linear space was introduced by Katsaras [23] in 1984.
In 1992, Felbin [16] introduced the idea of a fuzzy norm whose associated metric is of
Kaleva and Seikkala [20] type. In 1994, Cheng and Mordeson [6] introduced another
notion of fuzzy norm on a linear space whose associated metric is Kramosil and
Michalek [26] type. Again in 2003, following Cheng and Mordeson, one more notion
of fuzzy normed linear space was given by Bag and Samanta [3].

The notion of intuitionistic fuzzy set (IFS) introduced by Atanassov [2] has trig-
gered some debate (for details, see [4, 13, 17]) regarding the use of the terminology
“intuitionistic” and the term is considered to be a misnomer on the following ac-
count:

• The algebraic structure of IFSs is not intuitionistic, since negation is invo-
lutive in IFS theory.
• Intuitionistic logic obeys the law of contradiction, IFSs do not.

Also IFSs are considered to be equivalent to interval-valued fuzzy sets and they are
particular cases of L-fuzzy sets. In response to this debate, Atanassov justified the
terminology in [1]. Apart from the terminological issues, research in intuitionistic
fuzzy setting remains well motivated as IFSs give us a very natural tool for modeling
imprecision in real life situations which can not be handled with fuzzy set theory
alone and also IFS found its application in various areas of science and engineering.

In 2006, with the help of arbitrary continuous t-norm and continuous t-conorm,
Saadati and Park [31] introduced the concept of IFNLS. There has been further
development over IFNLS, e.g., the topological structure of an intuitionistic fuzzy
2-normed space has been studied by Mursaleen and Lohani in [29]. Further, gener-
alizing the idea of Saadati and Park, an intuitionistic fuzzy n-normed linear space
(IFnNLS) has been defined by Vijayabalaji et al. [38] in 2007. Some more recent
work in similar context can be found in [5, 7, 9, 10, 11, 12, 14, 30, 32, 37].

The idea of statistical convergence was first introduced by Steinhaus [36] and
Fast [15]. Karakus [21] studied statistical convergence on probabilistic normed
spaces. Then Karakus et al. [22] generalized it on IFNLSs. The notion of I-
convergence was initially introduced by Kostyrko et.al [24] as a generalization of
statistical convergence which is based on the structure of the ideal I of subsets of
natural numbers N. Further, Kostyrko et.al [25] gave some of basic properties of
I-convergence and deal with external I-limit points. Later on, Esi and Hazarika [14]
introduced the concept of λ-ideal convergence in intuitionistic fuzzy 2-normed space.
Recently Hazarika, Kumar and Guillén [19] studied another generalized ideal con-
vergence in IFNLS.

An unambiguous new definition of convergence of sequences in IFnNLS was given
in [34, 35] which is different from [38], and the notion of lacunary ideal convergence
in IFNS was introduced in [8]. Combining these, we extend our work to introduce
and study the notion of Iλ-convergence in an IFnNLS.
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2. Preliminaries

First we collect some preliminaries to be used in this paper. Throughout the
paper N and R denote the set of natural numbers and real numbers respectively.

Definition 2.1 ([18]). Let n ∈ N and X be a real linear space of dimension d ≥ n
(d may be infinite). A real valued function ‖.‖ on X ×X × · · · ×X︸ ︷︷ ︸

n

= Xn is called

an n-norm on X, if it satisfies the following properties:
(i) ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly dependent,
(ii) ‖x1, x2, . . . , xn‖ is invariant under any permutation,
(iii) ‖x1, x2, . . . , αxn‖ = |α|‖x1, x2, . . . , xn‖ for any α ∈ R,
(iv) ‖x1, x2, . . . , xn−1, y + z‖ ≤ ‖x1, x2, . . . , xn−1, y‖+ ‖x1, x2, . . . , xn−1, z‖,

and the pair (X, ‖.‖) is called an n-normed linear space.

Definition 2.2 ([38]). An IFnNLS is the five-tuple (X,µ, ν, ∗, ◦), where X is a linear
space over a field F , ∗ is a continuous t-norm, ◦ is a continuous t-conorm, µ, ν are
fuzzy sets on Xn × (0,∞), µ denotes the degree of membership and ν denotes the
degree of non-membership of (x1, x2, . . . , xn, t) ∈ Xn× (0, 1) satisfying the following
conditions for every (x1, x2, . . . , xn) ∈ Xn and s, t > 0:

(i) µ(x1, x2, . . . , xn, t) + ν(x1, x2, . . . , xn, t) ≤ 1,
(ii) µ(x1, x2, . . . , xn, t) > 0,

(iii) µ(x1, x2, . . . , xn, t) = 1 if and only if x1, x2, . . . , xn are linearly dependent,
(iv) µ(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn,
(v) µ(x1, x2, . . . , cxn, t) = µ(x1, x2, . . . , xn,

t
|c| ) if c 6= 0, c ∈ F ,

(vi) µ(x1, x2, . . . , xn, s) ∗ µ(x1, x2, . . . , x
′

n, t) ≤ µ(x1, x2, . . . , xn + x
′

n, s+ t),
(vii) µ(x1, x2, . . . , xn, t) : (0,∞)→ [0, 1] is continuous in t,

(viii) limt→∞ µ(x1, x2, . . . , xn, t) = 1 and limt→0 µ(x1, x2, . . . , xn, t) = 0,
(ix) ν(x1, x2, . . . , xn, t) < 1,
(x) ν(x1, x2, . . . , xn, t) = 0 if and only if x1, x2, . . . , xn are linearly dependent,
(xi) ν(x1, x2, . . . , xn, t) is invariant under any permutation of x1, x2, . . . , xn,
(xii) ν(x1, x2, . . . , cxn, t) = ν(x1, x2, . . . , xn,

t
|c| ) if c 6= 0, c ∈ F ,

(xiii) ν(x1, x2, . . . , xn, s) ◦ ν(x1, x2, . . . , x
′

n, t) ≥ ν(x1, x2, . . . , xn + x
′

n, s+ t),
(xiv) ν(x1, x2, . . . , xn, t) : (0,∞)→ [0, 1] is continuous in t,
(xv) limt→∞ ν(x1, x2, . . . , xn, t) = 0 and limt→0 ν(x1, x2, . . . , xn, t) = 1.

Example 2.3 ([34]). Let (X, ‖.‖) be an n-normed linear space. Also let a ∗ b = ab
and a ◦ b = min{a+ b, 1} for all a, b ∈ [0, 1], µ(x1, x2, . . . , xn, t) = t

t+‖x1,x2,...,xn‖ and

ν(x1, x2, . . . , xn, t) = ‖x1,x2,...,xn‖
t+‖x1,x2,...,xn‖ . Then (X,µ, ν, ∗, ◦) is an IFnNLS.

Definition 2.4 ([34]). Let (X,µ, ν, ∗, ◦) be an IFnNLS. We say that a sequence
x = {xk} in X is convergent to l ∈ X with respect to the intuitionistic fuzzy n-norm
(µ, ν)n if, for every ε > 0, t > 0 and y1, y2, . . . , yn−1 ∈ X, there exists k0 ∈ N such
that µ(y1, y2, . . . , yn−1, xk − L, t) > 1− ε and ν(y1, y2, . . . , yn−1, xk − l, t) < ε for all

k ≥ k0. It is denoted by (µ, ν)n − limx = l or xk
(µ,ν)n→ l as k →∞.
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Definition 2.5 ([12]). Let (X,µ, ν, ∗, ◦) be an IFnNLS. For t > 0, we define an
open ball B(x, r, t) with center at x ∈ X, radius 0 < r < 1 and y1, y2, . . . , yn−1 ∈ X
as

B(x, r, t) =
{y ∈ X : µ(y1, y2, . . . , yn−1, y − x, t) > 1− r and ν(y1, y2, . . . , yn−1, y − x, t) < r}.

Definition 2.6 ([34]). Let (X,µ, ν, ∗, ◦) be an IFnNLS. Then the sequence x = {xk}
in X is called a Cauchy sequence with respect to the intuitionistic fuzzy n-norm
(µ, ν)n if, for every ε > 0, t > 0 and y1, y2, . . . , yn−1 ∈ X, there exists k0 ∈ N such
that µ(y1, y2, . . . , yn−1, xk −xm, t) > 1− ε and ν(y1, y2, . . . , yn−1, xk −xm, t) < ε for
all k,m ≥ k0.

Definition 2.7 ([24]). Let X be a non-empty set. Then a family of sets I ⊂ P (X)
is called an ideal in X, if

(i) ∅ ∈ I,
(ii) A,B ∈ I implies A ∪B ∈ I,
(iii) for each A ∈ I and B ⊂ A we have B ∈ I,

where P (X) is the power set of X.

Definition 2.8 ([24]). Let X be a non-empty set. Then a non-empty family of sets
F ⊂ P (X) is called a filter on X, if

(i) ∅ /∈ F ,
(ii) A,B ∈ F implies A ∩B ∈ F ,
(iii) for each A ∈ F and B ⊃ A, we have B ∈ F .
An ideal I is called non-trivial, if I 6= ∅ and X /∈ I. A non-trivial ideal I ⊂ P (X)

is called an admissible ideal in X, if it contains all singletons, i.e., it contains {{x} :
x ∈ X}.

Definition 2.9 ([36]). If K is a subset of N, the set of natural numbers, then the
natural density of K, denoted by δ(K), is given by

δ(K) = lim
n→∞

1

n
|{k ≤ n : k ∈ K}| ,

whenever the limit exists, where |A| denotes the cardinality of the set A.

Definition 2.10 ([27]). Let λ = (λn) be a non-decreasing sequence of positive
numbers tending to infinity such that λn+1 ≤ λn + 1, λ1 = 1. The generalized la
Vallée-Poussin mean is defined by

tn(x) =
1

λn

∑
k∈Jn

(xk),

where Jn = [n− λn + 1, n]. A sequence x = (xk) is said to be (v, λ)-summable to a
number l if tn(x) −→ l as n −→ ∞. If λn = n, then (V, λ)-summability reduces to
(C, 1)-summability.

Definition 2.11 ([28]). A sequence x = (xk) is said to be λ-statistically convergent
to the number l if for every ε > 0,

lim
n−→∞

1

λn
|{k ∈ Jn : |xk − l| ≥ ε}| = 0.
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Let Sλ denote the set of all λ-statistically convergent sequences. If λn = n, then Sλ
is the same as S.

Definition 2.12 ([33]). Let I ⊂ 2N be a non-trivial ideal. A sequence x = (xk) is
said to be I − [V, λ]-summability to a number l if, for every ε > 0

{n ∈ N :
1

λn

∑
k∈Jn

|xk − l| ≥ ε} ∈ I.

Through out the paper, we denote by I as admissible ideal of subsets of N and
λ = (λn) is a sequence as defined in Definition 2.9.

3. Main Results

Now we discuss our main results.

Definition 3.1. Let I ⊂ 2N and let (X,µ, ν, ∗, ◦) be an IFnNLS. A sequence x =
{xk} in X is said to be Iλ- convergent to l ∈ X with respect to the intuitionistic
fuzzy n-norm (µ, ν)n if, for every ε > 0, t > 0 and y1, y2, . . . , yn−1 ∈ X, we have

{n ∈ N :
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l, t) ≤ 1− ε

or
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l, t) ≥ ε} ∈ I.

In this case, l is called the Iλ- limit of the sequence x = (xk) and we write I
(µ,ν)n

λ −
limx = l.

Example 3.2. Let (R, | · |) denote the space of all real numbers with the usual
n-norm and let a ∗ b = ab and a ◦ b = min{a + b, 1} for all a, b ∈ [0, 1]. For all
x1, x2, . . . , xn−1 ∈ R and every t > 0 consider µ(x1, x2, . . . , xn, t) = t

t+|x1,x2,...,xn|

and ν(x1, x2, . . . , xn, t) = |x1,x2,...,xn|
t+|x1,x2,...,xn| . Then (R, µ, ν, ∗, ◦) is an IFnNLS. If we take

I = {A ⊂ N : δ(A) = 0}, where δ(A) denote natural density of the set A, then I is
non trivial admissible ideal. Define a sequence x = (xk) as follows:

xk =

{
1, if k = i2, i ∈ N
0, otherwise.

Then for every ε ∈ (0, 1), for any t > 0 and y1, y2, . . . , yn−1 ∈ X, the set

K(ε, t) = {n ∈ N :
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk, t) ≤ 1− ε

or
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk, t) ≥ ε}

will be a finite set. Thus δ(K(ε, t)) = 0. So K(ε, t) ∈ I, i.e.,I
(µ,ν)n

λ − limx = 0.

Lemma 3.3. Let (X,µ, ν, ∗, ◦) be an IFnNLS and let x = (xk) be a sequence in X.
Then for every ε ∈ (0, 1), t > 0 and y1, y2, . . . , yn−1 ∈ X the following statements
are equivalent:
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(1) I
(µ,ν)n

λ − limx = l.
(2) {n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) ≤ 1− ε} ∈ I

and {n ∈ N : 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) ≥ ε} ∈ I.

(3) {n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

and 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) < ε} ∈ F (I).

(3) {n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε} ∈ F (I)

and {n ∈ N : 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) < ε} ∈ F (I).

(4) Iλ − limµ(y1, y2, . . . , yn−1, xk − l, t) = 1
and Iλ − lim ν(y1, y2, . . . , yn−1, xk − l, t) = 0.

Theorem 3.4. Let (X,µ, ν, ∗, ◦) be an IFnNLS. If a sequence x = (xk) in X is
Iλ-convergent to l ∈ X with respect to the intuitionistic fuzzy n-norm (µ, ν), then

I
(µ,ν)n

λ − limx is unique.

Proof. If possible suppose, I
(µ,ν)n

λ − limx = l1 and I
(µ,ν)n

λ − limx = l2. For a fixed
ε ∈ (0, 1), choose γ ∈ (0, 1) such that (1− γ) ∗ (1− γ) > 1− ε and γ ◦ γ < ε. Then
for any t > 0 and y1, y2, . . . , yn−1 ∈ X define the following sets:

Kµ,1(γ, t) = {n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l1, t2 ) ≤ 1− γ},

Kµ,2(γ, t) = {n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l2, t2 ) ≤ 1− γ},

Kν,1(γ, t) = {n ∈ N : 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l1, t2 ) ≥ γ},

Kν,2(γ, t) = {n ∈ N : 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l2, t2 ) ≥ γ}.

Now I
(µ,ν)n

λ − limx = l1 implies that (using Lemma 3.3) Kµ,1(γ, t) ∈ I
and Kν,1(γ, t) ∈ I for all t > 0. Also using I

(µ,ν)n

λ − limx = l2, we get Kµ,2(γ, t) ∈
I and Kν,2(γ, t) ∈ I for all t > 0.

Again suppose Kµ,ν(γ, t) = (Kµ,1(γ, t) ∪ Kµ,2(γ, t)) ∩ (Kν,1(γ, t) ∪ Kν,2(γ, t)).
Then Kµ,ν(γ, t) ∈ I. This implies that its complement KC

µ,ν(γ, t) is a non-empty set

in F (I). If we take n ∈ KC
µ,ν(γ, t), first consider the case n ∈ (KC

µ,1(γ, t)∩KC
µ,2(γ, t)).

Then we have

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l1,
t

2
) > 1− γ

and
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l2,
t

2
) > 1− γ.

Clearly, we will get a p ∈ N such that

µ(y1, y2, . . . , yn−1, xp − l1,
t

2
)

>
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l1,
t

2
)

> 1− γ
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and

µ(y1, y2, . . . , yn−1, xp − l2,
t

2
)

>
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l2,
t

2
)

> 1− γ.

(e.g., consider max{µ(y1, y2, . . . , yn−1, xk − l1, t2 ), µ(y1, y2, . . . , yn−1, xk − l2, t2 )
: k ∈ Jn} and choose that k as p for which the maximum occurs).
Then we have

µ(y1, y2, . . . , yn−1, l1 − l2, t)

≥ µ(y1, y2, . . . , yn−1, xp − l1,
t

2
) ∗ µ(y1, y2, . . . , yn−1, xp − l2,

t

2
)

> (1− γ) ∗ (1− γ)

> 1− ε.

Since ε > 0 is arbitrary, we have µ(y1, y2, . . . , yn−1, l1− l2, t) = 1 for all t > 0, which
implies that l1 = l2.

Again if n ∈ (KC
ν,1(r, t) ∩ KC

ν,2(r, t)), then using a similar technique it can be
proved that

ν(y1, y2, . . . , yn−1, l1 − l2, t) < ε,

for all t > 0 and arbitrary ε > 0. Thus l1 = l2. This proves that I
(µ,ν)n

λ − limx is
unique. �

The following result shows that the collection of all ideal convergence sequences
in an IFnNLS is closed under addition and scalar multiplication.

Theorem 3.5. Let X be an IFnNLS. Then
(1) If I

(µ,ν)n

λ −limx = l1 and I
(µ,ν)n

λ −lim y = l2, then I
(µ,ν)n

λ −lim(x+y) = l1+l2.

(2) If I
(µ,ν)n

λ − limx = l and α ∈ R, then I(µ,ν)
n

λ − limαx = αl.

(3) If I
(µ,ν)n

λ −limx = l1 and I
(µ,ν)n

λ −lim y = l2, then I
(µ,ν)n

λ −lim(x−y) = l1−l2.

Proof. (1) For a given ε > 0, choose γ > 0 such that (1− γ) ∗ (1− γ) > 1− ε. Now
for any t > 0, we define the following sets:

Kµ,1(γ, t) = {k ∈ N : µ(y1, y2, . . . , yn−1, xk − l1,
t

2
) > 1− γ}

and

Kµ,2(γ, t) = {k ∈ N : µ(y1, y2, . . . , yn−1, yk − l2,
t

2
) > 1− γ}.

Since I
(µ,ν)n

λ − limx = l, clearly Kµ,1(γ, t) ∈ F (I). Similarly, Kµ,2(γ, t) ∈ F (I). Let
Kµ(γ, t) = Kµ,1(γ, t) ∩Kµ,2(γ, t). Then Kµ(γ, t) ∈ F (I). Now if k ∈ Kµ(γ, t), we

97



N. Konwar, P. Debnath/Ann. Fuzzy Math. Inform. 13 (2017), No. 1, 91–107

have

µ(y1, y2, . . . , yn−1, xk + yk − (l1 + l2), t)

≥ µ(y1, y2, . . . , yn−1, xk − l,
t

2
) ∗ µ(y1, y2, . . . , yn−1, yk − l2,

t

2
)

> (1− γ) ∗ (1− γ)

> 1− ε.

This shows that {k ∈ In : µ(y1, y2, . . . , yn−1, xk +yk− (l1 + l2), t) ≤ 1− ε} ∈ I. Thus

I
(µ,ν)n

λ − lim(x+ y) = l1 + l2.

(2) Let α = 0. Then for every r > 0, t > 0, y1, y2, . . . , yn−1 ∈ X, there exists
n0 = 1 such that

µ(y1, y2, . . . , yn−1, 0xk − 0l, t) = 1 > 1− r

and

ν(y1, y2, . . . , yn−1, 0xk − 0l, t) = 0 < r,

for all k ≥ n0. Thus (µ, ν)λ − lim 0x = 0l. This implies that I
(µ,ν)n

λ − lim 0x = 0l.
Now let α(6= 0) ∈ R and let

Kn(ε, t) = {k ∈ N : µ(y1, y2, . . . , yn−1, xk − l,
t

|α|
) > 1− ε}.

Since I
(µ,ν)n

λ − limx = l, we have Kn(ε, t) ∈ F (I). Now if k ∈ Kn(ε, t), then

µ(y1, y2, . . . , yn−1, αxk − αl, t) = µ(y1, y2, . . . , yn−1, xk − l,
t

|α|
) > 1− ε.

Thus {k ∈ In : µ(y1, y2, . . . , yn−1, αxk−αl, t) ≤ 1−ε} ∈ I. So I
(µ,ν)n

λ − limαx = αl.
(3) The proof follows from (1) and (2). �

Theorem 3.6. Let (X,µ, ν, ∗, ◦) be an IFnNLS and let x = (xk) be a sequence in X.

Let I be a non trivial ideal in N. If there is a I
(µ,ν)n

λ -convergent sequence y = (yk)

in X such that {n ∈ N : yk 6= xk, k ∈ Jn} ∈ I, then x is also I
(µ,ν)n

λ -convergent to
the same limit.

Proof. Suppose that {k ∈ N : yk 6= xk} ∈ I and I
(µ,ν)n

λ − y = l. Then for every
ε ∈ (0, 1), t > 0 and y1, y2, . . . , yn−1 ∈ X, we have

{n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, yk − l, t) ≤ 1− ε
or 1

λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, yk − l, t) ≥ ε} ∈ I.

For every 0 < ε < 1, t > 0 and y1, y2, . . . , yn−1 ∈ X, we have
{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) ≤ 1− ε

or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) ≥ ε}

⊆ {n ∈ N : yk 6= xk, for some k ∈ Jn}
∪{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, yk − l, t) ≤ 1− ε
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or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, yk − l, t) ≥ ε}.

As both the right-hand side member of the above equation are in I, we have

{n ∈ N :
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l, t) ≤ 1− ε

or
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l, t) ≥ ε} ∈ I.

Thus x is I
(µ,ν)n

λ -convergent. �

4. Lambda-convergence in IFnNLS

In this section, we introduce the concept of λ-convergence in IFnNLS and establish
its relation with Iλ-convergence.

Definition 4.1. Let (X,µ, ν, ∗, ◦) be an IFnNLS. A sequence x = {xk} in X is
λ-convergent to l ∈ X with respect to the intuitionistic fuzzy n-norm (µ, ν)n, if for
every t > 0, ε ∈ (0, 1) and y1, y2, . . . , yn−1 ∈ X, there exists n0 ∈ N such that

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk−l, t) > 1−ε and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk−l, t) < ε

for all n ≥ n0. In this case, we write (µ, ν)nλ − limx = l.

Theorem 4.2. Let (X,µ, ν, ∗, ◦) be an IFnNLS and x = {xk} be a sequence in X.
If x = {xk} is λ-convergent with respect to the intuitionistic fuzzy n-norm (µ, ν)n,
then (µ, ν)nλ − limx is unique.

Proof. Let (µ, ν)nλ − limx = l1 and (µ, ν)nλ − limx = l2 (l1 6= l2). For a fixed ε > 0,
choose γ ∈ (0, 1) such that (1 − γ) ∗ (1 − γ) > 1 − ε and γ ◦ γ < ε. Now, for every
t > 0, y1, y2, . . . , yn−1 ∈ X there exists n1 ∈ N such that

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l1, t) > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l1, t) < ε,

for all n ≥ n1. Also there exists n2 ∈ N such that

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l2, t) > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l2, t) < ε,

for all n ≥ n2.
Consider n0 = max{n1, n2}. Then for n ≥ n0, we will get a p ∈ N such that
µ(y1, y2, . . . , yn−1, xp − l1, t2 ) > 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l1, t2 )

> 1− γ
and
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µ(y1, y2, . . . , yn−1, xp − l2, t2 ) > 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l2, t2 )

> 1− γ.
Thus we have

µ(y1, y2, . . . , yn−1, l1 − l2, t)

≥ µ(y1, y2, . . . , yn−1, xp − l1,
t

2
) ∗ µ(y1, y2, . . . , yn−1, xp − l2,

t

2
)

> (1− γ) ∗ (1− γ)

> 1− ε.

Since ε > 0 is arbitrary, we have µ(y1, y2, . . . , yn−1, l1− l2, t) = 1 for all t > 0, which
implies that l1 = l2. By using similar technique, it can be proved that

ν(y1, y2, . . . , yn−1, l1 − l2, t) < ε,

for all t > 0 and arbitrary ε > 0. So l1 = l2. Hence (µ, ν)nλ − limx is unique. �

The following theorem shows that λ-convergence is stronger than Iλ-convergence.

Theorem 4.3. Let (X,µ, ν, ∗, ◦) be an IFnNLS and let x = (xk) in X. If (µ, ν)nλ −
limx = l, then I

(µ,ν)n

λ − limx = l.

Proof. Suppose that (µ, ν)nλ − limx = l. Then for every t > 0, ε ∈ (0, 1) and
y1, y2, . . . , yn−1 ∈ X, there exists n0 ∈ N such that

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l, t) < ε,

for all n ≥ n0. Thus, we have
A = {n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) ≤ 1− ε

or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) ≥ ε}

⊆ {1, 2, . . . , n0 − 1}.
But I being admissible, we have A ∈ I. sO I

(µ,ν)n

λ − limx = l. �

Theorem 4.4. Let (X,µ, ν, ∗, ◦) be an IFnNLS and x = {xk} a sequence in X. If
(µ, ν)nλ − limx = l, then there exists a subsequence {xmk} of x = (xk) such that
(µ, ν)n − limxmk = l.

Proof. Let (µ, ν)nλ − limx = l. Then for every t > 0 and ε ∈ (0, 1), there exists
n0 ∈ N such that

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l, t) < ε,
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for all n ≥ n0. Clearly, for each n ≥ n0, we can select an mk ∈ Jn such that

µ(y1, y2, . . . , yn−1, xmk − l, t) >
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

and

ν(y1, y2, . . . , yn−1, xmk − l, t) <
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l, t) < ε.

It follows that (µ, ν)n − limxmk = l. �

Theorem 4.5. Let X be an IFnNLS and I be a nontrivial ideal of N. If a sequence
x = {xk} is λ-convergent in X and y = {yk} is a sequence in X such that {n ∈ N :
xk 6= yk for some k ∈ Jn} ∈ I, then y is λ-convergent to the same limit.

Proof. Let ε ∈ (0, 1), t > 0, y1, y2, . . . , yn−1 ∈ X,{n ∈ N : xk 6= yk for some k ∈
Jn} ∈ I and (µ, ν)nλ − limx = l. Then

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l, t) < ε},

for all n ≥ n0. Thus
{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

and 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) < ε} /∈ I.

On one hand,
{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) ≤ 1− ε

or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) ≥ ε} ∈ I.

Now, for every 0 < ε < 1, t > 0 and y1, y2, . . . , yn−1 ∈ X, we have
{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, yk − l, t) ≤ 1− ε

or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, yk − l, t) ≥ ε}

⊆ {n ∈ N : xk 6= yk, for some k ∈ Jn}
∪{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) ≤ 1− ε

or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) ≥ ε}.

As both the right-hand side member of the above equation are in I, we have
{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, yk − l, t) ≤ 1− ε

or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, yk − l, t) ≥ ε} ∈ I.

So y is (µ, ν)nλ-convergent. �

5. Limit point and cluster point in IFnNLS

Limit points and cluster points are essential concepts in the study of closedness
of a set. Here we study the analogous concepts in an IFnNLS.

Definition 5.1. Let (X,µ, ν, ∗, ◦) be an IFnNLS. l ∈ X is called a limit point of
of the sequence x = {xk} with respect to the intuitionistic fuzzy n-norm (µ, ν)n

provided that there is a subsequence of x that converges to l with respect to the
intuitionistic fuzzy n-norm (µ, ν)n.
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Definition 5.2. Let (X,µ, ν, ∗, ◦) be an IFnNLS and let x = (xk) be a sequence in
X. Then

(i) An element l ∈ X is said to be an Iλ-limit point of x = (xk), if there is a set

M = {m1 < m2 < . . . < mk < . . .} ⊂ N such that M
′

= {n ∈ N : mk ∈ Jn} /∈ I and
(µ, ν)nλ − limxmk = l.

(ii) An element l ∈ X is said to be an Iλ-cluster point of x = (xk), if for every
t > 0, ε ∈ (0, 1) and y1, y2, . . . , yn−1 ∈ X, we have

{n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

or 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) < ε} /∈ I.

Let ΛI(µ,ν)λ(x) denote the set of all Iλ-limit points and ΓI(µ,ν)λ(x) denote the set

of all Iλ-cluster points in X, respectively.

Theorem 5.3. Let (X,µ, ν, ∗, ◦) be an IFnNLS. Then for each sequence x ∈ X,
ΛI(µ,ν)λ(x) ⊂ ΓI(µ,ν)λ(x).

Proof. Let l ∈ ΛI(µ,ν)λ(x). Then there exists a set M ⊂ N such that M
′
/∈ I, where

M and M
′

are as in the Definition 5.2, satisfies (µ, ν)nλ− limxmk = l. Thus for every
t > 0, ε ∈ (0, 1) and y1, y2, . . . , yn−1 ∈ X, there exists n0 ∈ N such that

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xmk − l, t) > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xmk − l, t) < ε,

for all n ≥ n0. So
B = {n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l, t) > 1− ε

and 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l, t) < ε}

⊇M ′ \ {m1,m2, . . .mk0}.
Now, with I being admissible, we must have M

′ \ {m1,m2, . . .mk0} /∈ I and as
such B /∈ I. Hence l ∈ ΓI(µ,ν)λ(x), i.e., ΛI(µ,ν)λ(x) ⊂ ΓI(µ,ν)λ(x). �

Theorem 5.4. Let (X,µ, ν, ∗, ◦) be an IFnNLS. For each sequence x = (xk) in X,
the set ΓI(µ,ν)λ(x) is closed set in X with respect to the usual topology induced by the

intuitionistic fuzzy norm (µ, ν)n.

Proof. Let y ∈ ΓI
(µ,ν)λ

(x). Take t > 0 and ε ∈ (0, 1). Then there exists l0 ∈
ΓI(µ,ν)λ(x) ∩B(y, ε, t). Choose δ > 0 such that B(l0, δ, t) ⊂ B(y, ε, t). We have

G = {n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − y, t) > 1− ε

and 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − y, t) < ε}

⊇ {n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − l0, t) > 1− δ

and 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − l0, t) < δ}

= H.
Thus H /∈ I. So G /∈ I. Hence y ∈ ΓI(µ,ν)λ(x). Therefore ΓI(µ,ν)λ(x) is closed set in

X. �
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Theorem 5.5. Let (X,µ, ν, ∗, ◦) be an IFnNLS and let x = (xk) in X. Then the
following statements are equivalent:

(1) l is a Iλ-limit point of x.
(2) There exists two sequences yk and zk in X such that x = yk+zk and (µ, ν)nλ−

lim yk = l and {n ∈ N : k ∈ Jn, zk 6= θ} ∈ I, where θ is the zero element of X.

Proof. Suppose that (1) holds. Then there exist sets M and M
′

as in Definition 5.2

such that M
′
/∈ I and (µ, ν)nλ− limxmk = l. Define the sequences y and z as follows:

yk =

{
xk, if k ∈ Jn;n ∈M ′

l, otherwise.

and

zk =

{
θ, if k ∈ Jn;n ∈M ′

xk − l, otherwise.

We consider the case k ∈ Jn such that n ∈ N−M ′
. Then for each ε ∈ (0, 1), t > 0

and y1, y2, . . . , yn−1 ∈ X, we have

µ(y1, y2, . . . , yn−1, yk − l, t) = 1 > 1− ε
and

ν(y1, y2, . . . , yn−1, yk − l, t) = 0 < ε.

Thus
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, yk − l, t) = 1 > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, yk − l, t) = 0 < ε.

So (µ, ν)nλ − lim y = l and {n ∈ N : k ∈ Jn, zk 6= θ} ∈ I.

Suppose that (2) holds. Let M
′

= {n ∈ N : k ∈ Jn, zk = θ}. Then, clearly

M
′ ∈ F (I) and so it is an infinite set. Construct the set M = {m1 < m2 < . . .mk <

. . .} ⊂ N such that mk ∈ Jn and zmk = θ. Since xmk = ymk and (µ, ν)nλ − lim y = l,
we obtain (µ, ν)nλ − limxmk = l. �

6. Cauchy sequences in IFnNLS

Here we define some variants of Cauchy sequences and give a positive answer to
the open problem mentioned in [8] that every Iλ-convergent sequence is Iλ-Cauchy
in the new setting of IFnNLS.

Definition 6.1. Let (X,µ, ν, ∗, ◦) be an IFnNLS. A sequence x = (xk) in X is said
to be λ-Cauchy sequence with respect to the intuitionistic fuzzy norm (µ, ν)n, if for
every t > 0, ε ∈ (0, 1) and y1, y2, . . . , yn−1 ∈ X, there exist n0,m ∈ N satisfying

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − xm, t) > 1− ε

and
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − xm, t) < ε,
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for all n ≥ n0.

Definition 6.2. Let (X,µ, ν, ∗, ◦) be an IFnNLS. A sequence x = (xk) in X is said
to be Iλ-Cauchy sequence with respect to the intuitionistic fuzzy norm (µ, ν)n, if for
every t > 0, y1, y2, . . . , yn−1 ∈ X and ε ∈ (0, 1) there exist m ∈ N satisfying

{n ∈ N : 1
λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − xm, t) > 1− ε

and 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − xm, t) < ε} ∈ F (I).

Definition 6.3. Let (X,µ, ν, ∗, ◦) be an IFnNLS. A sequence x = (xk) in X is
said to be I∗λ-Cauchy sequence with respect to the intuitionistic fuzzy norm (µ, ν)n,
if there exists a set M = {m1 < m2 < . . . < mk < . . .} ⊂ N such that the set

M
′

= {n ∈ N : mk ∈ Jn} ∈ F (I) and the subsequence (xmk) of x = (xk) is a
Cauchy sequence with respect to the intuitionistic fuzzy norm (µ, ν)n.

Theorem 6.4. Let (X,µ, ν, ∗, ◦) be an IFnNLS. If a sequence x = (xk) is Iλ-
convergent with respect to (µ, ν)n, then it is Iλ-Cauchy.

Proof. Suppose that x = (xk) be a Iλ-convergent sequence converging to l. For a
given ε > 0, choose γ > 0 such that (1 − γ) ∗ (1 − γ) > 1 − ε and γ ◦ γ < ε. Then
for any t > 0 and y1, y2, . . . , yn−1 ∈ X, define

Kµ(γ, t) = {n ∈ N :
1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − l,
t

2
) > 1− γ}

and

Kν(γ, t) = {n ∈ N :
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − l,
t

2
) < γ}.

Thus Kµ(γ, t) ∈ F (I) and Kν(γ, t) ∈ F (I).
Let K(γ, t) = Kµ(γ, t) ∩ Kν(γ, t). Then K(γ, t) ∈ F (I). If n ∈ K(γ, t) and we

choose a fixed m ∈ K(γ, t), then

µ(y1, y2, . . . , yn−1, xk − xm, t)

≥ µ(y1, y2, . . . , yn−1, xk − l,
t

2
) ∗ µ(y1, y2, . . . , yn−1, xm − l,

t

2
)

> (1− γ) ∗ (1− γ)

> 1− ε.

This clearly implies that

1

λn

∑
k∈Jn

µ(y1, y2, . . . , yn−1, xk − xm, t) > 1− ε.

Also,

ν(y1, y2, . . . , yn−1, xk − xm, t)

≤ ν(y1, y2, . . . , yn−1, xk − l,
t

2
) ◦ ν(y1, y2, . . . , yn−1, xm − l,

t

2
)

< γ ◦ γ
< ε.
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So,
1

λn

∑
k∈Jn

ν(y1, y2, . . . , yn−1, xk − xm, t) < ε.

Hence
{n ∈ N : 1

λn

∑
k∈Jn µ(y1, y2, . . . , yn−1, xk − xm, t) > 1− ε

and n ∈ N : 1
λn

∑
k∈Jn ν(y1, y2, . . . , yn−1, xk − xm, t) < ε} ∈ F (I).

Therefore x = (xk) is Iλ-Cauchy. �

The following is an analogue of Theorem 4.3 in the sense that λ-Cauchyness is
stronger than Iλ-Cauchyness of sequences in IFnNLS whose proof follows likewise.

Theorem 6.5. Let (X,µ, ν, ∗, ◦) be an IFnNLS. If a sequence x = (xk) in X is
λ-Cauchy with respect to (µ, ν)n, then it is Iλ-Cauchy with respect to same.

The proof of the following theorems can be easily established using definitions.

Theorem 6.6. Let (X,µ, ν, ∗, ◦) be an IFnNLS. If a sequence x = (xk) in X is
λ-Cauchy with respect to (µ, ν)n, then there is a subsequence of x = (xk) which is
ordinary Cauchy sequence with respect to the same norm.

Theorem 6.7. Let (X,µ, ν, ∗, ◦) be an IFnNLS. If a sequence x = (xk) is I∗λ-Cauchy,
then it is Iλ-Cauchy as well.

7. Conclusions

In this paper, the concept of Iλ-convergence has been introduced in IFnNLS
and based on this concept some existing results are extended and some new results
are established. We have also introduced the concept of Iλ-Cauchy sequences and
established the relation between Iλ-convergence and Iλ-Cauchy. In establishing most
of the proofs, different approach than their classical analogues has been adopted. The
results obtained in this paper are more general than the corresponding results for
normed spaces.
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