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1. Introduction

Rough set theory [10], is an extension of set theory for the study of intelligent
systems characterized by inexact, uncertain or insufficient information. Rough set
theory has found many interesting applications. The rough set approach seems to be
of fundamental importance to artificial intelligence and cognitive sciences, especially
in the areas of machine learning, knowledge acquisition, decision analysis, knowledge
discovery from databases, expert systems, inductive reasoning and pattern recogni-
tion [4, 11, 15]. The basic idea of rough set is based upon the approximation of sets
by a pair of sets known as the lower approximation and the upper approximation
of a set [7, 8]. Any subset of a universe can be characterized by two definable or
observable subsets called lower and upper approximations. Zadeh [19] introduced
the degree of membership/truth (t) in 1965 and defined the fuzzy set. Now fuzzy
sets are combined with rough sets in a fruitful way and defined by rough fuzzy sets
and fuzzy rough sets [1, 9, 14]. Atanassov [2] introduced the degree of nonmember-
ship/falsehood (f) and defined the intuitionistic fuzzy sets. One of the interesting
generalizations of the theory of fuzzy sets and intuitionistic fuzzy sets is the theory of
neutrosophic sets introduced by F. Smarandache Atanassov [12, 13] which deals with
the degree of indeterminacy/neutrality (i) as independent component. Neutrosophy
is a branch of philosophy that studies the origin, nature and scope of neutralities, as
well as their interactions with different ideational spectra. The idea of neutrosophy
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is applied in many fields in order to solve problems related to indeterminacy. Neutro-
sophic sets are described by three functions: Truth function, indeterminacy function
and false function that are independently related. The theories of neutrosophic set
have achieved great success in various areas such as medical diagnosis, database,
topology, image processing, and decision making problem [5, 6, 17, 18]. While the
neutrosophic set is a powerful tool to deal with indeterminate and inconsistent data
and the theory of rough sets is a powerful mathematical tool to deal with incom-
pleteness. Neutrosophic sets and rough sets are two different topics, none conflicts
the other. Recently many researchers had applied the notion of neutrosophic sets to
relations, group theory, ring theory, soft set theory and so on.

In this paper we combine the mathematical tools rough sets and neutrosophic
sets and introduce a new class of rough sets in neutrosophic approximation space.
First we review some basic notions related to rough sets and neutrosophic sets and
then we construct the neutrosophic rough approximation operators and introduce
neutrosophic rough sets and discuss some of their interesting properties.

2. Preliminaries

Definition 2.1 ([12]). A neutrosophic set A on the universe of discourse X is de-
fined as A = {〈 x, TA(x), IA(x), FA(x)〉, x ∈ X} where T, F, I : X −→ [0, 1] and
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.2 ([12]). If A = {〈x, TA(x), IA(x), FA(x)〉 /x ∈ X} and B =
{〈x, TB(x), IB(x), FB(x)〉 /x ∈ X} are any two neutrosophic sets of X, then

(i) A ⊆ B ⇔ TA(x) ≤ TB(x); IA(x) ≤ IB(x) and FA(x) ≥ FB(x),
(ii) A = B ⇔ TA(x) = TB(x); IA(x) = IB(x) and FA(x) = FB(x) ∀x ∈ X,
(iii) ∼ A = {〈x, FA(x), 1− IA(x), TA(x)〉 /x ∈ X},
(iv) A ∩B = {〈x, T(A∩B)(x), I(A∩B)(x), F(A∩B)(x)〉/x ∈ X},

where TA∩B(x) = min{TA(x), TB(x)}, IA∩B(x) = min{IA(x), IB(x)},
FA∩B(x) = max{FA(x), FB(x)},

(v) A ∪B = {〈x, T(A∪B)(x), I(A∪B)(x), F(A∪B)(x)〉/x ∈ X}
where TA∪B(x) = max{TA(x), TB(x)}, IA∪B(x) = max{IA(x), IB(x)},

FA∪B(x) = min{FA(x), FB(x)}.

Definition 2.3 ([8]). Let R ⊆ U × U be a crisp binary relation on U .
(i) R is referred to as reflexive, if (x, x) ∈ R, for all x ∈ U .
(ii) R is referred to as symmetric, if for all (x, y) ∈ U , (x, y) ∈ R implies (y, x) ∈ R.
(iii) R is referred to as transitive, if for all x, y, z ∈ U , (x, y) ∈ R and (y, z) ∈ R

implies (x, z) ∈ R.

Definition 2.4 ([8]). Let U be a non empty universe of discourse and R ⊆ U × U ,
an arbitrary crisp relation on U . Denote

xR = {y ∈ U/(x, y) ∈ R}, x ∈ U,

where xR is called the R-after set of x [3] or successor neighbourhood of x with
respect to R [16]. The pair (U,R) is called a crisp approximation space. For any
A ⊆ U the upper and lower approximation of A with respect to (U,R) denoted by
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R(A) and R(A) are respectively defined as follows:

R(A) = {x ∈ U/xR ∩A 6= ϕ}, R(A) = {x ∈ U/xR ⊆ A}.
The pair (R(A), R(A)) is referred to as crisp rough set of A with respect to (U,R) and
R, R : ρ(U) → ρ(U) are referred to upper and lower crisp approximation operator
respectively.

The crisp approximation operator satisfies the following properties for all A,B ∈
ρ(U).

(L1) R(A) =∼ R(∼ A), (U1) R(A) =∼ R(∼ A),
(L2) R(U) = U, (U2) R(ϕ) = ϕ,
(L3) R(A ∩B) = R(A) ∩R(B), (U3) R(A ∩B) = R(A) ∪R(B),
(L4) A ⊆ B ⇒ R(A) ⊆ R(B), (U4) A ⊆ B = R(A) ⊆ R(B),
(L5) R(A ∪B) ⊇ R(A) ∪R(B), (U5) R(A ∩B) ⊆ R(A) ∩R(B).

Properties (L1)and(U1) show that the approximation operators R and R are dual
to each other. Properties with the same number may be considered as a dual prop-
erties. If R is equivalence relation in U then the pair (U,R) is called a Pawlak
approximation space and (R(A), R(A)) is a Pawlak rough set, in such a case the
approximation operators have additional properties.

3. Neutrosophic rough sets

In this section, we introduce neutrosophic approximation space and neutrosophic
approximation operators induced from the same. Further we define a new type of
set called neutrosophic rough set and investigate some of its properties.

Definition 3.1. A constant neutrosophic set on U is defined as follows:

̂(α, β, γ) = { 〈x, α, β, γ 〉/ x ∈ U},
where 0 ≤ α, β, γ ≤ 1 and α+ β + γ ≤ 3.
And we introduce a special neutrosophic set (neutrosophic singleton set) )1y for
y ∈ U as follows:

T1y (x) =

{
1, if x = y
0, if x 6= y

,

T1(U−(y)
(x) =

{
0, if x = y
1, if x 6= y

,

I1y =

{
1, if x = y
0, if x 6= y

,

I1(U−(y)
(x) =

{
0, if x = y
1, if x 6= y

,

F1y (x) =

{
0, if x = y
1, if x 6= y

,

F1(U−(y))
=

{
1, if x = y
0, if x 6= y

.
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Definition 3.2. A neutrosophic relation on U is a neutrosophic set

R = {〈x, y〉, TR(x, y), IR(x, y), FR(x, y)/x, y ∈ U}
and

TR : U × U −→ [0, 1]; IR : U × U −→ [0, 1]; FR : U × U −→ [0, 1]

satisfies 0 ≤ TR(x, y) + IR(x, y) + FR(x, y) ≤ 3, for all (x, y) ∈ U × U .
We denote the family of all neutrosophic relation on U by N(U × U).

Definition 3.3. Let U be a nonempty universe of discourse. For an arbitrary neu-
trosophic relation R over U×U the pair (U,R) is called neutrosophic approximation
space. For any A ∈ N(U), we define the upper and lower approximations with
respect to (U,R), denoted by R(A) and R(A) respectively:

R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/x ∈ U},

R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/x ∈ U},
where

TR(A)(x) =
∨
y∈U

[ TR(x, y) ∧ TA(y) ] ,

IR(A)(x) =
∨
y∈U

[ IR(x, y) ∧ IA(y) ] ,

FR(A)(x) =
∧
y∈U

[ FR(x, y) ∨ FA(y) ] ,

TR(A)(x) =
∧
y∈U

[ FR(x, y) ∨ TA(y) ] ,

IR(A)(x) =
∧
y∈U

[ (1− IR(x, y)) ∨ IA(y) ] ,

FR(A)(x) =
∨
y∈U

[ TR(x, y) ∧ FA(y) ] .

The pair (R(A), R(A)) is called neutrosophic rough set of A with respect to (U,R)
and R,R : N(U) −→ N(U) are referred to as upper and lower neutrosophic rough
approximation operators respectively.

Remark 3.4. If R is an intuitionistic fuzzy relation on U and (U,R) is an intu-
itionistic fuzzy approximation space then neutrosophic rough operators are induced
from an intuitionistic fuzzy approximation space as follows:

R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/x ∈ U} A ∈ N(U),

R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/x ∈ U} A ∈ N(U),

where
TR(A)(x) =

∨
y∈U

[ µR(x, y) ∧ TA(y) ] ,

IR(A)(x) =
∨
y∈U

[ 1− (µR(x, y) + γR(x, y)) ∧ IR(y)] ,

FR(A)(x) =
∧
y∈U

[ γR(x, y) ∨ FA(y) ] ,

TR(A)(x) =
∧
y∈U

[ γR(x, y) ∨ TA(y) ] ,

IR(A)(x) =
∧
y∈U

[ (µR(x, y) + γR(x, y)) ∨ IA(y) ] ,

FR(A)(x) =
∨
y∈U

[ µR(x, y) ∧ FA(y) ] .
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Remark 3.5. If R is a crisp binary relation on U and (U,R) is a crisp approxima-
tion space, then neutrosophic rough approximation operators are induced from crisp
approximation space, such that ∀A ∈ N(U),

R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/x ∈ U},
R(A) = {〈x, TR(A)(x), IR(A)(x), FR(A)(x)〉/U ∈ U},

where
TR(A)(x) =

∨
y∈[x]R

TA(y), IR(A)(x) =
∨

y∈[x]R
IA(y), FR(A)(x) =

∧
y∈[x]R

FA(y),

TR(A)(x) =
∧

y∈[x]R
TA(y), IR(A)(x) =

∧
y∈[x]R

IA(y), FR(A)(x) =
∨

y∈[x]R
FA(y).

Theorem 3.6. Let (U,R) be a neutrosophic approximation space. Then the lower
and upper neutrosophic rough approximation operators induced from (U,R) satisfy
the following properties. ∀ A,B ∈ N(U) , ∀ α, β, γ ∈ [0, 1] with α+ β + γ ≤ 3.

(FNL1)R(A) =∼ R(∼ A),

(FNL2)R(A ∪ (α̂, β, γ)) = R(A) ∪ (α̂, β, γ),
(FNL3)R(A ∩B) = R(A) ∩R(B),
(FNL4)A ⊆ B ⇒ R(A) ⊆ R(B),
(FNL5)R(A ∪B) ⊇ R(A) ∪R(B),
(FNL6)R1 ⊆ R2 ⇒ R1(A) ⊇ R2(A),

(FNU1)R(A) = R(A) =∼ R(∼ A),

(FNU2)R(A ∩ (α̂, β, γ) = R(A) ∩ (α̂, β, γ),
(FNU3)R(A ∪B) = R(A) ∪R(B),
(FNU4)A ⊆ B ⇒ R(A) ⊆ R(B),
(FNU5)R(A ∩B) ⊆ R(A) ∩R(B),
(FNU6)R1 ⊆ R2 ⇒ R1(A) ⊆ R2(A).

Proof. We only prove the properties of lower neutrosophic rough approximation
operator R(A). The upper rough neutrosophic approximation operator R(A) can be
proved similarly.

(FNL1) By Definition 3.3 , we have
∼ A = {〈x, T∼A(x), I∼A(x), F∼A(x)/x ∈ U},
R(∼ A) =

∨
y∈U

[ TR(x, y) ∧ T∼A(y) ] ,
∨
y∈U

[ IR(x, y) ∧ I∼A(y) ] ,∧
y∈U

[ FR(x, y) ∨ F∼A(y) ]

=
∨
y∈U

[ TR(x, y) ∧ FA(y) ] ,
∨
y∈U

[ IR(x, y) ∧ (1− IA(y)) ] ,∧
y∈U

[FR(x, y) ∨ TA(y)],

∼ (R(∼ A)) =
∧
y∈U

[FR(x, y) ∨ TA(y)] ,
∧
y∈U

[(1− IR(x, y)) ∨ IA(y)] ,∨
y∈U

[TR(x, y) ∧ FA(y) ]

= R(A).
(FNL2) It can be easily verified by definition of R(A).
(FNL3) R(A ∩B)

= {〈x, TR(A∩B)(x), IR(A∩B)(x), FR(A∩B)(x)|x ∈ U〉}
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= {〈x,
∧
y∈U

T(A∩B)(y),
∧
y∈U

I(A∩B)(y),
∨
y∈U

F(A∩B)(y)|x ∈ U〉}

= {〈x,
∧
y∈U

(TA(y)
∧
TB(y)),

∧
y∈U

(IA(y)
∧
IB(y)),

∨
y∈U

(FA(y)
∨
FB(y))|x ∈ U}

= {〈, TR(A)(x)
∧
TR(B)(x), IR(A)(x)

∧
IR(B)(x), FR(A)(x)

∧
FR(B)(x)|x ∈ U〉}

= R(A) ∩R(B).
(FNL4) It is straightforward. Similarly, we can prove the properties of the upper

rough neutrosophic approximation operators. �

Remark 3.7. The properties (FNL1) and (FNU1) shows that neutrosophic rough
approximation operators R and R are dual to each other and the properties (FNL2)

and (FNU2) imply, following properties (FNL2)
′

and (FNU2)
′
.

(FNL2)
′
R(U) = U (FNU2)

′
= R(ϕ) = ϕ.

Example 3.8. Let (U,R) be a neutrosophic approximation space where U = {x1, x2, x3}
and R ∈ N(U × U) is defined as
R = {〈(x1, x1)0.8, 0.7, 0.1〉 〈(x1, x2), 0.2, 0.5, 0.4〉 〈(x1, x3)0.6, 0.5, 0.7〉

〈(x2, x1)0.4, 0.6, 0.3〉 〈(x2, x2)0.7, 0.8, 0.1〉 〈(x2, x3)0.5, 0.3, 0.1〉

〈(x3, x1)0.6, 0.2, 0.1〉 〈(x3, x2)0.7, 0.8, 0.1〉 〈(x3, x3)1, 0.9, 0.1〉}.
If a neutrosophic set

A = {〈x1, 0.8, 0.9, 0.1〉 〈x2, 0.5, 0.4, 0.3〉 〈x3, 0.5, 0.4, 0.7〉},
we can calculate,

R(A) = {〈x1, 0.8, 0.7, 0.1〉 〈x2, 0.7, 0.6, 0.3〉 〈x3, 0.6, 0.4, 0.1〉},

R(A) = {〈x1, 0.5, 0.5, 0.4〉 〈x2, 0.5, 0.4, 0.3〉 〈x3, 0.5, 0.5, 0.7〉},
the upper and lower approximations of A respectively.

Definition 3.9. Let A ∈ N(U) and α, β, γ ∈ [0, 1] with α+ β + γ ≤ 3 and (α, β, γ)
level set of A denoted by A(αβγ) is defined as:

A(αβγ) = {x ∈ U/TA(x) ≥ α, IA(x) ≥ β, FA(x) ≤ γ}.

We define
Aα = {x ∈ U/TA(x) ≥ α} and Aα+ = {x ∈ U/TA(x) > α}: the α level cut and

strong α level cut of truth value function generated by A,
Aβ = {x ∈ U/IA(x) ≥ β} and Aβ+ = {x ∈ U/IA(x) > β}: the β level cut and

strong β level cut of indeterminacy function generated by A and
Aγ = {x ∈ U/FA(x) ≤ γ} and Aγ+ = {x ∈ U/FA(x) < γ}: the γ level cut and

strong γ level cut of false value function generated by A.
Similarly, we can define the level cuts sets, such as
A(α+,β+,γ+) = {x ∈ U/TA(x) > α, IA(x) > β,FA(x) < γ} is (α+, β+, γ+) ,
A(α+,β,γ) = {x ∈ U/TA(x) > α, IA(x) ≥ β, FA(x) ≤ γ} is (α+, β, γ),
A(α,β+,γ) = {x ∈ U/TA(x) ≥ α, IA(x) > β,FA(x) ≤ γ} is (α, β+, γ),
A(α,β,γ+) = {x ∈ U/TA(x) ≥ α, IA(x) ≥ β, FA(x) < γ} is (α, β, γ+):

level cut set of A, respectively.
Like wise other level cuts can also be defined.
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Theorem 3.10. The level cut sets of neutrosophic sets satisfy the following
properties: ∀ A,B ∈ N(U), α, β, γ ∈ [0, 1] with α + β + γ ≤ 3, α1, β1, γ1 ∈
[0, 1] with α1 + β1 + γ1 ≤ 3 and α2, β2, γ2 ∈ [0, 1] with α2 + β2 + γ2 ≤ 3 :

(1) A(α,β,γ) = Aα
⋂
Aβ
⋂
Aγ ,

(2) (∼ A)α =∼ Aα+; (∼ A)β =∼ A(1− β+); (∼ A)γ =∼ Aγ+,

(3)

( ⋂
i∈J

Ai

)
α

=
⋂
i∈J

(Ai)α,

( ⋂
i∈J

Ai

)
β =

⋂
i∈J

(Ai)β,

( ⋂
i∈J

Ai

)γ
=
⋂
i∈J

(Ai)
γ ,

(4)

( ⋃
i∈J

Ai

)
α

=
⋃
i∈J

(Ai)α,

( ⋃
i∈J

Ai

)
β =

⋃
i∈J

(Ai)β,

( ⋃
i∈J

Ai

)γ
=
⋃
i∈J

(Ai)
γ ,

(5)

( ⋃
i∈J

Ai

)(α,β,γ)

⊇
⋃
i∈J

(Ai)
(α,β,γ),

(6)

( ⋂
i∈J

Ai

)(α,β,γ)

⊇
⋂
i∈J

(Ai)
(α,β,γ),

(7) For α1 ≥ α2, β1 ≥ β2, γ1 ≤ γ2,

Aα1 ⊆ Aα2 , Aβ1 ⊆ Aβ2, Aγ1 ⊆ Aγ2 , A(α1,β1,γ1) ⊆ A(α2,β2,γ2).

Proof. (1) and (3) follow directly from Definition 3.9.
(2) Since (∼ A) = {〈x, FA(x), 1 − IA(x), TA(x)〉/x ∈ U}. Then (∼ A)α = {x ∈

U/FA(x) ≥ α}. Thus by definition, Aα+ = {x ∈ U/FA(x) < α} and ∼ Aα+ = {x ∈
U/FA(x) ≥ α}. So (∼ A)α =∼ Aα+.

Similarly we can prove (∼ A)β =∼ A(1− β+) and (∼ A)γ =∼ Aγ+.

(4)
⋂
i∈J

Ai =

{
〈x,

∧
i∈J

TAi(x),
∧
i∈J

IAi(x),
∨
i∈J

FAi(x)〉/x ∈ U
}

. Then we have( ⋂
i∈J

Ai

)
α

=

{
x ∈ U/

∧
i∈J

TAi
(x) ≥ α

}
={x ∈ U/TAi

(x) ≥ α} =
⋂
i∈J

(Ai)α.

Similarly,( ⋂
i∈J

Ai

)
β =

{
x ∈ U/

∧
i∈J

IAi
(x) ≥ β

}
= {x ∈ U/IAi

(x) ≥ β∀i ∈ J} =
⋂
i∈J

(Ai)β

and( ⋂
i∈J

Ai

)γ
=

{
x ∈ U/

∨
i∈J

FAi(x) ≤ γ
}

= {x ∈ U/FAi(x) ≤ γ∀i ∈ J} =
⋂
i∈J

(Ai)γ .

Thus ( ⋂
i∈J

Ai

)α,β,γ
=

( ⋂
i∈J

Ai

)
α

∩
( ⋂
i∈J

Ai

)
β ∩

( ⋂
i∈J

Ai

)γ
=
⋂
i∈J

((Ai)α ∩ (Ai)β ∩ (Ai)
γ)

=
⋂
i∈J

(Ai)
(α,β,γ).

(5) We can easily prove followings:⋃
i∈J

(Ai) =

{
〈x,

∨
i∈J

TAi(x),
∨
i∈J

IAi(x),
∧
i∈J

FAi(x)〉/x ∈ U
}
,( ⋃

i∈J
Ai

)
α

=

{
x ∈ U/

∨
i∈J

TAi
(x) ≥ α

}
=

{
x ∈ U/

∨
i∈J

TAi
(x) ≥ α, ∃i ∈ J

}
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=
⋃
i∈J

(Ai)α,( ⋃
i∈J

Ai

)
β =

{
x ∈ U/

∨
i∈J

IAi
(x) ≥ β

}
= {x ∈ U/IAi

(x) ≥ β, ∀i ∈ J}
=
⋃
i∈J

(Ai)β,( ⋃
i∈J

Ai

)γ
=

{
x ∈ U/

∧
i∈J

FAi
(x) ≤ γ

}
= {x ∈ U/FAi(x) ≤ γ, ∀i ∈ J}
=
⋃
i∈J

(Ai)
γ .

(6) For any x ∈ Aα, according to Definition 3.9 we have for TA(x) ≥ α1 ≥ α2, we
obtain Aα1

⊆ Aα2
. Similarly, for β1 ≥ β2 and γ1 ≤ γ2, we obtain Aβ1 ⊆ Aβ2 and

Aγ1 ⊆ Aγ2 . Then we have A(α1,β1,γ1) ⊆ A(α2,β2,γ2). �

Corollary 3.11. Assume that R is a neutrosophic relation in U ,
Rα = {(x, y) ∈ U × U/TR(x, y) ≥ α}, Rα(x) = {y ∈ U/TR(x, y) ≥ α},
Rα+ = {(x, y) ∈ U × U/TR(x, y) > α}, Rα+(x) = {y ∈ U/TR(x, y) > α},
Rβ = {(x, y) ∈ U × U/IR(x, y) ≥ β}, Rβ(x) = {y ∈ U/IR(x, y) ≥ β},
Rβ+ = {(x, y) ∈ U × U/IR(x, y) > β}, Rβ+(x) = {y ∈ U/IR(x, y) > β},
Rγ = {(x, y) ∈ U × U/FR(x, y) ≤ γ}, Rγ(x) = {y ∈ U/FR(x, y) ≤ γ},
Rγ+ = {(x, y) ∈ U × U/FR(x, y) < γ}, Rγ+(x) = {y ∈ U/FR(x, y) < α},
R(α,β,γ) = {(x, y) ∈ U × U/TR(x, y) ≥ α, IR(x, y) ≥ β, FR(x, y) ≤ γ},
R(α,β,γ)(x) = {y ∈ U/TR(x, y) ≥ α, IR(x, y) ≥ β, FR(x, y) ≤ γ} .

Then for all Rα, Rα+, Rβ,Rβ+, Rγ , Rγ+, R(αβγ) are crisp relation in U and
(1) if R is reflexive, then the above level cuts are reflexive,
(2) If R is symmetric, then the above level cuts are symmetric,
(3) if R is transitive then the above level cuts are transitive.

Proof. (1) Suppose R is reflexive. Then ∀ x ∈ U,
TR(x, x) = 1, IR(x, x) = 1, FR(x, x) = 0, ∀ x ∈ U.

Now, we have Rα is a crisp binary relation in U and x ∈ U , (x, x) ∈ Rα. Then
Rα is reflexive.

Suppose R is symmetric. Then ∀ x, y ∈ U , we have (x, y) ∈ Rα ⇒ (y, x) ∈ Rα.
Thus Rα is symmetry. Similarly, we can prove Rβ and Rγ are symmetric.

Suppose R is transitive. Then ∀ x, y, z ∈ U and α, β, γ ∈ [0, 1],

TR(x, z) ≥ TR(x, y) ∧ TR(y, z),

IR(x, z) ≥ IR(x, y) ∧ IR(y, z),

FR(x, z) ≤ FR(x, y) ∨ FR(y, z).

Let (x, y) ∈ Rα, (y, z) ∈ Rα, (x
′
, y
′
) ∈ Rβ, (y

′
, z
′
) ∈ Rβ, (x

′′
, y
′′
) ∈ Rγ and

(y
′′
, z
′′
) ∈ Rγ . Then

TR(x, y) ≥ α, TR(y, z) ≥ α ⇒ TR(x, z) ≥ α,

IR(x
′
, y
′
) ≥ β, IR(y

′
, z
′
) ≥ β ⇒ IR(x

′
, z
′
) ≥ β,

FR(x
′′
, y
′′
) ≤ γ, FR(y

′′
, z
′′
) ≤ γ ⇒ FR(x

′′
, z
′′
) ≤ γ.
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Thus Rα, Rβ,R
γ are transitive. So R(α,β,γ) is transitive.

Similarly, we can prove other level cuts sets are transitive. �

Theorem 3.12. Let (U,R) be a neutrosophic approximation space and A ∈ N(U),
then the upper neutrosophic approximation operator can be represented as follows
∀ x ∈ U ,

(1) TR(A)(x) =
∨

α∈[0,1]

[
α ∧Rα(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα+)(x)

]
,

(2) IR(A)(x) =
∨

α∈[0,1]

[
α ∧Rα(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα+)(x)

]
,

(3) FR(A)(x) =
∧

α∈[0,1]

[
α ∨Rα(Aα)(x)

]
=

∧
α∈[0,1]

[
α ∨Rα(Aα+)(x)

]
=

∧
α∈[0,1]

[
α ∨Rα+(Aα)(x)

]
=

∧
α∈[0,1]

[
α ∨Rα+(Aα+)(x)

]
and more over for any α ∈ [0, 1],

(4)
[
R(A)

]
α+
⊆ Rα+(Aα+) ⊆ Rα(Aα) ⊆

[
R̄(A)

]
α
,

(5)
[
R(A)

]
α+ ⊆ Rα+(Aα+) ⊆ Rα(Aα) ⊆

[
R(A)

]
α,

(6)
[
R(A)

]α+ ⊆ Rα+(Aα+) ⊆ Rα(Aα) ⊆
[
R(A)

]α
,

(7)
[
R(A)

]
α+
⊆ Rα+(Aα+) ⊆ Rα(Aα) ⊆

[
R(A)

]
α
,

(8)
[
R(A)

]
α+ ⊆ Rα+(Aα+) ⊆ Rα(Aα) ⊆

[
R(A)

]
α,

(9)
[
R(A)

]α+ ⊆ Rα+(Aα+) ⊆ Rα(Aα) ⊆
[
R(A)

]α
.

Proof. (1) For x ∈ U, we have∨
α∈[0,1]

[
α ∧Rα(Aα)(x)

]
= Sup

{
α ∈ [0, 1]/x ∈ Rα(Aα)

}
= Sup {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}
= Sup {α ∈ [0, 1]/∃y ∈ U(y ∈ Rα(x), y ∈ Aα)}
= Sup {α ∈ [0, 1]/∃y ∈ U [TR(x, y) ≥ α, TA(y) ≥ α]}
=

∨
y∈U

[TR(x, y) ∧ TA(y)] = TR(A)(x).

(2)∨
α∈[0,1]

[
α ∧Rα(Aα)(x)

]
= Sup

{
α ∈ [0, 1]/x ∈ Rα(Aα)

}
= Sup {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}
= Sup {α ∈ [0, 1]/∃y ∈ U(y ∈ Rα(x), y ∈ Aα)}
= Sup {α ∈ [0, 1]/∃y ∈ U [IR(x, y) ≥ α, IA(y) ≥ α]}
=

∨
y∈U

[IR(x, y) ∧ IA(y)] = IR(A)(x).
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(3)∨
α∈[0,1]

[
α ∧Rα(Aα)(x)

]
= inf {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}

= inf {α ∈ [0, 1]/Rα(x) ∩Aα 6= ϕ}
= inf {α ∈ [0, 1]/∃y ∈ U(y ∈ Rα(x), y ∈ Aα)}
= inf {α ∈ [0, 1]/∃y ∈ U [FR(x, y) ≤ α, FA(y) ≤ α]}
=

∧
y∈U

[FR(x, y) ∨ FA(y)] = FR(A)(x).

Like wise, we can conclude
TR(A)(x) =

∨
α∈[0,1]

[
α ∧Rα(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα+)(x)

]
,

IR(A)(x) =
∨

α∈[0,1]

[
α ∧Rα(Aα+)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα)(x)

]
=

∨
α∈[0,1]

[
α ∧Rα+(Aα+)(x)

]
,

FR(A)(x) =
∧

α∈[0,1]

[
α ∨Rα(Aα+)(x)

]
=

∧
α∈[0,1]

[
α ∨Rα+(Aα)(x)

]
=

∧
α∈[0,1]

[
α ∨Rα+(Aα+)(x)

]
.

(4) Since Rα+(Aα+) ⊆ Rα+(Aα) ⊆ Rα(Aα), We prove only

[R(A)]α+ ⊆ Rα+(Aα+)

and

Rα(Aα) ⊆ [R(A)]α.

Let x ∈ [R(A)]α+, TR(A) > α. Then
∨
y∈U

[TR(x, y) ∧ TA(y)] > α. Thus ∃ y
′ ∈

U such that TR(x, y
′
) ∧ TR(y”) > α. So y

′ ∈ Rα+(x) and y
′ ∈ Aα+. Hence

Rα+(x) ∩ Aα+ 6= ϕ. From the definition of upper crisp approximation operator, we
have x ∈ Rα+(Aα+). Therefore [R(A)]α+ ⊆ Rα+(Aα+).

Next, to prove Rα(Aα) ⊆ [R(A)]α, let x ∈ Rα(Aα). Then Rα(Aα)(x) = 1. If
∃ β, then TR(A)(x) =

∨
β∈[0,1]

[
β ∧Rβ(Aβ)(x)

]
≥ α∧Rα(Aα)(x) = α. Thus we obtain

x ∈ [R(A)]α Rα(Aα) ⊆ [R(A)]α.
(5) The proof is similar to (4). It is enough to prove

Rα+(Aα+) ⊆ Rα+(Aα) ⊆ Rα(Aα).
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(i) In order to show that [R(A)]α+ ⊆ Rα+(Aα+), let x ∈ [R(A)]α+. Then

IR(A)(x) > α, i.e.,
∨
y∈U

[IR(x, y) ∧ IA(y)] > α. Thus ∃ y
′ ∈ U such that IR(x, y

′
) ∧

IA(y
′
) > α, i.e., IR(x, y

′
)α and IA(y

′
)α. So y

′ ∈ Rα+ (x) and y
′ ∈ Aα+, i.e., y

′ ∈
R(x)∩Aα+. Hence Rα+ (x)∩Aα+ 6= ϕ. By the definition of crisp approximation
operator, we have x ∈ Rα+(Aα+). Therefore [R(A)]α+ ⊆ Rα+(Aα+).

(ii) To prove that Rα(Aα) ⊆ [R(A)]α, let x ∈ Rα(Aα). Then Rα(Aα)(x) = 1.
If there exists β, then TR(A)(x) =

∨
β∈[0,1]

[
β ∧Rβ(Aβ)(x)

]
≥ α ∧ Rα(Aα)(x) = α.

Thus we obtain x ∈ [R(A)]α. So Rα(Aα) ⊆ [R(A)]α.
(6) Since the proof of (6) is similar to (4) and (5), we need to prove only

[R(A)]α+ ⊆ Rα+(Aα+) and Rα(Aα) ⊆ [R(A)]α.

Let x ∈ [R(A)]α+. Then FR(A)(x) < α, i.e.,
∧
y∈U

[FR(x, y) ∨ FA(y)] < α and ∃ y′ ∈ U

such that FR(x, y
′
)∨FA(y

′
) < α. Thus FR(x, y

′
) < α, TA(y

′
) < α, i.e., y

′ ∈ Rα+(x)

and y
′ ∈ Aα+. So Rα+(x) ∩ Aα+ 6= φ. Hence x ∈ Rα+(Aα+) and [R(A)]α+ ⊆

Rα+(Aα+).
Next for any x ∈ Rα(Aα) note Rα(Aα)(x) = 1. Then we have

FR(A)(x) =
∧

β∈[0,1]

[
β ∨Rβ(Aβ)(x)

]
≤ α ∨Rα(Aα)(x) = α.

Thus x ∈ [R(A)]α. So Rα(Aα) ⊆ [R(A)]α.
The proofs of (7), (8), (9) can be obtained similar to (4), (5), (6). �

Theorem 3.13. Let (U,R) be neutrosophic approximation space and A ∈ N(U)
then ∀x ∈ U and for α ∈ [0, 1],

(1) TR(A)(x) =
∧

α∈[0,1]
[α ∨ (1−Rα(Aα+)(x))]

=
∧

α∈[0,1]
[α ∨ (1−Rα(Aα)(x))],

∧
α∈[0,1]

[α ∨ (1−Rα+(Aα+)(x))]

=
∧

α∈[0,1]
[α ∨ (1−Rα+(Aα)(x))] ,

(2) IR(A)(x)

=
∧

α∈[0,1]

[
α ∨ (1−R(1− α)(Aα+)(x))

]
=

∧
α∈[0,1]

[α ∨ (1−R(1− α)(Aα)(x))],
∧

α∈[0,1]

[
α ∨ (1−R(1− α+)(Aα+)(x))

]
=

∧
α∈[0,1]

[α ∨ (1−R(1− α+)(Aα)(x))] ,

(3) FR(A)(x) =
∨

α∈[0,1]

[
α ∧ (1−Rα(Aα+)(x))

]
=

∨
α∈[0,1]

[α ∧ (1−Rα(Aα)(x))],
∨

α∈[0,1]

[
α ∧ (1−Rα+(Aα+)(x))

]
=

∨
α∈[0,1]

[α ∧ (1−Rα+(Aα)(x))]

(4) [R(A)]α+ ⊆ R
α(Aα+) ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ [R(A)]α,

(5) [R(A)]α+ ⊆ R1− α(Aα+) ⊆ R1− α+(Aα+) ⊆ R1− α+(Aα) ⊆ [R(A)]α,
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(6) [R(A)]
α+ ⊆ Rα(Aα+) ⊆ Rα+(Aα+) ⊆ Rα+(Aα) ⊆ [R(A)]α,

(7) [R(A)]α ⊆ R
α(Aα+) ⊆ Rα(Aα) ⊆ Rα+(Aα) ⊆ [R(A)]α,

(8) [R(A)]α+ ⊆ R1− α(Aα+) ⊆ Rα(Aα) ⊆ R(1− α+)(Aα) ⊆ [R(A)]α,

(9) [R(A)]
α+ ⊆ Rα(Aα+) ⊆ Rα(Aα) ⊆ Rα+(Aα) ⊆ [R(A)]α.

Proof. (1) and (2). For any x ∈ U , by the duality of upper and lower crisp approxi-
mation operators and in terms of Theorem, we have

TR(A)(x) =
∨

α∈[0,1]
[α ∧Rα(Aα)(x)],

IR(A)(x) =
∨

α∈[0,1]
[α ∧Rα(Aα)(x)],

and

FR(A)(x) =
∧

α∈[0,1]
[α ∨Rα(Aα)(x)].

Then

TR(∼A)(x) =
∨

α∈[0,1]

[α ∧Rα(∼ Aα)(x)]

=
∨

α∈[0,1]

[α ∧Rα(∼ Aα+)(x)]

=
∨

α∈[0,1]

[α ∧ (1−Rα(∼ Aα+)(x))],

IR(∼A)(x) =
∨
αε[0, 1][α ∧Rα(∼ Aα)(x)]

=
∨

α∈[0,1]

[α ∧Rα(∼ A1− α+)(x)]

=
∨

α∈[0,1]

[α ∧ ∼ Rα(A1− α+)(x)]

=
∨

α∈[0,1]

[α ∧ (1−Rα(∼ A1− α+)(x))],

and

FR(∼A)(x) =
∧

α∈[0,1]

[α ∨Rα(∼ Aα)(x)]

=
∧

α∈[0,1]

[α ∨Rα(∼ Aα+)(x)]

=
∧

α∈[0,1]

[α ∨ ∼ Rα(Aα+)(x)]

=
∧

α∈[0,1]

[α ∨ (1−Rα(∼ Aα+)(x))].

Thus by fixing R(A) =∼ R(∼ A), we conclude
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TR(A)(x) = TR(∼A)(x) =
∧

α∈[0,1]
[α ∨ (1−Rα(∼ Aα+)(x))],

IR(A)(x) = IR(∼A)(x) =
∧

α∈[0,1]
[α ∨ (1−Rα(∼ A1− α+)(x)),

and

FR(A)(x) = FR(∼A)(x) =
∨

α∈[0,1]
[α ∧ (1−Rα(∼ Aα+)(x))].

Likewise, we can prove

TR(A)(x) = TR(∼A)(x)

=
∧

α∈[0,1]

[α ∨ (1−Rα(∼ Aα)(x))]

= TR(∼A)(x)

=
∧

α∈[0,1]

[α ∨ (1−Rα+(∼ Aα+)(x))]

= TR(∼A)(x)

=
∧

α∈[0,1]

[α ∨ (1−Rα+(∼ Aα)(x))],

IR(A)(x) = IR(∼A)(x)

=
∧

α∈[0,1]

[α ∨ (1−Rα(∼ A1− α)(x))

= IR(∼A)(x)

=
∧

α∈[0,1]

[α ∨ (1−Rα+(∼ A1− α+)(x))

= IR(∼A)(x)

=
∧

α∈[0,1]

[α ∨ (1−Rα+(∼ A1− α)(x)),

and

FR(A)(x) = FR(∼A)(x) =
∨

α∈[0,1]

[α ∧ (1−Rα(∼ Aα)(x))]

= FR(∼A)(x)

=
∨

α∈[0,1]

[α ∧ (1−Rα+(∼ Aα+)(x))]

= FR(∼A)(x)

=
∨

α∈[0,1]

[α ∧ (1−Rα+(∼ Aα)(x))].

It is easy to prove that RαAα+ ⊆ Rα+Aα+ ⊆ Rα+Aα.
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Now we tend to prove that [R(A)]α+ ⊆ RαAα+ and Rα+Aα ⊆ [R(A)]α. For any
x ∈ RαAα+ , we have TR(A)(x) > α. Then we have

∧
y∈U

[ FR(x, y) ∨ TA(y) ] > α.

Thus [ FR(x, y) ∨ TA(y) ] > α, for any y ∈ U , i.e., if FR(x, y) ≤ α , then TA(y) > α.
Alternatively, for any yεU , if yεRαδ(x), then yεAa+. Thus, Rα(x) ⊆ Aα+. By

the definition of lower approximation operator, we have xεRα(Aα+). So we conclude
[R(A)]α+ ⊆ RαAα+. Also, for any xεRα+(Aα) , we have Rα+(Aα = 1. Hence

TR(x) =
∧

α′ ε[0,1]

[α
′
∨Rα

′
+(Aα′ )(x)]

=
∨

α′ ε[0,1]

[α
′
∧Rα

′
+(Aα′ )(x)]

= ≥ α ∧Rα+(Aα)(x) = α.

Therefore xε [R(A)]α and Rα+Aα ⊆ [R(A)]α.
Similarly, we can prove (5) and (6) and hence (7), (8) and (9) can be concluded.
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