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1. Introduction

The theory of fuzzy set was introduced by Zadeh[21]. Since then many au-
thors have developed the theory of fuzzy sets and its applications. Especially, many
mathematicians tried to extended classical mathematical results in fuzzy context.
In particular, while studying fuzzy topological vector spaces, in 1984 for the first
time, the notion of fuzzy norm on a linear space was introduced by Katsaras[12].
After that many researchers started to develop the notion of fuzzy norm in different
ways. In 1992, a different approach towards the notion of fuzzy norm was introduced
by Felbin[8] whose associated metric is Kaleva[11] type. She defined fuzzy norm by
a mapping which assigns a non-negative fuzzy real number corresponding to each
element of a linear space. Later in 1994, another idea of fuzzy norm on a linear space
was introduced by Cheng and Mordeson[4] whose corresponding induced metric is
Kramosil and Michalek[13] type. With a view to formulate decomposition theorem
for the fuzzy norm, the definition of fuzzy norm given by Cheng and Moderson[4]
was redefined by Bag and Samanta[2].

On the other hand, a number of generalization in metric space, normed linear
space and in inner product space have been done.(please see [5, 7, 9, 10, 15, 17]).
In 2007, the idea of cone metric space which is a generalization of metric space was
introduced by Huang and Zhang[15] by replacing the range of metric with an ordered
real Banach space and proved some fixed point theorems on contractive mappings
on such spaces. After that, series of article on cone metric space started to appear.
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With the idea of cone metric space introduced by Huang and Zhang[15], a new notion
of fuzzy cone normed linear space was introduced by Bag[3] which generalizes the
corresponding notion of Felbin[8] type fuzzy norm. In this context, it is worth men-
tioning the work of Somasundaram and Beaula[20], Park and Alaca[18],Choudhury
and Das[6], Mohinta and Samanta[16], Saheli[19] .

The purpose of this paper is to introduce a new concept of fuzzy cone normed
linear space that generalizes the corresponding notion of fuzzy normed linear space
by Bag and Samanta[1]. Some basic definitions on fuzzy cone normed linear space
are given and using these some important results on finite dimensional fuzzy cone
normed linear space are established.

The organization of the paper is as follows:
In section 2, some preliminary results are given which are used in this paper.
In section 3, a definition of fuzzy cone normed linear space is introduced and some
basic results are proved.
In section 4, one fundamental lemma and some basic theorems are established on
finite dimensional fuzzy cone normed linear space.

2. Preliminaries

Throughout the paper, we denote a real Banach space by E and the zero element
of E by θE .

Definition 2.1 ([15]). Let E be a real Banach space and P be a subset of E. Then
P is called a cone, if

(i) P is closed, non-empty and P 6= {θE},
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ,
(iii) x ∈ P and −x ∈ P ⇒ x = θE .

Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y
iff y − x ∈ P . We shall write x ≺ y to indicate that x � y but x 6= y while x << y
will stand for y − x ∈ IntP, where IntP denotes the interior of P.

The cone P is called normal, if there is a number K > 0 such that for all x, y ∈ E
with θE � x � y, ‖x‖ ≤ K‖y‖.
The least positive number satisfying above is called the normal constant of P .

The cone P is called regular, if every increasing sequence which is bounded from
above is convergent. That is if {xn} is a sequence in E such that

x1 � x2 � · · · � xn � · · · � y,
for some y ∈ E, then there is x ∈ E such that ‖xn − x‖ → 0 as n→∞.
Equivalently, the cone P is regular if every decreasing sequence which is bounded
below is convergent. It is clear that a regular cone is a normal cone.

In the following we always assume that P is a cone in E with IntP 6= φ and � is
a partial ordering with respect to P .

Definition 2.2 ([14]). A binary operation ∗ : [0 , 1]× [0 , 1]→ [0 , 1] is a t-norm,
if it satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) a ∗ 1 = a ∀a ∈ [0 , 1],
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for each a, b, c, d ∈ [0 , 1].
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If ∗ is continuous, then it is called continuous t-norm.

The following are examples of some t-norms that are frequently used and defined
for all a, b ∈ [0, 1]:

(1) Standard intersection: a ∗ b = min(a, b).
(2) Algebraic product: a ∗ b = ab.
(3) Bounded difference: a ∗ b = max(0, a+ b− 1). (4) Drastic intersection:

a ∗ b =

 a for b = 1
b for a = 1
0 otherwise.

Definition 2.3 ([1]). Let U be a linear space over the field F (C or R). A fuzzy
subset N of U ×R (R- set of real numbers) is called a fuzzy norm on U, if

(N1) ∀t ∈ R with t ≤ 0, N(x , t) = 0,
(N2) ∀t ∈ R, t > 0, N(x , t) = 1 iff x = θU (θU denotes the zero element of U),
(N3) ∀t ∈ R, t > 0, c ∈ F, N(cx , t) = N(x , t

|c| ) if c 6= 0,

(N4) ∀s, t ∈ R; x, u ∈ U , N(x+ u , s+ t) ≥ N(x , s) ∗N(u , t),
(N5) N(x , .) is a non-decreasing function of R and lim

t→∞
N(x , t) = 1.

The pair (U , N) will be referred to as a fuzzy normed linear space.

3. Fuzzy cone normed linear space

In this section, we introduce a concept of fuzzy cone normed linear space in
different approach.

Definition 3.1. Let X be a linear space over the field K and E be a real Banach
space with cone P . Let ∗ be a t-norm. Then a fuzzy subset Nc : X ×E −→ [0, 1] is
said to be a fuzzy cone norm, if

(FCN1) ∀ t ∈ E with t � θE , Nc(x, t) = 0,
(FCN2) ∀ θE ≺ t, Nc(x, t) = 1 iff x = θX (θX denotes the zero element of X),
(FCN3) ∀ θE ≺ t and 0 6= c ∈ K, Nc(cx, t) = Nc(x,

t
|c| ),

(FCN4) ∀ x, y ∈ X and s, t ∈ E, Nc(x+ y, s+ t) ≥ Nc(x, s) ∗Nc(y, t),
(FCN5) lim

‖t‖→∞
Nc(x, t) = 1.

Then (X,Nc, ∗) is said to be a fuzzy cone normed linear space w.r.t. E.

Remark 3.2. Nc(x, .) is non-decreasing w.r.t. E.

Proof. If s � t � θE , then Nc(x, s) = 0 = Nc(x, t), s, t ∈ E
Suppose θE ≺ t ≺ s. Then from (FCN4),

Nc(x, t) ∗Nc(θX , s− t) ≤ Nc(x+ θX , t+ s− t)
= Nc(x, s).

Thus we get Nc(x, t) ∗ 1 ≤ Nc(x, s), i.e, Nc(x, t) ≤ Nc(x, s). So Nc(x, .) is non-
decreasing w.r.t. E. �

Remark 3.3. If we choose E = R ( the set of real numbers) and P = [0,∞) and
ordering in E as the usual ordering, then (X,Nc, ∗) will be a Bag and Samanta[1]
type fuzzy normed linear space.
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Example 3.4. Let (X, ‖ ‖1) be a normed linear space and take E = R2. Then
P = {(t1, t2) : t1, t2 ≥ 0} ⊂ E is a normal cone with normal constant 1. Define a
function Nc : X × E −→ [0, 1] by

Nc(x, t) = 1

e
‖x‖1
‖t‖2

if θE ≺ t

= 0 if t � θE ,

where ‖ ‖2 is the norm defined on E. If we choose a ∗ b = ab, Then (X,Nc, ∗) is a
fuzzy cone normed linear space.

Proof. (i) Let t ∈ E with t � θE . Then, by definition, we have Nc(x, t) = 0 for all
x ∈ X. Thus (FCN1) holds.

(ii) Let t ∈ E with θE ≺ t. Then
Nc(x, t) = 1 ⇔ 1

e
‖x‖1
‖t‖2

= 1

⇔ e
‖x‖1
‖t‖2 = 1

⇔ ‖x‖1
‖t‖2 = 0

⇔ ‖x‖1 = 0
⇔ x = θX (θX denotes the zero element of X).

Thus (FCN2) holds.
(iii) Let t ∈ E with θE ≺ t and 0 6= c ∈ K. Then

Nc(cx, t) =
1

e
‖cx‖1
‖t‖2

=
1

e
|c|‖x‖1
‖t‖2

=
1

e

‖x‖1
‖t‖2
|c|

=
1

e

‖x‖1
‖ t
|c| ‖2

= Nc(x,
t

|c|
).

Thus (FCN3) holds.
(iv) We have to show that

Nc(x+ y, s+ t) ≥ Nc(x, s) ∗Nc(y, t) ∀x, y ∈ X and s, t ∈ E.

We can consider four cases:
Case (i) s � θE , t ≺ θE ;
Case (ii) s � θE , θE ≺ t;
Case (iii) s � θE , t = θE ;
Case (iv) θE ≺ s, θE ≺ t.
In Cases (i), (ii) and (iii), we can easily prove that (FCN4) holds.
Now suppose Case (iv) holds. Then s ≺ s+ t and t ≺ s+ t. Since P is a normal

cone with normal constant 1,

‖s‖2 ≤ ‖s+ t‖2 and ‖t‖2 ≤ ‖s+ t‖2.

On one hand,

‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1 ≤ ‖s+t‖2‖s‖2 ‖x‖1 + ‖s+t‖2
‖t‖2 ‖y‖1

⇒ ‖x+y‖1
‖s+t‖2 ≤

‖x‖1
‖s‖2 + ‖y‖1

‖t‖2

⇒ e
‖x+y‖1
‖s+t‖2 ≤ e

‖x‖1
‖s‖2 e

‖y‖1
‖t‖2

⇒ 1

e
‖x‖1
‖s‖2 e

‖y‖1
‖t‖2

≤ 1

e
‖x+y‖1
‖s+t‖2

⇒ 1

e
‖x‖1
‖s‖2

1

e
‖y‖1
‖t‖2

≤ 1

e
‖x+y‖1
‖s+t‖2
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⇒ Nc(x, s) Nc(y, t) ≤ Nc(x+ y, s+ t).
Thus (FCN4) holds.

(v) If x 6= θX , then lim
‖t‖2→∞

Nc(x, t) = lim
‖t‖2→∞

1

e
‖x‖1
‖t‖2

= 1.

If x = θX , then lim
‖t‖2→∞

Nc(x, t) = lim
‖t‖2→∞

Nc(θX , t) = 1.

Thus (FCN5) holds. So (X,Nc, ∗) is a fuzzy cone normed linear space. �

Definition 3.5. Let (X,Nc, ∗) be a fuzzy cone normed linear space, x ∈ X and
{xn} be a sequence in X. Then {xn} is said to converge to x, if for any t ∈ E with
θE ≺ t and r ∈ (0, 1), ∃ a natural number n0 such that

Nc(xn − x, t) > 1− r ∀ n ≥ n0, θE ≺ t.
We denote this limit by lim

n→∞
xn = x

Definition 3.6. Let (X,Nc, ∗) be a fuzzy cone normed linear space and {xn} be a
sequence in X. Then {xn} is said to be a Cauchy sequence, if for any t ∈ E with
θE ≺ t and r ∈ (0, 1), ∃ a natural number n0 such that

Nc(xn+p − xn, t) > 1− r ∀ n ≥ n0, p = 1, 2, ...

Definition 3.7. Let (X,Nc, ∗) be a fuzzy cone normed linear space. A subset B of
X is said to be closed, if any sequence {xn} in B converges to x implies that x ∈ B.

Definition 3.8. Let (X,Nc, ∗) be a fuzzy cone normed linear space. A subset B of
X is said to be the closure of A, if for any x ∈ B, ∃ a sequence {xn} in A such that

lim
n→∞

Nc(xn − x, t) = 1 ∀ t ∈ E, θE ≺ t.

We denote the set B by Ā.

Definition 3.9. Let (X,Nc, ∗) be a fuzzy cone normed linear space. A subset A of
X is said to be compact, if any sequence {xn} in A has a subsequence converging
to an element of A.

Definition 3.10. Let (X,Nc, ∗) be a fuzzy cone normed linear space and A ⊂ X.
Then A is said to be bounded, if for each r, 0 < r < 1, there exists t ∈ E with
θE ≺ t such that Nc(x, t) > 1− r ∀ x ∈ A.

Theorem 3.11. Let (X,Nc, ∗) be a fuzzy cone normed linear space, x ∈ X and
{xn} be a sequence in X. Then {xn} converges to x iff

lim
n→∞

Nc(xn − x, t) = 1 ∀ t ∈ E (θE ≺ t).

Proof. Let {xn} be a sequence in X converges to x. Then for any t ∈ E with θE ≺ t
and r ∈ (0, 1), ∃ a natural number n0 such that

Nc(xn − x, t) > 1− r ∀ n ≥ n0.
Since r is arbitrary, it follows that lim

n→∞
Nc(xn − x, t) = 1 ∀ t ∈ E (θE ≺ t).

Conversely, suppose lim
n→∞

Nc(xn − x, t) = 1 ∀ t ∈ E (θE ≺ t). Then for each

r ∈ (0, 1) and t ∈ E (θE ≺ t), ∃ a natural number n0 such that

Nc(xn − x, t) > 1− r ∀ n ≥ n0.
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Thus {xn} converges to x. This completes the proof. �

Theorem 3.12. Let (X,Nc, ∗) be a fuzzy cone normed linear space and {xn} be a
sequence in X. Then {xn} is a Cauchy sequence iff

lim
n→∞

Nc(xn+p − xn, t) = 1 ∀ t ∈ E (θE ≺ t), p = 1, 2, ...

Proof. Let (X,Nc, ∗) be a fuzzy cone normed linear space and {xn} be a Cauchy
sequence in X. Then for any t ∈ E with θE ≺ t and r ∈ (0, 1), ∃ a natural number
n0 such that

Nc(xn+p − xn, t) > 1− r ∀ n ≥ n0, p = 1, 2, ...

Thus 1−Nc(xn+p − xn, t) < r ∀ n ≥ n0, p = 1, 2, ...
Since r is arbitrary, it follows that lim

n→∞
Nc(xn+p − xn, t) = 1 ∀ t ∈ E (θE ≺ t).

Conversely, Suppose lim
n→∞

Nc(xn+p − xn, t) = 1 ∀ t ∈ E (θE ≺ t), p = 1, 2, ...

Then for any t ∈ E with θE ≺ t and r ∈ (0, 1), ∃ a natural number n0 such that

Nc(xn+p − xn, t) > 1− r ∀ n ≥ n0, p = 1, 2, ...

Thus {xn} is a Cauchy sequence in X. This completes the proof. �

Lemma 3.13. Limit of a convergent sequence in a fuzzy cone normed linear space
(X,Nc, ∗) is unique, provided ∗ is continuous at (1,1).

Proof. Let {xn} be a convergent sequence in (X,Nc, ∗) and ∗ is continuous at (1, 1).
If possible, suppose {xn} converges to x and y, where (x 6= y). Then

lim
n→∞

Nc(xn − x, s) = 1 ∀ s ∈ E (θE ≺ s)

and

lim
n→∞

Nc(xn − y, t) = 1 ∀ t ∈ E (θE ≺ t).

Now, Nc(x− y, s+ t) = Nc(x− xn + xn − y, s+ t)
≥ Nc(x− xn, s) ∗Nc(xn − y, t)
= Nc(xn − x, s) ∗Nc(xn − y, t).

Taking limit as n→∞, we have
Nc(x− y, s+ t)) ≥ lim

n→∞
Nc(xn − x, s) ∗ lim

n→∞
Nc(xn − y, t)

= 1 ∗ 1 = 1
Thus Nc(x−y, s+ t) = 1 ∀ s, t ∈ E (θE ≺ t, θE ≺ s). So x−y = θX , by (FCN2) (θX
denotes the zero element of X). Hence x = y. This completes the proof. �

Theorem 3.14. In a fuzzy cone normed linear space (X,Nc, ∗), every subsequence
of a convergent sequence converges to the limit of the sequence.

Proof. Let {xn} be a sequence in (X,Nc, ∗) such that {xn} converges to x. Then
for any t ∈ E (θE ≺ t) and r ∈ (0, 1), ∃ a natural number N such that

Nc(xn − x, t) > 1− r ∀ n ≥ N, θE ≺ t.
Let {xk(n)} be a subsequence of {xn}, where k(n) : Z+ −→ {a subset of Z+} such

that k(n) < k(m), for n < m ( Z+ denotes the set of positive integers). Since {xk(n)}
is a subsequence, ∃ M such that k(n) ≥ N for n ≥ M . Thus Nc(xk(n) − x, t) >
1− r ∀ n ≥M, θE ≺ t. So {xk(n)} converges to x. �
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Theorem 3.15. In a fuzzy cone normed linear space (X,Nc, ∗), with ∗ continuous
at (1, 1), every convergent sequence is also a Cauchy sequence.

Proof. Let {xn} be a convergent sequence in (X,Nc, ∗) and converges to x. Then
lim
n→∞

Nc(xn − x, t) = 1, ∀ t ∈ E (θE ≺ t).
Now for θE ≺ t, θE ≺ s and p = 1, 2, ..., we have

Nc(xn+p − xn, s+ t) = Nc(xn+p − x+ x− xn, s+ t)
≥ Nc(xn+p − x, s) ∗Nc(x− xn, t)
= Nc(xn+p − x, s) ∗Nc(xn − x, t).

Taking limit as n→∞, we have

lim
n→∞

Nc(xn+p − xn, s+ t) ≥ lim
n→∞

Nc(xn+p − x, s) ∗ lim
n→∞

Nc(xn − x, t)
= 1 ∗ 1 = 1.

Thus lim
n→∞

Nc(xn+p − xn, s+ t) = 1, ∀ s, t ∈ E (θE ≺ s, θE ≺ t), p = 1, 2, ...

So {xn} is a Cauchy sequence in (X,Nc, ∗). �

4. Finite dimensional fuzzy cone normed linear space

In this section, one fundamental lemma is established and by using this lemma
some basic theorems on finite dimensional fuzzy cone normed linear space are proved.

Lemma 4.1. Let (X,Nc, ∗) be a fuzzy cone normed linear space with the underlying
t-norm ∗ continuous at (1,1) and {x1, x2, ..., xn} be a linearly independent set of
vectors in X. Then ∃ c ∈ E with θE ≺ c and δ ∈ (0, 1) such that for any set of
scalars {α1, α2, ..., αn},

Nc(α1x1 + α2x2 + ...+ αnxn, c

n∑
j=1

|αj |) < 1− δ, (4.1.1)

where E is a real Banach space with cone P .

Proof. Let s = |α1|+ |α2|+ ...+ |αn|.
If s = 0, then αj = 0, ∀ j = 1, 2, ..., n and the above relation (4.1.1) holds for any

c ∈ E with θE ≺ c and δ ∈ (0, 1).
Next we suppose that s > 0. Then (4.1.1) is equivalent to

Nc(β1x1 + β2x2 + ...+ βnxn, c) < 1− δ, (4.1.2)

for some c ∈ E (θE ≺ c) and δ ∈ (0, 1), and for all scalars β′s with
∑n
j=1 |βj | = 1.

If possible, suppose that (4.1.2) does not hold. Then for each c ∈ E with θE ≺ c
and δ ∈ (0, 1), ∃ a set of scalars {β1, β2, ..., βn} with

∑n
j=1 |βj | = 1 such that

Nc(β1x1 + β2x2 + ...+ βnxn, c) ≥ 1− δ.
Thus for cm ∈ E (θE ≺ cm) with ‖cm‖ = δ = 1

m ,m = 1, 2, ...,∃ a set of scalars

{βm1 , βm2 , ..., βmn } with
∑n
j=1 |βmj | = 1 such that Nc(ym, cm) ≥ 1− 1

m , where

ym = βm1 x1 + βm2 x2 + ...+ βmn xn.

Since
∑n
j=1 |βmj | = 1, we have 0 ≤ |βmj | ≤ 1 for j = 1, 2, ..., n. So for each fixed

j, the sequence {βmj } is bounded. Hence {βm1 } has a convergent subsequence. Let
β1 denote the limit of that subsequence and let {y1,m} denote the corresponding
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subsequence of {ym}. By the same argument, {y1,m} has a subsequence {y2,m} for
which the corresponding subsequence of scalars {βm2 } converges to β2(say).
Continuing in this way, after n steps, we obtain a subsequence {yn,m}, where

yn,m =
∑n
j=1 γ

m
j xj with

∑n
j=1 |γmj | = 1 and γmj → βj as m→∞.

Let y = β1x1 + β2x2 + ...+ βnxn. Then we have

lim
m→∞

Nc(yn,m − y, t) = 1 ∀ t ∈ E (θE ≺ t). (4.1.3)

Now for θE ≺ k, choose m such that cm ≺ k. Then we have

Nc(yn,m, k) = Nc(yn,m + θX , cm + k − cm)

≥ Nc(yn,m, cm) ∗Nc(θX , k − cm)

≥ (1− 1

m
) ∗Nc(θX , k − cm),

where θX denotes the zero element ofX. ThusNc(yn,m, k) ≥ (1− 1
m )∗Nc(θX , k−cm).

So lim
m→∞

Nc(yn,m, k) ≥ 1 ∗ 1. Hence

lim
m→∞

Nc(yn,m, k) = 1. (4.1.4)

On one hand,

Nc(y, 2k) = Nc(y − yn,m + yn,m, k + k) ≥ Nc(y − yn,m, k) ∗Nc(yn,m, k).

Then, by the continuity of t-norm ∗ at (1,1),

Nc(y, 2k) ≥ lim
m→∞

Nc(y − yn,m, k) ∗ lim
m→∞

Nc(yn,m, k).

Thus, by (4.1.3) and (4.1.4) Nc(y, 2k) ≥ 1 ∗ 1 . So Nc(y, 2k) = 1.
Since θE ≺ k is arbitrary, it follows that y = θX , by (FCN2). Again since

∑n
j=1 |βj | =

1 and {x1, x2, ..., xn} are linearly independent set of vectors,

y = β1x1 + β2x2 + ...+ βnxn 6= θX .

So we arrive at a contradiction. Hence the lemma is proved. �

Theorem 4.2. Let (X,Nc, ∗) be a finite dimensional fuzzy cone normed linear space
with the continuity of the underlying t-norm ∗ at (1, 1), P be a normal cone with
normal constant K. Then (X,Nc, ∗) is complete.

Proof. Let (X,Nc, ∗) be a fuzzy cone normed linear space and dimX=k(say). Let
{e1, e2, ..., ek} be a basis for X and {xn} be a Cauchy sequence in X. Let

xn = βn1 e1 + βn2 e2 + ...+ βnk ek,

where βn1 , β
n
2 , ..., β

n
k are suitable scalars. Then

lim
m,n→∞

Nc(xm − xn, t) = 1, ∀ t ∈ E (θE ≺ t). (4.2.1)

From Lemma 4.1, it follows that ∃ c ∈ E with θE ≺ c and δ ∈ (0, 1) such that

Nc(

k∑
i=1

(βmi − βni )ei, c

k∑
i=1

|βmi − βni |) < 1− δ. (4.2.2)
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Again for 0 < δ < 1, from (4.2.1), it follows that for any θE ≺ t
2 , ∃ a positive

integer n0(δ, t) such that

Nc(xm − xn,
t

2
) > 1− δ ∀m,n ≥ n0(δ, t).

Thus

Nc(

k∑
i=1

(βmi − βni )ei,
t

2
) > 1− δ, ∀m,n ≥ n0(δ, t). (4.2.3)

From (4.2.2) and (4.2.3), Nc(
∑k
i=1(βmi − βni )ei,

t
2 ) > 1− δ. So

> Nc(
∑k
i=1(βmi − βni )ei, c

∑k
i=1 |βmi − βni |), ∀m,n ≥ n0(δ, t)

⇒ c
∑k
i=1 |βmi − βni | ≺

t
2 , ∀m,n ≥ n0(δ, t)

(Since Nc(x, .) is non decreasing w.r.t. E)

⇒ ‖c
∑k
i=1 |βmi − βni |‖ ≤ K‖

t
2‖, ∀m,n ≥ n0(δ, t)

(Since P is a normal cone with normal constant K)

⇒
∑k
i=1 |βmi − βni |‖c‖ ≤ K

‖t‖
2 , ∀m,n ≥ n0(δ, t)

⇒
∑k
i=1 |βmi − βni | ≤

K||t||
2||c|| , ∀m,n ≥ n0(δ, t)

⇒ |βmi − βni | ≤
K‖t‖
2‖c‖ <

K‖t‖
‖c‖ , ∀m,n ≥ n0(δ, t) and i = 1, 2, ..., k.

Since θE ≺ t is arbitrary, lim
m,n→∞

|βmi − βni | = 0, i = 1, 2, ..., k.

This implies that {βni } is a Cauchy sequence of scalars for each i = 1, 2, ..., k.
Hence each {βni } converges.

Let lim
n→∞

βni = βi for i = 1, 2, ..., k and x =
∑k
i=1 βiei. Then clearly, x ∈ X. Now

for all t ∈ E (θE ≺ t),

Nc(xn − x, t) = Nc(

k∑
i=1

βni ei −
k∑
i=1

βiei, t) = Nc(

k∑
i=1

(βni − βi)ei, t).

Thus

Nc(xn − x, t) ≥ Nc(e1,
t

k|βn1 − β1|
) ∗Nc(e2,

t

k|βn2 − β2|
) ∗ ... ∗Nc(ek,

t

k|βnk − βk|
).

(4.2.4)
Since βni → βi as n→∞ for i = 1, 2, ..., k, when n→∞,

‖ t
k|βn

i −βi|‖ → ∞, ∀ t ∈ E (θE ≺ t) and for i = 1, 2, ..., k.

From (4.2.4), using the continuity of t-norm ∗ at (1, 1), we get

lim
n→∞

Nc(xn − x, t) ≥ 1 ∗ 1 ∗ ... ∗ 1, ∀ t ∈ E (θE ≺ t).

So lim
n→∞

Nc(xn − x, t) = 1, ∀ t ∈ E (θE ≺ t). Hence xn → x. Therefore (X,Nc, ∗)
is complete. �

Theorem 4.3. Let (X,Nc, ∗) be a finite dimensional fuzzy cone normed linear space
with the underlying t-norm ∗ continuous at (1, 1), P be a normal cone with normal
constant K. Then a subset A ⊂ X is compact iff A is closed and bounded.
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Proof. First we suppose that A is compact. We will now show that A is closed and
bounded.

Let x ∈ Ā. Then ∃ a sequence {xn} in A such that lim
n→∞

xn = x. Since A is

compact, ∃ a subsequence {xnk
} of {xn} such that {xnk

} converges to a point in A.
Since {xn} → x, {xnk

} → x. Then x ∈ A. Thus A is closed.
If possible, suppose that A is not bounded. Then ∃ r = r0, 0 < r0 < 1 such that

for each t ∈ E with θE ≺ t, there is an element x ∈ A such that Nc(x, t) ≤ 1− r0.
Thus for each cn ∈ Eand θE ≺ cn with ‖cn‖ < ‖cn+1‖,

∃ xn ∈ A such that Nc(xn, cn) ≤ 1− r0 (n ∈ N , the set of natural numbers).

Since A is compact, ∃ a subsequence {xnk
} of {xn} converges to some element x ∈ A.

So lim
k→∞

Nc(xnk
− x, t) = 1, ∀ t ∈ E, θE ≺ t. Since Nc(xnk

, cnk
) ≤ 1− r0,

1− r0 ≥ Nc(xnk
, cnk

) = Nc(xnk
− x+ x, cnk

− t+ t), θE ≺ t
⇒ 1− r0 ≥ Nc(xnk

− x, t) ∗Nc(x, cnk
− t)

⇒ 1− r0 ≥ lim
k→∞

Nc(xnk
− x, t) ∗ lim

k→∞
Nc(x, cnk

− t)
(Using the continuity of t-norm ∗ at (1, 1))

⇒ 1− r0 ≥ 1 ∗ 1
(Since ‖cnk

‖ → ∞ as k →∞, ‖cnk
− t‖ → ∞ as k →∞, thus

‖cnk
− t‖ ≥ |‖cnk

‖ − ‖t‖|)
⇒ r0 ≤ 0.

This is a contradiction. Hence A is bounded.
Conversely, suppose thatA is closed and bounded. Let dimX = n and {e1, e2, ..., en}

be a basis for X. Choose a sequence {xk} in A and suppose xk = βk1 e1 +βk2 e2 + ...+
βknen, where βk1 , β

k
2 , ..., β

k
n are scalars. Then, from Lemma 4.1, ∃ c ∈ E, (θE ≺ c)

and δ ∈ (0, 1) such that

Nc(

n∑
i=1

βki ei, c

n∑
i=1

|βki |) < 1− δ. (4.3.1)

Since A is bounded, for δ ∈ (0, 1), ∃ t ∈ E (θE ≺ t) such that Nc(xk, t) > 1− δ,i.e.,

Nc(

n∑
i=1

βki ei, t) > 1− δ. (4.3.2)

From (4.3.1) and (4.3.2), we get
Nc(

∑n
i=1 β

k
i ei, c

∑n
i=1 |βki |) < 1− δ < Nc(

∑n
i=1 β

k
i ei, t)

⇒ Nc(
∑n
i=1 β

k
i ei, c

∑n
i=1 |βki |) < Nc(

∑n
i=1 β

k
i ei, t)

⇒ c
∑n
i=1 |βki | ≺ t (Nc(x, .) is non decreasing w.r.t. E)

⇒ ‖c
∑n
i=1 |βki |‖ ≤ K‖t‖

(Since P is a normal cone with normal constant K)
⇒

∑n
i=1 |βki |‖c‖ ≤ K‖t‖
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⇒ |βki | ≤
K‖t‖
‖c‖ for k = 1, 2, ... and i = 1, 2, ..., n.

Thus each {βki } (i = 1, 2, ..., n) is bounded. By repeated application of Bolzano-
Weierstrass theorem, it follows that each of the sequences {βki } has a convergent

subsequence say {βkli }, ∀ i = 1, 2, ..., n. Let

xkl = βkl1 e1 + βkl2 e2 + ...+ βkln en,

where {βkl1 }, {β
kl
2 }, ..., {βkln } are all convergent. Let βi = lim

l→∞
βkli , i = 1, 2, ..., n

and let x = β1e1 + β2e2 + ...+ βnen. Then for t ∈ E (θE ≺ t), we have

Nc(xkl − x, t) = Nc(

n∑
i=1

(βkli − βi)ei, t).

Thus

Nc(xkl−x, t) ≥ Nc(e1,
t

n|βkl1 − β1|
) ∗ Nc(e2,

t

n|βkl2 − β2|
) ∗...∗ Nc(en,

t

n|βkln − βn|
).

(4.3.3)

Since βkli → βi as l→∞ for i = 1, 2, ..., n, when l→∞,

‖ t

n|βkl
i −βi|

‖ → ∞, ∀ θE ≺ t and for i = 1, 2, ..., n.

From (4.3.3), using the continuity of t-norm ∗ at (1, 1), we get

lim
l→∞

Nc(xkl − x, t) ≥ 1 ∗ 1 ∗ ... ∗ 1.

So lim
l→∞

Nc(xkl − x, t) = 1. Since θE ≺ t is arbitrary, it follows that lim
l→∞

xkl = x,

i.e, {xkl} is a convergent subsequence of {xk} and converges to x. Since A is closed
and {xk} is a sequence in A, it follows that x ∈ A. Hence every sequence in A
has a convergent subsequence that converges to an element of A. Therefore A is
compact. �

5. Conclusion

In this paper, a notion of fuzzy cone normed linear space is introduced in a
different approach which is a generalization of fuzzy normed linear space. Here a
real Banach space is considered instead ofR( the set of real numbers) in fuzzy normed
linear space. It is seen that Bag and Samanta type[1] fuzzy normed linear space is
a particular case of fuzzy cone normed linear space. By using this concept, some
basic results on finite dimensional fuzzy cone normed linear space are established.
Since fuzzy mathematics along with the classical ones are constantly developing, so
the concept of fuzzy cone normed linear can also play an important part in the new
fuzzy area and fuzzy funtional analysis.
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