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1. Introduction

The fuzzy set theory was developed by Lotfi A Zadeh [13] in 1965. Bhutani
and Rosenfeld [2] have analyzed strong arcs in fuzzy graphs. Nagoorgani and Radha
[9] defined degree of a vertex, regular and totally regular fuzzy graphs. Manjusha
and Sunitha [7] introduced connected domination in fuzzy graphs using strong arcs.
The theory of intuitionistic fuzzy graphs (IFGs) was introduced by Krassimir T
Atanassov ([1], [12]). Karunambigai and Parvathi [3] introduced intuitionistic fuzzy
graph as a special case of Atanassov’s IFG. Parvathi and Thamizhendhi [11] in-
troduced and analyzed the theory of domination on join, cartesian product, lexi-
cographic product, tenson product and strong product of two intuitionistic fuzzy
graphs. Nagoorgani and Shajitha Begum [10] defined degree, order and size in in-
tuitionistic fuzzy graphs. Degree, total degree of a vertex, constant IFG, totally
constant IFG, size and order in intuitionistic fuzzy graphs are defined by Karunam-
bigai et.al. [4]. The edges in intuitionistic fuzzy graphs are classified into α-strong,
β-strong and δ-weak depending on the strength of connectedness between two ver-
tices by Karunambigai et.al. [5]. Karunambigai and Buvaneswari [6] introduced the
strong and superstrong vertices in intuitionistic fuzzy graphs. These concepts along
with the concept of vertex-strength sequence which is given [8] for complete fuzzy
graphs motivated the author to analyse these in complete IFGs. So here this paper
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has been organised as follows. Preliminaries required for this study are given in
Section 2. In Section 3, strong degree, total strong degree and relationship between
total degree of a vertex, minimum and maximum total degree of complete IFGs
have been studied. In Section 4, vertex intuitionistic fuzzy sequence is defined and
its properties in complete IFGs are discussed.

2. Preliminaries

Definition 2.1 ([3]). Minmax intuitionistic fuzzy graph (IFG) is of the form G =
(V,E), where

(i) V = {v1, v2, . . . vn} such that µi : V → [0, 1] and νi : V → [0, 1] denote the
degrees of membership and non-membership of the element vi ∈ V , respectively and
0 ≤ µi + νi ≤ 1, for every vi ∈ V (i = 1, 2, . . . , n),

(ii) E ⊂ V × V , where µij : V × V → [0, 1] and νij : V × V → [0, 1] are such that

µij ≤ min[µi, µj ],

νij ≤ max[νi, νj ]

and 0 ≤ µij + νij ≤ 1, for every eij ∈ E.
Here the triple (vi, µi, νi) denotes the degrees of membership and non-membership

of the vertex vi. The triple (eij , µij , νij) denotes the degrees of membership and non-
membership of the edge eij = (vi, vj) on V × V .

For each IFG G, the degree of hesitancy (hesitation degree) of the vertex vi ∈ V is
Πi = 1−µi−νi and the degree of hesitancy of an edge eij ∈ E is Πij = 1−µij−νij .

Notation: Here after an IFG, G = (V,E) means a minmax IFG G = (V,E).

Note 1. If µij = νij = 0 , for some i and j, then there is no edge between vi and
vj , and it is indexed by 〈0, 1〉. Otherwise there exists an edge between vi and vj .

Example 2.2. Figure 1 shows an IFG G = 〈V,E〉, where V = {v1, v2, v3, v4, v5, v6}
and E = {e12, e14, e15, e16, e23, e24, e25, e34, e45, e56}.

Definition 2.3 ([3]). An IFG G is said to be complete, if µij = min(µi, µj) and
νij = max(νi, νj), for every vi, vj ∈ V .

Definition 2.4 ([3]). A path P in an IFG is a sequence of distinct vertices v1, v2, ...., vn
for all i, j = 1, 2, ..., n such that either one of the following conditions is satisfied:

(i) µij > 0 and νij = 0 for some i and j,
(ii) µij > 0 and νij > 0 for some i and j.
A path P between two vertices vi and vj is denoted by [vi, vj ]-path.

Definition 2.5 ([4]). The µ-strength of a path P = v1v2....vn is defined asmin {µij},
for all i, j = 1, 2, ...n and it is denoted by Sµ.

Definition 2.6 ([4]). The ν-strength of a path P = v1v2....vn is defined asmax {νij},
for all i, j = 1, 2, ...n and it is denoted by Sν .

Note 2. If same edge possess both the values Sµ and Sν , then the value is the
strength of the path P and is denoted by SP .
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Figure 1. Intuitionistic fuzzy graph

Definition 2.7 ([4]). The µ-strength of connectedness between two vertices vi and
vj is defined as CONNµ(G)(vi, vj) = max {Sµ} and ν-strength of connectedness
between two vertices vi and vj is CONNν(G)(vi, vj) = min {Sν} of all possible
paths between vi and vj .

Note 3. The notation
〈
CONNµ(G)−eij (vi, vj), CONNν(G)−eij (vi, vj)

〉
is used to

denote the strength of connectedness between vi and vj in the IFG obtained from
G by deleting the edge eij .

Definition 2.8 ([4]). The order of an IFG G is defined as O(G) = 〈Oµ(G), Oν(G)〉,
where Oµ(G) =

∑
vi∈V

µi and Oν(G) =
∑
vi∈V

νi.

Definition 2.9 ([4]). The size of an IFG G is defined to be S(G) = 〈Sµ(G), Sν(G)〉,
where Sµ(G) =

∑
vi 6=vj

µij and Sν(G) =
∑
vi 6=vj

νij .

Definition 2.10. A scalar (say n) multiple of S(G) is defined as

nS(G) = 〈nSµ(G), nSν(G)〉 .
Definition 2.11 ([4]). An IFG G is said to be connected, if there exists a path
between every pair of vertices vi, vj ∈ V .

Definition 2.12 ([4]). Let G be an IFG.
(i) The µ-degree of a vertex vi is

dµi =
∑

eij∈E
µij .

(ii) The ν-degree of a vertex vi is dνi =
∑

eij∈E
νij .

(iii) The degree of a vertex is

d(vi) =

〈 ∑
eij∈E

µij ,
∑

eij∈E
νij

〉
.
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Definition 2.13 ([4]). (i)The minimum µ-degree is δµ(G) = ∧{dµi/vi ∈ V }.
(ii) The minimum ν-degree is δν(G) = ∧{dνi/vi ∈ V }.
(iii) The maximum µ-degree is ∆µ(G) = ∨{dµi/vi ∈ V }.
(iv) The maximum ν-degree is ∆ν(G) = ∨{dνi/vi ∈ V }.

Definition 2.14 ([4]). Let G be an IFG. If dµi = k1 and dνi = k2 for all vi ∈ V ,
then the graph is called 〈k1, k2〉-constant IFG (or) constant IFG of degree 〈k1, k2〉.
Definition 2.15 ([4]). Let G be an IFG. The total degree of a vertex vi ∈ V is
defined as td(vi) = 〈dµi + µi, dνi + νi〉.
Definition 2.16 ([4]). (i)The minimum µ-total degree is δtdµ(G) = ∧{tdµ(vi)/vi ∈ V }.

(ii) The minimum ν-total degree is δtdν (G) = ∧{tdν(vi)/vi ∈ V }.
(iii) The maximum µ-total degree is ∆tdµ(G) = ∨{tdµ(vi)/vi ∈ V }.
(iv) The maximum ν-total degree is ∆tdν (G) = ∨{tdν(vi)/vi ∈ V }.

Example 2.17. Consider an IFG, G = 〈V,E〉. Figure 2 shows that the td(v1) =
〈1.7, 1.1〉, td(v2) = 〈2.0, 1.9〉, td(v3) = 〈1.3, 1.2〉, td(v4) = 〈1.3, 1.8〉, td(v5) =
〈1.5, 2.3〉, and td(v6) = 〈1.1, 2.1〉. Minimum µ-total degree is δtdµ(G) = 1.1, min-
imum ν-total degree is δtdnu(G) = 1.1, maximum µ-total degree is ∆tdµ(G) = 2.3
and maximum ν-total degree is ∆tdν (G) = 2.3.

Figure 2. Total degrees in intuitionistic fuzzy graph

Definition 2.18 ([4]). Let G be an IFG. If tdµ(vi) = r1 and tdν(vi) = r2 for all
vi ∈ V , then G is said to be an IFG of total degree 〈r1, r2〉 or a 〈r1, r2〉-totally
constant IFG.

Definition 2.19 ([5]). An edge eij is said to be strong edge, if µij ≥ CONNµ(G)−eij (vi, vj)
and νij ≤ CONNν(G)−eij (vi, vj), for every vi, vj ∈ V .

Definition 2.20 ([5]). An edge eij is said to be weak edge, if µij < CONNµ(G)−eij (vi, vj)
and νij > CONNν(G)−eij (vi, vj), for every vi, vj ∈ V .

Definition 2.21 ([6]). Let G be an IFG. A vertex vi ∈ V is said to be strong, if eij
is a strong edge, for all vj incident with vi.
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3. Strong degrees in intuitionistic fuzzy graphs

Definition 3.1. Let G = (V,E) be an IFG. The µ-strong degree of a vertex vi ∈ V
is defined as ds(µ)(vi) =

∑
eij∈E

µij , where eij are strong edges incident at vi.

Definition 3.2. Let G = (V,E) be an IFG. The ν-strong degree of a vertex vi ∈ V
is defined as ds(ν)(vi) =

∑
eij∈E

νij , where eij are strong edges incident at vi.

Definition 3.3. Let G = (V,E) be an IFG. The strong degree of a vertex vi ∈ V

is defined as ds(vi) =

[ ∑
eij∈E

µij ,
∑

eij∈E
νij

]
, where eij are strong edges incident at vi.

Example 3.4. In Figure 3, the edges e12, e18, e25, e23, e47, e78 are strong and ds(v1) =
〈0.7, 1.0〉, ds(v2) = 〈1.1, 1.2〉, ds(v3) = 〈0.3, 0.3〉, ds(v4) = 〈0.3, 0.3〉, ds(v5) =
〈0.4, 0.4〉,ds(v7) = 〈0.7, 0.5〉, ds(v8) = 〈0.7, 0.7〉. The strong degree of vertex v6
is 〈0.0, 0.0〉, since the incident edges at v6 are not strong.

Figure 3. Strong degree of a vertex in IFG G

Definition 3.5. (i) The minimum µ-strong degree of G is

δs(µ)(G) = ∧
{
ds(µ)(vi)/vi ∈ V

}
and minimum ν-strong degree of G is

δs(ν)(G) = ∧
{
ds(ν)(vi)/vi ∈ V

}
.

(ii) The maximum µ-strong degree of G is

∆s(µ)(G) = ∨
{
ds(µ)(vi)/vi ∈ V

}
and maximum ν-strong degree of G is

∆s(ν)(G) = ∨
{
ds(ν)(vi)/vi ∈ V

}
.
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Definition 3.6. Let G be an IFG. The µ-total strong degree of a vertex vi ∈ V in
G is defined as tds(µ)(vi) = ds(µ)(vi) + µi.

Definition 3.7. Let G be an IFG. The ν-total strong degree of a vertex vi ∈ V in
G is defined as tds(ν)(vi) = ds(ν)(vi) + νi.

Definition 3.8. Let G be an IFG. The total strong degree of a vertex vi ∈ V in G
is defined as tds(vi) =

[
tds(µ)(vi), tds(ν)(vi)

]
.

Definition 3.9. (i) The minimum µ-total strong degree of G is

δts(µ)(G) = ∧
{
tds(µ)(vi)/vi ∈ V

}
and minimum ν-total strong degree of G is

δts(ν)(G) = ∧
{
tds(ν)(vi)/vi ∈ V

}
.

(ii) The maximum µ-total strong degree of G is

∆ts(µ)(G) = ∨
{
tds(µ)(vi)/vi ∈ V

}
and maximum ν-total strong degree of G is

∆ts(ν)(G) = ∨
{
tds(ν)(vi)/vi ∈ V

}
.

Definition 3.10. The µ-strong size of an IFG is defined as

Ss(µ)(G) =
∑
vi 6=vj

µij ,

where µij is the membership of strong edge eij ∈ E.

Definition 3.11. The ν-strong size of an IFG is defined as

Ss(ν)(G) =
∑
vi 6=vj

νij ,

where νij is the non-membership of strong edge eij ∈ E.

Definition 3.12. The strong size of an IFG G is defined as

Ss(G) =
[
Ss(µ)(G), Ss(ν)(G)

]
.

Definition 3.13. The µ-strong order of an IFG is defined as

Os(µ)(G) =
∑
vi∈V

µi,

where vi is the strong vertex in G.

Definition 3.14. The ν-strong order of an IFG is defined as

Os(ν)(G) =
∑
vi∈V

νi,

where vi is the strong vertex in G.

Definition 3.15. The strong order of an IFG G is defined as

Os(G) =
[
Os(µ)(G), Os(ν)(G)

]
.
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Definition 3.16. Let G be an IFG. If ds(µ)(vi) = k1 and ds(ν)(vi) = k2, for all
vi ∈ V , then the IFG is called as 〈k1, k2〉-strong constant IFG (or) strong constant
IFG of degree 〈k1, k2〉.

Definition 3.17. Let G be an IFG. If tds(µ)(vi) = r1 and tds(ν)(vi) = r2, for all
vi ∈ V , then the IFG is called as 〈r1, r2〉-totally strong constant IFG (or) totally
strong constant IFG of degree 〈r1, r2〉.

Proposition 3.18. In an IFG G,

2Ss(µ)(G) =

n∑
i=1

ds(µ)(vi)

and

2Ss(ν)(G) =
n∑
i=1

ds(ν)(vi).

Proposition 3.19. In a connected IFG G,
(1) ds(µ)(vi) ≤ dµi and ds(ν)(vi) ≤ dνi .
(2) tds(µ)(vi) ≤ tdµi and tds(ν)(vi) ≤ tdνi .

Proposition 3.20. Let G be an IFG where crisp graph G∗ is an odd cycle. Then
G is strong constant if and only if 〈µij , νij〉 is a constant function for every eij ∈ E.

Proposition 3.21. Let G be an IFG where crisp graph G∗ is an even cycle. Then
G is strong constant if and only if either 〈µij , νij〉 is a constant function or alternate
edges have same membership and non-membership values for every eij ∈ E.

Remark 3.22. The above Proposition 3.20 and Proposition 3.21 hold for totally
strong constant IFG, if 〈µi, νi〉 is a constant function.

Remark 3.23. A complete IFG need not be a strong constant IFG and also totally
strong constant IFG.

Remark 3.24. A strong IFG need not be a strong constant IFG and also totally
strong constant IFG.

Remark 3.25. For a strong vertex vi ∈ V ,
(1) dµ(vi) = ds(µ)(vi) and dν(vi) = ds(ν)(vi),
(2) tdµ(vi) = tds(µ)(vi) and tdν(vi) = tds(ν)(vi).

Theorem 3.26. Let G be a complete IFG with V = {v1, v2, v3, ....., vn} such that
µ1 ≤ µ2 ≤ µ3 ≤ ..... ≤ µn and ν1 ≥ ν2 ≥ ν3 ≥ ..... ≥ νn. Then,

(1) µ1j is the minimum edge membership and ν1j is the maximum edge non-
membership of eij emits from v1 for all j = 2, 3, ..., n,

(2) µin is the maximum edge membership and νin is the minimum edge non-
membership of among all edges emits from vi to vn for all i = 1, 2, 3, ..., n− 1,

(3) tdµ(v1) = δtdµ(G) = n.µ1 and tdν(v1) = ∆tdν (G) = n.ν1,

(4) tdµ(vn) = ∆tdµ(G) =
n∑
i=1

µi and tdν(vn) = δtdν (G) =
n∑
i=1

νi.
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Proof. Throughout the proof, suppose that
µ1 < µ2 ≤ µ3 ≤ .... ≤ µn and ν1 > ν2 ≥ ν3 ≥ .... ≥ νn.

(1) To prove that µ1j is minimum edge membership and ν1j is maximum edge
non-membership for j = 2, 3, ...n, assume the contrary. That is, let e1l is not an
edge of minimum membership and maximum non-membership emits from vl. Also,
let ekl, 2 ≤ k ≤ n, k 6= l be an edge with minimum membership and maximum
non-membership emits from vk. Being a complete IFG, µ1l = min 〈µ1, µl〉 and
ν1l = max 〈ν1, νl〉. Then, µkl = min 〈µk, µl〉 and νkl = max 〈νk, νl〉. Since µkl < µ1l,
min 〈µk, µl〉 < min 〈µ1, µl〉 . Thus, either µk < µ1 or µl < µ1.

Also since νkl > ν1l, max 〈νk, νl〉 > max 〈ν1, νl〉 . So, either νk > ν1 or νl > ν1.
Since l, k 6= 1, this is a contradiction to our assumption that µ1 is the unique min-
imum vertex membership and ν1 is the maximum vertex non-membership. Hence,
µ1j is minimum edge membership and ν1j is maximum edge non-membership emits
from v1 to vj for all j = 2, 3, ..., n.

(2) On the contrary, assume that ekn is not an edge with maximum membership
and minimum non-membership emits from vk, for 1 ≤ k ≤ (n − 1). On the other
hand, let ekr be an edge with maximum membership and minimum non-membership
emits from vr, for 1 ≤ r ≤ (n − 1), k 6= r. Then, µkr > µkn. Thus min 〈µk, µr〉 >
min 〈µk, µn〉 = µk. So µr > µk.

Similarly, νkr < νkn. Then max 〈νk, νr〉 < max 〈νk, νn〉 = νk. Thus νr < νk. So,
µkr = µk = µkn and νkr = νk = νkn which is a contradiction. Hence, ekn is an edge
with maximum membership and minimum non-membership among all edges emit
from vk to vn.

(3) Now,

tdµ(v1) = dµ(v1) + µ1

=
∑
e1j∈E

µ1j + µ1 =

n∑
j=2

µ1j + µ1 = (n− 1).µ1 + µ1 = n.µ1 − µ1 + µ1 = n.µ1.

Similarly,

tdν(v1) = dν(v1) + ν1

=
∑
e1j∈E

ν1j + ν1 =

n∑
j=2

ν1j + ν1 = (n− 1).ν1 + ν1 = n.ν1 − ν1 + ν1 = n.ν1.

Suppose that tdµ(v1) 6= δtdµ(G) and let vk, k 6= 1 be a vertex in G with minimum

µ-total degree. Then, tdµ(v1) > tdµ(vk). Thus
n∑
i=2

µ1i + µ1 >
∑

k 6=1,j 6=k
µkj + µk. So,

n∑
i=2

µ1 ∧ µi + µ1 >
∑

k 6=1,j 6=k

µk ∧ µj + µk.

Since µ1 ∧ µi = µ1 for i = 1, 2, 3, ..., n, and for all other indices j, µk ∧ µj > µ1, it
follows that,

(n− 1).µ1 + µ1 >
∑

k 6=1,j 6=k

µk ∧ µj + µk > (n− 1)µ1 + µ1.
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Hence, tdµ(v1) > tdµ(v1), a contradiction. Therefore, tdµ(v1) = δtdµ(G).
Also, suppose that tdν(v1) 6= ∆tdν (G) and let vk, k 6= 1 be a vertex in G with

maximum ν-total degree. Then, tdν(v1) < tdµ(vk)
n∑
i=2

ν1i + ν1 <
∑

k 6=1,j 6=k
νkj + νk.

Thus,
n∑
i=2

ν1 ∨ νi + ν1 <
∑

k 6=1,j 6=k
νk ∨ νj + νk. Since ν1 ∨ νi = ν1 for i = 1, 2, 3, ..., n

and for all other indices j, νk ∨ νj < µ1, it follows that,
(n− 1).ν1 + ν1 <

∑
k 6=1,j 6=k

νk ∨ νj + νk < (n− 1).ν1 + ν1.

So, tdν(v1) < tdµ(v1), a contradiction. Hence, tdν(v1) = ∆tdν (G). Therefore,
tdµ(v1) = δtdµ(G) = n.µ1 and tdν(v1) = ∆tdν (G) = n.ν1.

(4) Since µn > µi, νn < νi, for i = 1, 2, ...., n− 1 and G is complete,
µni = µn ∧ µi = µi and νni = νn ∨ µi = µi.

Then, tdµ(vn) =
n−1∑
i=1

µni + µn =
n−1∑
i=1

(µn ∧ µi) + µn =
n−1∑
i=1

(µi) + µn =
n∑
i=1

µi.

And, tdν(vn) =
n−1∑
i=1

νni + νn =
n−1∑
i=1

(νn ∨ νi) + νn =
n−1∑
i=1

νi + νn =
n∑
i=1

νi.

Suppose that tdµ(vn) 6= ∆tdµ(G). Let vl, 1 ≤ l ≤ n− 1 be a vertex in G such that
tdµ(vl) = ∆tdµ(G) and tdµ(vn) < tdµ(vl).

On one hand,

tdµ(vl) =

[
l−1∑
i=1

µil +
n−l∑
i=l+1

µil + µnl

]
+ µl

≤
[
l−1∑
i=1

µi + (n− l)µl + µl

]
+ µl

≤
n−1∑
i=1

µi + µl

≤
n∑
i=1

µi = tdµ(vn).

Thus, tdµ(vl) ≤ tdµ(vn), a contradiction. So, tdµ(vn) = ∆tdµ(G) =
n∑
i=1

µi.

Also, suppose that tdν(vn) 6= δtdν (G). Let vl, 1 ≤ l ≤ n− 1 be a vertex in G such
that tdν(vl) = δtdν (G) and tdν(vn) > tdν(vl).
On the other hand,

tdν(vl) =

[
l−1∑
i=1

νil +
n−l∑
i=l+1

νil + νnl

]
+ νl

≥
[
l−1∑
i=1

νi + (n− l)νl + νl

]
+ νl

≥
n−1∑
i=1

νi + νl

≥
n∑
i=1

νi = tdν(vn).

Thus, tdν(vl) ≥ tdν(vn), a contradiction to our assumption. So tdν(vn) = δtdν (G) =
n∑
i=1

νi. Hence the lemma is proved. �
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Remark 3.27. In a complete IFG G,
(1) there exists at least one pair of vertices vi and vj such that dµi = dµj = ∆µ(G)

and dνi = dνj = δν(G),
(2) tdµ(vi) = Oµ(G) = ∆tdµ(G) and tdν(vi) = Oν(G) = δtdν (G) for a vertex

vi ∈ V ,

(3)
n∑
i=1

tdµ(vi) = 2Sµ(G) +Oµ(G) and
n∑
i=1

tdν(vi) = 2Sν(G) +Oν(G).

4. Vertex membership and non-membership sequences in intuitionistic
fuzzy graphs

In this section, vertex membership and non-membership sequences are defined in
IFGs.

Definition 4.1. Let G be an IFG with |V | = n. The vertex membership sequence
of G is defined to be {pi}ni=1 with p1 ≤ p2 ≤ p3 ≤, ...,≤ pn where pi, 0 < pi ≤ 1,
is the membership value of the vertex vi when vertices are arranged so that their
membership values are non-decreasing.

In particular, p1 is the smallest vertex membership value and pn is largest vertex
membership value in G.

Note 4. If vertex membership sequence pi is repeated more than once in G, say
r 6= 1 times, then it is denoted by pri in the sequence.

Example 4.2. In Figure 4, the vertex membership sequence of G is
{0.2, 0.2, 0.3, 0.3, 0.5, 0.8} or

{
0.22, 0.32, 0.5, 0.8

}
.

Figure 4. Vertex membership sequence

Definition 4.3. Let G be an IFG with |V | = n. The vertex non-membership
sequence of G is defined to be {qi}ni=1 with q1 ≤ q2 ≤ q3 ≤, ...,≤ qn, where qi,
0 < qi ≤ 1, is the non-membership value of the vertex vi, when vertices are arranged
so that their non-membership values are non-increasing.

In particular, q1 is the largest vertex non-membership value and qn is smallest
vertex non-membership value in G.

Note 5. If vertex non-membership sequence qi is repeated more than once in G,
say r 6= 1 times, then it is denoted by qri in the sequence.

Example 4.4. In Figure 5, the vertex non-membership sequence of G is
{0.8, 0.4, 0.4, 0.4, 0.3, 0.3} or

{
0.8, 0.43, 0.32

}
.
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Figure 5. Vertex non-membership sequence

Definition 4.5. If an IFG G with |V | = n has both vertex membership sequence
{pi}ni=1 and vertex non-membership sequence {qi}ni=1 in the same order, then it is
said to have vertex intuitionistic fuzzy sequence and is denoted by {〈pi, qi〉}ni=1.

Example 4.6. In Figure 6, the vertex membership and non-membership sequence
of G is {〈0.4, 0.4〉 , 〈0.4, 0.4〉 , 〈0.5, 0.3〉 , 〈0.5, 0.3〉 , 〈0.6, 0.2〉 , 〈0.7, 0.1〉}

or
{〈

0.42, 0.42
〉
,
〈
0.52, 0.32

〉
, 〈0.6, 0.2〉 , 〈0.7, 0.1〉

}
.

Figure 6. Vertex intuitionistic fuzzy sequence

The properties of the vertex membership and non-membership sequences of com-
plete IFGs are discussed below.

Theorem 4.7. Let G = (V,E) be a complete IFG with |V | = n. Then,
(1) If the vertex membership sequence of G is of the form

{
pn−11 , p2

}
and vertex

non-membership sequence of G is of the form
{
qn−11 , q2

}
, then

(a) δtdµ(G) = n.µ1 and ∆tdµ(G) =
n∑
i=1

µi.

(b) ∆tdν (G) = n.ν1 and δtdν (G) =
n∑
i=1

νi.

(2) If the vertex membership sequence of G is of the form
{
pr11 , p

n−r1
2

}
and vertex

non-membership sequence of G is of the form
{
qr11 , q

n−r1
2

}
with 0 < r1 ≤ n−2, then

there exist exactly r1 vertices with minimum µ-total degree δtdµ(G) and maximum
ν-total degree ∆tdν (G) and exactly (n − r1) vertices with maximum µ-total degree
∆tdµ(G) and minimum ν-total degree δtdν (G).
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(3) If the vertex membership sequence of G is of the form {pr11 , p
r2
2 , ...., p

rk
k } and

the vertex non-membership sequence is of the form {qr11 , q
r2
2 , ...., q

rk
k } with rk > 1 and

k > 2, then there exists exactly r1 vertices with minimum µ-total degree δtdµ(G) and
maximum ν-total degree ∆tdν (G). Also, there exist exactly rk vertices with maximum
µ-total degree ∆tdµ(G) and minimum ν-total degree δtdν (G).

Proof. The proofs of (1) and (2) are obvious.

(3) Let v
(j)
i be the set of vertices in G, for j = 1, 2, ....ri, 1 ≤ i ≤ k. Then by

Theorem 3.26,

tdµ(v
(j)
1 ) = δtdµ(G) = n.µ1 = n.p1 and tdν(v

(j)
1 ) = ∆tdν (G) = n.ν1 = n.q1,

for j = 1, 2, ...r1. Since µ(v
(j)
i , v

(l)
i+1) = µ(v

(j)
i ) > p1 for 2 ≤ i ≤ k, j = 1, 2, ...., ri,

l = 1, 2, ..., ri+1, no vertex with membership more than p1 can have degree δtdµ(G).

Also since ν(v
(j)
i , v

(l)
i+1) = ν(v

(j)
i ) < q1 for 2 ≤ i ≤ k, j = 1, 2, ...., ri, l = 1, 2, ..., ri+1,

no vertex with non-membership less than q1 can have degree ∆tdν (G). Thus, there
exist exactly r1 vertices with degree δtdµ(G) and ∆tdν (G).

To prove tdµ(v
(t)
k ) = ∆tdµ(G) and tdν(v

(t)
k ) = δtdµ(G), t = 1, 2, ...., rk.

Since, µ(vtk) is maximum vertex membership, µ(vtk, v
j
k) = pk, t 6= j, t, j = 1, 2, ..., rk

and µ(vtk, v
j
i ) = min

{
µ(vtk), µ(vji )

}
= µ(vji ) for t = 1, 2, ..., rk, j = 1, 2, ...., ri,

i = 1, 2, ..., k − 1. Thus, for t = 1, 2, ..., rk,

tdµ(vtk) =
k∑
i=1

ri∑
j=1

µ(vji ) + (rk − 1)pk

=
n∑
i=1

µi

= ∆tdµ(G) by Theorem 3.26
Now, if vm is a vertex such that µm = pk−1, then

tdµ(vm) =
k−2∑
i=1

ri∑
j=1

µ(vm, v
j
i ) + (rk−1 − 1 + rk)pk−1 + µm

=
k−2∑
i=1

ri∑
j=1

µ(vji ) +
rk−1∑
j=1

µ(vjk−1) + (rk − 1)pk−1 + µm

<
k−2∑
i=1

ri∑
j=1

µ(vji ) +
rk−1∑
j=1

µ(vjk−1) + (rk − 1)pk + µm = ∆tdµ(G).

Thus, there exist exactly rk vertices with degree ∆tdµ(G).

Similarly, it can be proved that tdν(v
(t)
k ) = δν(G), t = 1, 2, ...., rk. Since ν(vtk)

is minimum vertex non-membership, ν(vtk, v
j
i ) = qk, t 6= j, t, j = 1, 2, ..., rk and

ν(vtk, v
j
i ) = max

{
ν(vtk), ν(vji )

}
= ν(vji ), for t = 1, 2, ..., rk, j = 1, 2, ...., ri, i =

1, 2, ..., k − 1. Thus, for t = 1, 2, ..., rk,

tdν(vtk) =

k∑
i=1

ri∑
j=1

ν(vji ) + (rk − 1)qk

=

n∑
i=1

νi

= δtdν (G) by Theorem 3.26
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Now, if vm is a vertex such that νm = qk−1, then

tdν(vm) =

k−2∑
i=1

ri∑
j=1

ν(vm, v
j
i ) + (rk−1 − 1 + rk)qk−1 + νm

=

k−2∑
i=1

ri∑
j=1

ν(vji ) +

rk−1∑
j=1

ν(vjk−1) + (rk − 1)qk−1 + νm

<

k−2∑
i=1

ri∑
j=1

ν(vji ) +

rk−1∑
j=1

µ(vjk−1) + (rk − 1)qk + νm = δtdν (G).

So, there exist exactly rk vertices with degree δtdν (G). �
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