Annals of Fuzzy Mathematics and Informatics Volume 13, No. 4, (April 2017), pp. 531–538

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Soft k-int-ideals of semirings and its algebraic structures

FILIZ ÇITAK, NAIM ÇAĞMAN

Received 10 June 2016; Revised 15 August 2016; Accepted 08 October 2016

ABSTRACT. In this study, we first give a definition of soft int-ideal and soft k-int-ideal of a semiring by using intersection operation of sets with their properties. We then define a soft k-product of two soft left k-int-ideals and investigate their algebraic structures.

2010 AMS Classification: 03E72, 08A72

Keywords: Soft sets, k-ideals, Soft int-rings, Soft int-ideals, Soft k-int ideals.

Corresponding Author: Filiz Cıtak (filiz.citak@gop.edu.tr)

1. Introduction

Many authors have become interested in modeling uncertainty recently. There are some testatum mathematical theories to deal with uncertainty, such as fuzzy set theory [22], rough set theory [5], etc. These theories have its connatural difficulties as indicated by Molodtsov in [18]. To deal with uncertainty, there is an another theory called soft set theory that was suggested by Molodtsov [18].

In recent years, different kinds of operations of soft sets have been defined [3, 4, 6, 8, 17, 19] to use in the theory and applications. By using these operations, works on the algebraic structure of soft set theory have been progressing rapidly. In 2007, Aktas and Cagman [2] started to work on soft algebra by defining the soft groups. After that, Acar et al. [1] studied the soft rings. Feng et al. [10] defined the notions of soft semiring and soft ideal. Jun and Park [13] introduced the concept of soft ideals and idealistic soft BCK/BCI-algebras. Jun et al. [14] proposed the soft p-ideals of soft BCI-algebras. Sun et al. [21] introduced the soft modules. Cagman et al. [7] introduced the concept of soft int-groups. Then Citak and Cagman [9] defined the soft int-rings. Sezgin et al. [20] defined soft intersection near-rings. Zhan and Jun [23] defined the soft BL-algebras and then Zhan and Xu [24] introduced the soft lattice implication algebras based on fuzzy sets. Lee et al. [16] studied the generalized int-soft subsemigroups. Jana and Pal [12] worked the applications of new soft intersection set on groups.

In this work, we first recall semigroup, semiring, k-ideals of semiring and basically introduced the soft set theory in Section 2. We then define concept of soft int-ideal of a semiring in Section 3. We also introduce the concept of soft k-int-ideal of a semiring by using intersection operation of set and investigate the basic properties of soft k-int-ideal. Moreover, we define a soft k-product of two soft left k-int-ideals and work on their algebraic structures in detail. We finally conclude the paper in Section 4.

2. Preliminaries

In this section, we remind the semigroup, semiring, k-ideals of semiring and soft sets with their basic properties.

Throughout this work, U is a universal set, E is a set of parameters, $A \subseteq E$ and P(U) is the power set of U.

Definition 2.1 ([11]). A nonempty set S together with a binary operation * is a semigroup, if * is associative in S, that is, $\forall a, b, c \in S, a * (b * c) = (a * b) * c$.

A semigroup is commutative, if * is commutative in S, that is, $\forall a, b \in S, a*b = b*a$.

Definition 2.2 ([11]). A semiring is a nonempty set S together with two binary operations addition and multiplication denoted by +, respectively, satisfying

- (i) (S, +) is a commutative semigroup,
- (ii) (S, .) is a semigroup,
- (iii) distributive low holds, that is,

$$a.(b+c) = a.b + a.c$$
 and $(a+b).c = a.c + b.c$,

 $\forall a, b, c \in S$.

From now on, a semiring is symbolized as S or R.

Definition 2.3 ([11]). A subset I of S is a left (right) ideal of S, if

- (i) $a + b \in I$, for all $a, b \in I$
- (ii) $b.a \in I(a.b \in I)$, for any $a \in I$ and $b \in S$.
- If I is both a left and right ideal, then I is an ideal.

Definition 2.4 ([15]). Let I be a left (right) ideal of S. A left (right) ideal of S is a left (right) k-ideal of S, if $b, c \in I$, $a \in S$, a + b = c implies $a \in I$.

Definition 2.5 ([18]). (ϑ, A) is a soft set over U where $\vartheta : E \to P(U)$ is a function such that $\vartheta(a) = \emptyset$, if $a \notin A$.

Definition 2.6 ([17]). Let (ϑ, A) be a soft set over U. Then (ϑ, A) is an empty soft set, if $\vartheta(a) = \emptyset$, for each $a \in A$. An empty soft set is symbolized by $\widetilde{\Phi}$.

 (ϑ, A) is said to be a universal soft set, if $\vartheta(a) = U$, for each $a \in A$. A universal soft set is symbolized by \widetilde{A} .

Definition 2.7 ([6]). Let (ϑ, A) and (χ, A) be two soft sets over U. (ϑ, A) is said to be a soft subset of (χ, A) , if $\vartheta(a) \subseteq \chi(a)$, for each $a \in A$. A soft subset is symbolized by $\vartheta \widetilde{\subset} \chi$.

 (ϑ, A) and (χ, A) said to equal soft sets, if $\vartheta(a) = \chi(a)$, for each $a \in A$. Equal soft sets are symbolized by $\vartheta \cong \chi$.

Definition 2.8 ([6]). Let (ϑ, A) and (χ, A) be two soft sets over U.

- (i) The union of ϑ and χ , denoted by $\vartheta \widetilde{\cup} \chi$, is defined as $(\vartheta \cup \chi)(a) = \vartheta(a) \cup \chi(a)$, for each $a \in A$.
- (ii) The intersection of ϑ and χ , denoted by $\vartheta \cap \chi$, is defined as $(\vartheta \cap \chi)(a) = \vartheta(a) \cap \chi(a)$, for each $a \in A$.

Definition 2.9 ([6]). Let (ϑ, A) and (χ, A) be two soft sets over U. \wedge -product and \vee -product of ϑ and χ are defined by

$$(\vartheta \wedge \chi)(a,b) = \vartheta(a) \cap \chi(b), \quad (\vartheta \vee \chi)(a,b) = \vartheta(a) \cup \chi(b),$$

for each $a, b \in A$, respectively. They are symbolized by $\vartheta \wedge \chi$ and $\vartheta \vee \chi$, respectively.

Definition 2.10 ([7]). Let (ϑ, A) be a soft set over U and ψ be a function from a set A to a set B. For each $b \in B$,

$$\psi(\vartheta,A):B\to P(U),\ \psi(\vartheta,A)(b)=\left\{\begin{array}{ll} \cup\{\vartheta(a):a\in A,\psi(a)=b\}, & \text{ if }b\in\psi(A)\\ \varnothing, & \text{ if }b\notin\psi(A)\end{array}\right.$$

is a soft image of (ϑ, A) under ψ .

For all $a \in A$,

$$\psi^{-1}(\vartheta): A \to P(U), \ \psi^{-1}(\vartheta)(a) = \vartheta(\psi(a))$$

is a soft preimage (or soft inverse image) of (ϑ, A) under ψ .

Definition 2.11 ([7]). Let (ϑ, A) be a soft set over U and $\alpha \in P(U)$. A set

$$\vartheta_{\alpha} = \{ a \in A : \vartheta(a) \supset \alpha \}$$

is an α -inclusion of (ϑ, A) .

3. Soft K-int-ideal

In this section, we first define concept of soft int-ideal of a semiring. We then introduce the concept of soft k-int-ideal of a semiring by using intersection operation of set and investigate the basic properties of soft k-int-ideal. We finally define a soft k-product of two soft left k-int-ideals and study their algebraic structures.

Definition 3.1. Let (ϑ, S) be a soft set over U. (ϑ, S) is said to be a soft left (right) int-ideal over U, if it satisfies the following axioms:

- (i) $\vartheta(a+b) \supseteq \vartheta(a) \cap \vartheta(b)$,
- (ii) $\vartheta(a.b) \supseteq \vartheta(b) \ (\vartheta(a.b) \supseteq \vartheta(a)),$

for each $a, b \in S$.

 (ϑ,S) is a soft int-ideal over U, if it is both soft left int-ideal and soft right int-ideal over U.

Example 3.2. Suppose that set of the real numbers \mathcal{R} is the universal set and set of the positive integers \mathcal{Z}^+ is the subset of set of parameters. A soft set $(\vartheta, \mathcal{Z}^+)$ over \mathcal{R} is defined by

$$\vartheta(a) = (-a, a),$$

where (-a, a) is an open interval for each $a \in \mathcal{Z}^+$. It shows that $(\vartheta, \mathcal{Z}^+)$ is a soft int-ideal of \mathcal{Z}^+ over \mathcal{R} .

Definition 3.3. Let A be a subset of S. The function

$$\lambda_A(a) = \left\{ \begin{array}{l} U, \text{ if } a \in A \\ \varnothing, \text{ if } a \notin A \end{array} \right.$$

is said to be a soft characteristic function of A

Definition 3.4. Let (ϑ, S) be a soft left int-ideal over U. (ϑ, S) is said to be a soft left k-int-ideal over U, if for each $a, b, c \in S, a + b = c$ implies $\vartheta(a) \supseteq \vartheta(b) \cap \vartheta(c)$.

A soft right k-int-ideal can be defined similarly.

Theorem 3.5. Let I be a subset of S. I is a left(right) k-ideal of S iff (λ_I, S) is a soft left(right) k-int-ideal over U.

Proof. Suppose that I is a left k-ideal of S. Let $a,b,c \in S$ such that a+b=c. If $b,c \in I$, then $a \in I$ as I is a left k-ideal of S. Thus,

$$\lambda_I(a) = U = \lambda_I(b) \cap \lambda_I(c).$$

In the contrary case,

$$\lambda_I(b) \cap \lambda_I(c) = \emptyset \subseteq \lambda_I(a).$$

So, (λ_I, S) is a soft left k-int-ideal over U.

Conversely, suppose that (λ_I, S) is a soft left k-int-ideal over U. It is clear that I is a left ideal of S. Let $a \in S$, $b, c \in I$ such that a + b = c. Then,

$$\lambda_I(a) \supseteq \lambda_I(b) \cap \lambda_I(c) = U.$$

Thus, $\lambda_I(a) = U$. So $a \in I$. Hence, I is a left k-ideal of S.

Theorem 3.6. Let (ϑ, S) and (χ, S) be two soft left(right) k-int-ideals over U. Then, $(\vartheta \cap \chi, S)$ is a soft left(right) k-int-ideal over U.

Proof. Let $a, b, c \in S$ such that a + b = c. Then,

$$\begin{array}{lcl} (\vartheta \cap \chi)(a) & = & \vartheta(a) \cap \chi(a) \\ & \supseteq & [\vartheta(b) \cap \vartheta(c)] \cap [\chi(b) \cap \chi(c)] \\ & = & [\vartheta(b) \cap \chi(b)] \cap [\vartheta(c) \cap \chi(c)] \\ & = & (\vartheta \cap \chi)(b) \cap (\vartheta \cap \chi)(c). \end{array}$$

Thus, $(\vartheta \widetilde{\cap} \chi, S)$ is a soft left k-int-ideal over U.

Remark 3.7. The following example shows that $(\vartheta \widetilde{\cup} \chi, S)$ is not a soft k-int-ideal over U.

Example 3.8. Suppose that set of the positive integers \mathcal{Z}^+ is the universal set and $S = \{a, b, c, d\}$ is the subset of set of parameters. The soft k-int-ideals (ϑ, S) and (χ, S) over \mathcal{Z}^+ are defined by:

 $\vartheta(a) = \{1, 2, 4, 7\}, \ \vartheta(b) = \{1, 2, 4, 7\}, \ \vartheta(c) = \{3, 4\} \ \text{and} \ \chi(a) = \{4, 5, 8, 9\}, \ \chi(b) = \{4, 5, 8, 9\}, \ \chi(c) = \{5\}.$ It shows that $(\vartheta \cup \chi)(ac) \not\supseteq (\vartheta \cup \chi)(c)$. Then, $(\vartheta \widetilde{\cup} \chi, S)$ is not a soft int-ideal over \mathcal{Z}^+ . Thus, $(\vartheta \widetilde{\cup} \chi, S)$ is not a soft k-int-ideal over \mathcal{Z}^+ .

Theorem 3.9. Let (ϑ, S) be a soft left(right) k-int-ideal over U and (χ, R) be a soft left(right) k-int-ideal over U. Then, $(\vartheta \wedge \chi, S \times R)$ is a soft left(right) k-int-ideal over U.

Proof. Let $(a_1, a_2), (b_1, b_2), (c_1, c_2) \in S \times R$ such that $(a_1, a_2) + (b_1, b_2) = (c_1, c_2)$. Then,

$$\begin{array}{rcl} (\vartheta \wedge \chi)(a_1,a_2) & = & \vartheta(a_1) \cap \chi(a_2) \\ & \supseteq & [\vartheta(b_1) \cap \vartheta(c_1)] \cap [\chi(b_2) \cap \chi(c_2)] \\ & = & [\vartheta(b_1) \cap \chi(b_2)] \cap [\vartheta(c_1) \cap \chi(c_2)] \\ & = & (\vartheta \wedge \chi)(b_1,b_2) \cap (\vartheta \wedge \chi)(c_1,c_2). \end{array}$$

Thus, $(\vartheta \wedge \chi, S \times R)$ is a soft left k-int-ideal over U.

Remark 3.10. The following example shows that $(\vartheta \lor \chi, S \times R)$ is not a soft k-intideal over U.

Example 3.11. Suppose that set of the positive integers \mathcal{Z}^+ is the universal set, $S = \{a, b, c, d\}$ and Z_4 are the subsets of set of parameters. The soft k-int-ideals (ϑ, S) and (χ, Z_4) over \mathcal{Z}^+ are defined by:

 $\vartheta(a) = \{1, 2, 4, 7\}, \ \vartheta(b) = \{1, 2, 4, 7\}, \ \vartheta(c) = \{3, 4\} \text{ and } \chi(a) = \{b \in \mathcal{Z}^+ : ab \equiv 0 \pmod{4}\} \text{ for all } a \in Z_4. \text{ Then, } (\vartheta \vee \chi)(a, 2) \not\supseteq (\vartheta \vee \chi)(c, 2) \cap (\vartheta \vee \chi)(b, 0). \text{ Thus, } (\vartheta \vee \chi, S \times Z_4) \text{ is not a soft k-int-ideal over } \mathcal{Z}^+.$

Definition 3.12. Let (ϑ, S) and (χ, S) be two soft sets over U. Then $\vartheta \tilde{\circ}_k \chi$ is said to be a soft k-product, wif

$$(\vartheta \circ_k \chi)(a) = \left\{ \begin{array}{l} \bigcap \{\vartheta(a_i) \cap \chi(b_i) : i = 1, 2\}, \text{ if } a + a_1b_1 = a_2b_2 \\ \varnothing, \text{ if } a \text{ cannot be predicated as } a + a_1b_1 = a_2b_2. \end{array} \right.$$

Theorem 3.13. Let (ϑ, S) be a soft right k-int-ideal and (χ, S) be a soft left k-int-ideal over U. Then, $\vartheta \tilde{\circ}_k \chi \tilde{\subseteq} \vartheta \tilde{\cap} \chi$.

Proof. Let $a \in S$. If $(\vartheta \circ_k \chi)(a) = \emptyset$, then it is a clear proof. Let $(\vartheta \circ_k \chi)(a) \neq \emptyset$. Since (ϑ, S) is a soft right k-int-ideal over U,

$$\begin{array}{ccc}
\vartheta(a) & \supseteq & \vartheta(a_1b_1) \cap \vartheta(a_2b_2) \\
& \supseteq & \vartheta(a_1) \cap \vartheta(a_2)
\end{array}$$

for each $a_i, b_i \in S$, i = 1, 2, satisfying $a + a_1b_1 = a_2b_2$. Similarly,

$$\chi(a) \supseteq \chi(b_1) \cap \chi(b_2).$$

Then,

$$(\vartheta \circ_k \chi)(a) = \bigcap \{\vartheta(a_i) \cap \chi(b_i) : i = 1, 2, a + a_1b_1 = a_2b_2\}$$

$$\subseteq \vartheta(a) \cap \chi(a)$$

$$= (\vartheta \cap \chi)(a).$$

Thus, $\vartheta \circ_k \chi \subseteq \vartheta \cap \chi$.

Lemma 3.14. Let (ϑ, S) be a soft set over U. (ϑ, S) is a soft left(right) int-ideal over U iff ϑ_{α} is a left(right) ideal of S, for any $\alpha \in P(U)$ such that $\vartheta_{\alpha} \neq \emptyset$.

Proof. Assume that (ϑ, S) is a soft left int-ideal over U. Let $a, b \in \vartheta_{\alpha}$. Then, $\vartheta(a) \supseteq \alpha$ and $\vartheta(b) \supseteq \alpha$. It follows that

$$\begin{array}{ccc} \vartheta(a+b) & \supseteq & \vartheta(a) \cap \vartheta(b) \\ & \supseteq & \alpha. \end{array}$$

Thus, $a + b \in \vartheta_{\alpha}$. Let $a \in \vartheta_{\alpha}$ and $s \in S$. It shows that $\vartheta(a) \supseteq \alpha$. So,

$$\begin{array}{ccc} \vartheta(sa) & \supseteq & \vartheta(a) \\ & \supseteq & \alpha. \end{array}$$

Hence, $sa \in \vartheta_{\alpha}$. Therefore, ϑ_{α} is a left ideal of S, for any $\alpha \in P(U)$ such that $\vartheta_{\alpha} \neq \varnothing$.

Conversely, let ϑ_{α} be a left ideal of S, for any $\alpha \in P(U)$ such that $\vartheta_{\alpha} \neq \emptyset$. Let $a, b \in \vartheta_{\beta}$ such that $\beta = \vartheta(a) \cap \vartheta(b)$, for each $a, b \in S$. Then, $a + b \in \vartheta_{\beta}$. Thus,

$$\vartheta(a+b) \supseteq \beta \\
= \vartheta(a) \cap \vartheta(b).$$

Also, for $a \in \vartheta_{\gamma}$ such that $\gamma = \vartheta(a)$, we obtain $sa \in \vartheta_{\gamma}$, for each $s \in S$. So, $\vartheta(sa) \supseteq \vartheta(a)$. Hence, (ϑ, S) is a soft left int-ideal over U.

Theorem 3.15. Let (ϑ, S) be a soft set over U. (ϑ, S) is a soft left(right) k-int-ideal over U iff ϑ_{α} is a left(right) k-ideal of S for any $\alpha \in P(U)$ such that $\vartheta_{\alpha} \neq \varnothing$.

Proof. Following Lemma 3.14, it was proved that a soft set (ϑ, S) is a soft left intideal iff ϑ_{α} is a left ideal of S, for any $\alpha \in P(U)$ such that $\vartheta_{\alpha} \neq \emptyset$. Suppose that (ϑ, S) is a soft left k-int ideal over U. Let $a, k \in \vartheta_{\alpha}$, $s \in S$, s + a = k. Since $a, k \in \vartheta_{\alpha}$, we have $\vartheta(a) \supseteq \alpha$, $\vartheta(k) \supseteq \alpha$. Also, $\vartheta(s) \supseteq \vartheta(a) \cap \vartheta(k)$. Then, $\vartheta(s) \supseteq \alpha$, and so $s \in \vartheta_{\alpha}$. Thus, ϑ_{α} is a left k-ideal of S.

Conversely, let ϑ_{α} be a left k-ideal of S, for any $\alpha \in P(U)$ such that $\vartheta_{\alpha} \neq \emptyset$. Let $a, s, k \in S$ such that a + s = k. Suppose that $\vartheta(s) = \alpha_1$, $\vartheta(k) = \alpha_2$ ($\alpha_i \in P(U)$). Let $\alpha_1 \cap \alpha_2 = \alpha$. Then, $s \in \vartheta_{\alpha}$ and $k \in \vartheta_{\alpha}$. Since ϑ_{α} is a left k-ideal of S, we have $a \in \vartheta_{\alpha}$, i.e., $\vartheta(a) \supseteq \vartheta(s) \cap \vartheta(k)$. Thus, (ϑ, S) is a soft left k-int-ideal over U.

Lemma 3.16. Let ψ be a function from A to B and let (ϑ, A) be a soft set over U. For each $\emptyset \neq \alpha \in P(U)$,

$$(\psi(\vartheta))_{\alpha} = \bigcap \{ \psi(\vartheta_{\alpha \setminus \beta}) : \varnothing \subset \beta \subset \alpha \}.$$

Proof. Let $\emptyset \neq \alpha \in P(U)$. If $b \in (\psi(\vartheta))_{\alpha}$, then

$$\alpha \subseteq \psi(\vartheta)(b) = \bigcup \{\vartheta(c) : c \in A, \psi(c) = b\}.$$

This means that there exists $a_0 \in \psi^{-1}(b)$ such that $\vartheta(a_0) \supset \alpha \setminus \beta$, for all $\beta \in P(U)$ with $\varnothing \subset \beta \subset \alpha$. Thus, $b = \psi(a_0) \in \psi(\vartheta_{\alpha \setminus \beta})$. So, $b \in \bigcap \{\psi(\vartheta_{\alpha \setminus \beta}) : \varnothing \subset \beta \subset \alpha\}$.

Conversely, let $b \in \bigcap \{ \psi(\vartheta_{\alpha \setminus \beta}) : \varnothing \subset \beta \subset \alpha \}$. Then, $b \in \psi(\vartheta_{\alpha \setminus \beta})$, for all $\beta \in P(U)$ with $\varnothing \subset \beta \subset \alpha$, which implies that there exists $a_0 \in \vartheta_{\alpha \setminus \beta}$ such that $b = \psi(a_0)$. It follows that $\vartheta(a_0) \supseteq \alpha \setminus \beta$ and $a_0 \in \psi^{-1}(b)$. Thus

$$(\psi(\vartheta))(b) = \bigcup \{\vartheta(c) : c \in \vartheta^{-1}(b)\} \supseteq \bigcup \{\alpha \setminus \beta : \varnothing \subset \beta \subset \alpha\} = \alpha.$$
536

So, $b \in (\psi(\vartheta))_{\alpha}$.

Theorem 3.17. Let ψ be a surjective homomorphism from R to S. Let (ϑ, R) be a soft left(right) k-int-ideal over U. Then $(\psi(\vartheta, R), S)$ is a soft left(right) k-int-ideal over U.

Proof. We show that each nonempty α -inclusion of $(\psi(\vartheta, R), S)$ is a left(right) k-ideal of S. Let $(\psi(\vartheta, R))_{\alpha}$ be a nonempty α -inclusion of $(\psi(\vartheta, R), S)$, for all $\alpha \in P(U)$. If $\alpha = \emptyset$, then $(\psi(\vartheta, R))_{\alpha} = S$.

Suppose that $\alpha \neq \emptyset$. From Lemma 3.16, $(\psi(\vartheta, R))_{\alpha} = \bigcap \{\psi(\vartheta_{\alpha \setminus \beta}) : \emptyset \subset \beta \subset \alpha\}$. Then, $\psi(\vartheta_{\alpha \setminus \beta})$ is a nonempty, for all $\emptyset \subset \beta \subset \alpha$. Thus, $\vartheta_{\alpha \setminus \beta}$ is a nonempty α -inclusion of $(\psi(\vartheta, R), S)$, for each $\emptyset \subset \beta \subset \alpha$. Since (ϑ, R) is a soft left(right) k-int-ideal over U, it is shown from Proposition 3.14, that $\vartheta_{\alpha \setminus \beta}$ is a left(right) k-ideal of R. Since ψ is a surjective homomorphism, $\psi(\vartheta_{\alpha \setminus \beta})$ is a left(right) k-ideal of S. So, $(\psi(\vartheta, R))_{\alpha}$ being an intersection of a family of left(right) k-ideals is also a left(right) k-ideal of S.

Theorem 3.18. Let ψ be a surjective homomorphism from R to S. Let (ϑ, S) be a soft left(right) k-int-ideal over U. Then $(\psi^{-1}(\vartheta), R)$ is a soft left(right) k-int-ideal over U.

Proof. For any $a, b, c \in S$ such that $a + b = c(\psi(a) + \psi(b) = \psi(c))$,

$$\psi^{-1}(\vartheta)(a) = \vartheta(\psi(a))$$

$$\supseteq \vartheta(\psi(b)) \cap \vartheta(\psi(c))$$

$$= \psi^{-1}(\vartheta)(b) \cap \psi^{-1}(\vartheta)(c).$$

Then $(\psi^{-1}(\vartheta), R)$ is a soft left(right) k-int-ideal over U.

4. Conclusions

In this study, we defined the notion of soft k-int-ideal and investigated their related properties. We then focused on the concept of soft k-product and obtain related properties. To extend our work, for further research someone can define soft h-int-ideal of a hemiring and study on their properties.

References

- U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Comput. Math. Appl. 59 (2010) 3458–3463.
- [2] H. Aktaş and N. Çağman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726–2735.
- [3] M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. 57 (2009) 1547–1553.
- [4] M. I. Ali, M. Shabir and M. Naz, Algebraic structures of soft sets associated with new operations, Comput. Math. Appl. 61 (2011) 2647–2654.
- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [6] N. Cağman and S. Enginoğlu, Soft set theory and uni-int decision making, European J. Oper. Res. 207 (2010) 848–855.
- [7] N. Çağman, F. Çıtak and H. Aktas, Soft int-group and its applications to group theory, Neural Computing and Applications 21 (2012) 151–158.
- [8] N. Çağman, Contributions to the theory of soft sets, Journal of New Results in Science 4 (2014) 33-41.
- [9] F. Çıtak and N. Çağman, Soft int-rings and its algebraic applications, Journal of Intelligent and Fuzzy Systems 28 (2015) 1225–1233.

- [10] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl. 56 (2008) 2621–2628.
- [11] J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoritical Computer Science, Longman Scientific and Technical, U.K. 1992.
- [12] C. Jana and M. Pal, Applications of new soft intersection set on groups, Ann. Fuzzy Math. Inform. 11 (6) (2016) 923–944. 923-944.
- [13] Y. B. Jun and C. H. Park, Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. Sci. 178 (2008) 2466–2475.
- [14] Y. B. Jun, K. J. Lee and J. Zhan, Soft p-ideals of soft BCI-algebras, Comput. Math. Appl. 58 (2009) 2060–2068.
- [15] D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math. Debrecen 12 (1965) 219– 226.
- [16] J. H. Lee, I. S. Kong, H. S. Kim and J. U. Jung, Generalized int-soft subsemigroups, Ann. Fuzzy Math. Inform. 8 (6) (2014) 869–887.
- [17] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562.
- [18] D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl. 37 (1999) 19–31.
- [19] A. Sezgin and A. O. Atagun, On operations of soft sets, Comput. Math. Appl. 61 (2011) 1457–1467.
- [20] A. Sezgin, A. O. Atagun and N. Cagman, Soft intersection near-rings with its applications, Neural Computing and Applications 21 (2012) 221–229.
- [21] Q. M. Sun, Z. L. Zhang and J. Liu, Soft sets and soft modules, Lecture Notes in Comput. Sci. 5009 (2008) 403–409.
- [22] L. A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.
- [23] J. Zhan and Y. B. Jun, Soft BL-algebras based on fuzzy sets, Comput. Math. Appl. 59 (6) (2010) 2037–2046.
- [24] J. Zhan and Y. Xu, Soft lattice implication algebras based on fuzzy sets, Hacet. J. Math. Stat. 40 (4) (2011) 483–492.

FILIZ CITAK (filiz.citak@gop.edu.tr)

Department of Mathematics, Gaziosmanpaşa University, Tokat, Turkey

NAIM CAĞMAN (naim.cagman@gop.edu.tr)

Department of Mathematics, Gaziosmanpaşa University, Tokat, Turkey