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1. Introduction

Molodtsov [25] introduced the concept of soft set as a new mathematical tool for
dealing with uncertainties while modeling the problems in engineering, physics, com-
puter science, economics, social sciences, and medical sciences. As he argued that
soft sets are more general than fuzzy sets, as a mathematical structure and serves as
a better tool for processing uncertainty because of its non-restrictive parametrization
and easy applicability to various real life problems. Following his work Maji et al.
[21, 22] introduced several operations on soft sets and applied soft sets to decision
making problems. Chen et al. [4] presented a new definition of soft set parametriza-
tion reduction and some works in this direction have been found in [20, 28, 32]. Soft
group was introduced by Aktas and Cagman [1] and soft BCK/BCI – algebras and
their applications in ideal theory were investigated by Jun [18, 19]. Ali et al. [2]
introduced some new operations on soft sets. Feng et al. [14] worked on soft semir-
ings, soft ideals and idealistic soft semirings. Some works on semigroups and soft
ideals over a semi-group are found in [29]. The idea of a soft topological space was
first given by Shabir and Naz [30] and subsequently Hazra et al. [17], Pazar et al.
[23] and Cagman et al. [3] introduced new definitions of soft topology. Soft topolog-
ical groups and soft topological soft groups were studied by Nazmul and Samanta
[26, 27]. Mappings between soft sets were described by Majumdar and Samanta [24].
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Guler et al. [16] studied fixed point theorem on soft G-metric spaces. Feng et al.
[15] worked on soft sets combined with fuzzy sets and rough sets. Recently we have
introduced soft real sets, soft real numbers, soft complex sets, soft complex numbers
in [5, 6]. Two different concepts of soft metric have been presented in [7, 8]. ’Soft
linear (vector) space’ and ’soft norm’ on an absolute ’soft vector space’ have been
introduced in [9]. An idea of ‘soft inner product’ has been introduced in [10]. In
[11, 12], we have proposed ideas of ‘soft linear operator’ and ‘soft linear functional’
on ‘soft linear spaces’ and ‘soft normed linear spaces’. In [12], four fundamental
theorems of functional analysis have also been extended in soft set settings.

In fuzzy settings, metric and norm structures are nicely developed based on the
theory of interval analysis. But there are some inherent difficulties in the non-
comparable order structure of complex numbers on one hand and the lattice ordering
of the gradation function of fuzzy sets on the other. So the theory of fuzzy complex
numbers is not so well-developed. The notion of fuzzy inner product has a lot of
potentials for being a tool for quantum mechanics or in the development of fuzzy
operator theory. The reason behind the lack of progress in fuzzy inner products
may be due to the fact that the theory of fuzzy complex numbers is not so well-
developed. However, in soft set settings, it has been possible to extend the inner
product theory nicely. In the present paper an attempt has been made to extend
the operator theory on soft inner product spaces. In [13], we introduced notions of
self-adjoint soft linear operators and completely continuous soft linear operators on
soft inner product spaces and study some of their properties.

In this paper we have further extended the study of operators on soft inner prod-
uct spaces. In fact, in this paper, normal operators, unitary operators, isometric
operators and square root of positive operators on soft inner product spaces have
been introduced and some basic properties of such operators have been investigated.
In section 2, some preliminary results are given. In section 3, a notion of normal op-
erator on a ‘soft inner product space’ is given and some properties of such operators
are studied. In section 4, unitary operators and isometric operators over soft inner
product spaces are introduced and some fundamental properties of such operators
are studied. In section 5, square roots of positive operators over soft inner prod-
uct spaces are introduced and some basic properties of such operators are studied.
Section 6 concludes the paper.

2. Preliminaries

Definition 2.1 ([25]). Let U be a universe and E be a set of parameters. Let P(U)
denote the power set of U and A be a non-empty subset of E. A pair (F,A) is
called a soft set over U , where F is a mapping given by F : A → P(U). In other
words, a soft set over U is a parametrized family of subsets of the universe U . For
ε ∈ A, F (ε) may be considered as the set of ε-approximate elements of the soft set
(F,A).

Let X be an initial universal set and A be the universal parameter set. Then any
soft sets (F,E1), (G,E2) can be considered as soft sets (F,A), (G,A) with respect
to the universal parameter set A, where F (e) = ∅, if e ∈ A − E1, G(e) = ∅, if
e ∈ A− E2.
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In our study, throughout this work, we shall consider the soft sets with respect
to the universal parameter set A.

Definition 2.2 ([22]). (i) A soft set (F,A) over U is said to be an absolute soft set,
denoted by Ǔ , if for each ε ∈ A, F (ε) = U .

(ii) A soft set (F,A) over U is said to be a null soft set, denoted by Φ, if for each
ε ∈ A, F (ε) = ∅.

Definition 2.3 ([5]). Let X be a non-empty set and A be a non-empty parameter
set. Then a function ε : A→ X is said to be a soft element of X. A soft element ε of
X is said to belongs to a soft set B of X, which is denoted by ε∈̃B, if ε (e) ∈ B (e),
for each e ∈ A.

Thus for a soft set A of X with respect to the index set A, we have B (e) ={
ε (e) , ε∈̃B

}
, e ∈ A.

It is to be noted that every singleton soft set (a soft set (F,A) for which F (e)
is a singleton set, for each e ∈ A) can be identified with a soft element by simply
identifying the singleton set with the element that it contains for each e ∈ A.

Definition 2.4 ([5]). Let R be the set of all real numbers, B(R) the collection of all
non-empty bounded subsets of R. Let A be taken as the set of parameters. Then a
mapping F : A→ B(R) is called a soft real set. It is denoted by (F,A).

If specifically (F,A) is a singleton soft set, then after identifying (F,A) with the
corresponding soft element, it will be called a soft real number.

The set of all soft real numbers is denoted by R(A) and the set of all non-negative
soft real numbers by R (A)

∗
.

We use notations r̃, s̃, t̃ to denote soft real numbers whereas r, s, t denotes
a particular type of soft real numbers such that r (λ) = r, for each λ ∈ A. For
example 0 is the soft real number where 0 (λ) = 0, for each λ ∈ A.

Definition 2.5 ([6]). Let C be the set of all complex numbers and ℘(C) be the
collection of all non-empty bounded subsets of the set of complex numbers. Let A
be the set of parameters. Then a mapping

F : A→ ℘(C)

is called a soft complex set. It is denoted by (F,A).
In particular, If (F,A) is a singleton soft set , then identifying (F,A) with the

corresponding soft element, it will be called a soft complex number.
The set of all soft complex numbers is denoted by C (A) .

Let X be a non-empty set. Let X̌ be the absolute soft set, i.e., F (λ) = X, for
each λ ∈ A, where (F,A) = X̌. Let S(X̌) be the collection of all soft sets (F,A)
over X for which F (λ) 6= ∅, for each λ ∈ A together with the null soft set Φ.

Let (F,A)(6= Φ) ∈ S(X̌). Then the collection of all soft elements of (F,A) is
denoted by SE (F,A) . For a collection B of soft elements of X̌, the soft set generated
by B is denoted by SS(B).

Definition 2.6 ([9]). Let V be a vector space over a field K and let A be a parameter
set. Let G be a soft set over V . Now G is said to be a soft vector space or soft linear
space of V over K, if G(λ) is a vector subspace of V , for each λ ∈ A.
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Definition 2.7 ([9]). Let G be a soft vector space of V over K. Then a soft element
of G is said to be a soft vector of G.

For example Θ is the null soft vector defined by Θ(λ) = θ (the null vector of V ),
for each λ ∈ A.

In a similar manner, a soft element of the soft set (K,A) is said to be a soft scalar,
K being the scalar field.

Definition 2.8 ([9]). Let x̃, ỹ be soft vectors of G and k̃ be a soft scalar. Then the

addition x̃+ ỹ of x̃, ỹ and scalar multiplication k̃. x̃ of k̃ and x̃ are defined by
(x̃+ ỹ) (λ) = x̃ (λ) + ỹ (λ) , (k̃.x̃) (λ) = k̃ (λ) .x̃ (λ), for each λ ∈ A.

Obviously, x̃+ ỹ, k̃.x̃ are soft vectors of G.

Definition 2.9 ([9]). Let X̌ be the absolute soft vector space, i.e., X̌ (λ) = X, for
each λ ∈ A. Then a mapping ‖.‖ : SE(X̌) → R (A)

∗
is said to be a soft norm on

the soft vector space X̌, if ‖.‖ satisfies the following conditions:

(N1) ‖x̃‖ ≥̃0, for each x̃ ∈̃ X̌,
(N2) ‖x̃‖ = 0 if and only if x̃ = Θ,
(N3) ‖α̃.x̃‖ = |α̃| ‖x̃‖ for each x̃∈̃ X̌ and for every soft scalar α̃, where |α̃| denotes

the modulus of α̃,
(N4) For each x̃, ỹ∈̃ X̌, ‖x̃+ ỹ‖ ≤̃ ‖x̃‖+ ‖ỹ‖.

The soft vector space X̌ with a soft norm ‖.‖ on X̌ is said to be a soft normed linear
space and is denoted by (X̌, ‖.‖ , A) or (X̌, ‖.‖). (N1), (N2), (N3) and (N4) are said
to be soft norm axioms.

Theorem 2.10 ([9, 31]). Every soft norm ‖.‖ satisfies the condition
(A) For ξ ∈ X, and λ ∈ A, {‖x̃‖ (λ) : x̃ (λ) = ξ} is a singleton set.
And hence each soft norm ‖.‖ can be decomposed into a family of crisp norms
{‖.‖λ, λ ∈ A}, where ‖.‖λ : X → R+ is defined by the following:

for each ξ ∈ X, ‖ξ‖λ = ‖x̃‖ (λ), with x̃ ∈̃ X̌ such that x̃ (λ) = ξ.

Definition 2.11 ([10]). Let X̌ be the absolute soft vector space i.e., X̌ (λ) = X,
for each λ ∈ A. Then a mapping 〈.〉 : SE(X̌)× SE(X̌)→ C (A) is said to be a soft
inner product on the soft vector space X̌, if 〈.〉 satisfies the following conditions:

(I1) 〈x̃, x̃〉 ≥̃0, for each x̃ ∈̃ X̌ and 〈x̃, x̃〉 = 0 if and only if x̃ = Θ,

(I2) 〈x̃, ỹ〉 = 〈ỹ, x̃〉, where bar denotes the complex conjugate of soft complex
numbers,

(I3) 〈α̃.x̃, ỹ〉 = α̃. 〈x̃, ỹ〉 for each x̃, ỹ∈̃ X̌ and for every soft scalar α̃,
(I4) For each x̃, ỹ∈̃ X̌, 〈x̃+ ỹ, z̃〉 = 〈x̃, z̃〉+ 〈ỹ, z̃〉.

The soft vector space X̌ with a soft inner product 〈.〉 on X̌ is said to be a soft inner
product space and is denoted by (X̌, 〈.〉 , A) or (X̌, 〈.〉). (I1), (I2), (I3) and (I4) are
said to be soft inner product axioms.

Example 2.12. Let X = l2. Then X is an inner product space with respect to
the inner product 〈x, y〉 =

∑∞
i=1 ξiηi for x = {ξi} , y = {ηi} of l2. Let x̃, ỹ be soft

elements of the absolute soft vector space X̌. Then x̃ (λ) = {ξλi }, ỹ (λ) = {ηλi } are
elements of l2. The mapping 〈.〉 : SE(X̌)× SE(X̌)→ C (A) defined by 〈x̃, ỹ〉 (λ) =∑∞
i=1 ξ

λ
i η

λ
i = 〈x̃ (λ) , ỹ(λ)〉 , for each λ ∈ A, is a soft inner product on the soft vector

space X̌.
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We now state the following result which is a modified version of Decomposition
Theorem of [10].

Theorem 2.13 ([10]). Every soft inner product 〈.〉 satisfies the condition
(D) For (ξ, η) ∈ X×X and λ ∈ A,

{
〈x̃, ỹ〉 (λ) : x̃, ỹ∈̃X̌ such that x̃ (λ) = ξ, ỹ (λ) = η

}
is a singleton set.
Hence every soft inner product can be decomposed into a family of crisp inner prod-
ucts {〈.〉λ, λ ∈ A}, where for each λ ∈ A, 〈.〉λ : X ×X → C is defined by for each

(ξ, η) ∈ X ×X, 〈ξ, η〉λ = 〈x̃, ỹ〉 (λ), with x̃, ỹ∈̃X̌ such that x̃ (λ)= ξ, ỹ (λ) = η.

Theorem 2.14 ([10]). Let (X̌, 〈.〉 , A) be a soft inner product space. Let us define

‖.‖ : X̌ → R (A)
∗

by ‖x̃‖ =
√
〈x̃, x̃〉, for each x̃∈̃ X̌. Then ‖.‖ is a soft norm on

X̌.

Definition 2.15 ([10]). A soft inner product space is said to be complete, if it is
complete with respect to the soft metric defined by soft inner product. A complete
soft inner product space is said to be a soft Hilbert space.

Definition 2.16 ([11]). Let T : SE(X̌) → SE(Y̌ ) be an operator. Then T is said
to be soft linear, if

(L1) T is additive, i.e., T (x̃1 + x̃2) = T (x̃1) + T (x̃2) for every soft elements
x̃1, x̃2∈̃X̌,

(L2) T is homogeneous, i.e., for every soft scalar c̃, T (c̃x̃) = c̃T (x̃), for every soft
element x̃∈̃X̌.

The properties (L1) and (L2) can be put in a combined form T (c̃1x̃1 + c̃2x̃2) =
c̃1T (x̃1) + c̃2T (x̃2) for every soft elements x̃1, x̃2∈̃X̌ and every soft scalars c̃1, c̃2.

Definition 2.17 ([11]). The operator T : SE(X̌)→ SE(Y̌ ) is said to be continuous
at x̃0∈̃X̌, if for every sequence {x̃n} of soft elements of X̌ with x̃n → x̃0 as n →
∞, we have T (x̃n) → T (x̃0) as n → ∞, i.e., ‖x̃n − x̃0‖ → 0 as n → ∞ implies
‖T (x̃n)− T (x̃0)‖ → 0 as n→∞.

If T is continuous at each soft element of X̌, then T is said to be a continuous
operator.

Definition 2.18 ([11]). Let T : SE(X̌) → SE(Y̌ ) be a soft linear operator, where
X̌, Y̌ are soft normed linear spaces. The operator T is called bounded, if there exists
some positive soft real number M̃ such that for each x̃∈̃X̌, ‖T (x̃)‖ ≤̃M̃ ‖x̃‖ .

Theorem 2.19 ([11]). Let T : SE(X̌) → SE(Y̌ ) be a soft linear operator, where
X̌, Y̌ are soft normed linear spaces. Then T is bounded if and only if T is continuous.

We now state the following result which is a modified form of the Decomposition
Theorem of [11].

Theorem 2.20 ([11]). Every soft linear operator T : SE(X̌)→ SE(Y̌ ), where X̌, Y̌
are soft vector spaces, satisfies the condition
(B) For ξ ∈ X, and λ ∈ A,

{
T (x̃) (λ) : x̃ ∈̃X̌ such that x̃ (λ) = ξ

}
is a singleton

set.
And hence every soft linear operator can be decomposed into a family of crisp linear
operators {Tλ, λ ∈ A}, where for each λ ∈ A, the mapping Tλ : X → Y is defined
by Tλ(ξ) = T (x̃) (λ), for each ξ ∈ X and x̃∈̃X̌ with x̃ (λ) = ξ.
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Theorem 2.21 ([11]). Let X̌, Y̌ be soft normed linear spaces and T : SE(X̌) →
SE(Y̌ ) be a bounded soft linear operator. Then ‖T (x̃)‖ ≤̃ ‖T‖ ‖x̃‖, for all x̃∈̃X̌.

Theorem 2.22. [11] Let X̌, Y̌ be soft normed linear spaces. Let T : SE(X̌) →
SE(Y̌ ) be a continuous soft linear operator. Then Tλ is continuous on X for each
λ ∈ A.

Theorem 2.23 ([12]). Let X̌, Y̌ be soft normed linear spaces. Let {Tλ;λ ∈ A} be
a family of continuous linear operators such that Tλ : X → Y for each λ. Then
the soft linear operator T : SE(X̌)→ SE(Y̌ ) defined by (T (x̃)) (λ) = Tλ(x̃ (λ)), for
each λ ∈ A, is a continuous soft linear operator.

Theorem 2.24 ([12]). Let X̌, Y̌ be soft normed linear spaces. Let {Tλ;λ ∈ A} be a
family of bounded linear operators such that Tλ : X → Y for each λ. Then the soft
linear operator T : SE(X̌) → SE(Y̌ ) defined by (T (x̃)) (λ) = Tλ(x̃ (λ)), for each
λ ∈ A, is a bounded soft linear operator.

Definition 2.25 ([12], Soft linear space of operators). Let X̌, Y̌ be soft normed
linear spaces. Consider the set W of all continuous soft linear operators S, T etc.
each mapping SE(X̌) into SE(Y̌ ). Then W can be interpreted as to form an absolute
soft vector space. We shall denote this absolute soft linear (vector) space by L(X̌, Y̌ ).

Proposition 2.26 ([12]). Each element of SE
(
L
(
X̌, Y̌

))
can be identified uniquely

with a member of W , i.e., to a continuous soft linear operator T : SE(X̌)→ SE
(
Y̌
)
.

Definition 2.27 ([12]). A soft linear functional f is a soft linear operator such that
f : SE(X̌) → K where X̌ is a soft linear space and K = R(A) if X̌ is a real soft
linear space and K=C (A), if X̌ is a complex soft linear space.

Theorem 2.28 ([12]). Let X̌ be a soft normed linear space. Let f : SE(X̌) → K
be a continuous soft linear functional on X̌. Then fλ is continuous linear on X for
each λ ∈ A.

Theorem 2.29 ([12]). Let X̌ be a soft normed linear space. Let {fλ;λ ∈ A} be a
family of continuous linear functionals such that fλ : X → R or C for each λ. Then
the functional f : SE

(
X̌
)
→ K(= R(A) or C (A)) defined by (f (x̃)) (λ) = fλ(x̃ (λ)),

for each λ ∈ A and for each x̃∈̃X̌, is a continuous soft linear functional.

Definition 2.30 ([9]). A sequence of soft elements {x̃n} in a soft normed linear
space (X̌, ‖.‖ , A) is said to be convergent (or strong convergent) and converges to
a soft element x̃ if ‖x̃n − x̃‖ → 0 as n → ∞. This means for every ε̃>̃0, chosen

arbitrarily, there exists a natural number N = N(ε̃), such that 0≤̃ ‖x̃n − x̃‖ <̃ε̃ ,
whenever n > N , i.e., n > N =⇒ x̃n ∈ B(x̃, ε̃).

We denote this by x̃n → x̃ as n → ∞ or by limn→∞ x̃n = x̃. In this case, x̃ is
said to be the limit of the sequence x̃n as n→∞.

Definition 2.31 ([12]). Let X̌ be a soft normed linear space. Suppose that x̃n, x̃0∈̃X̌.
The sequence {x̃n} of soft elements is said to converge weakly to x̃0, if for each
f ∈ X̌∗, f(x̃n) → f(x̃0) as n → ∞. We write x̃n→wkx̃0 and we say that x̃0 is a
weak limit of the sequence {x̃n}.

302



Sujoy Das et al. /Ann. Fuzzy Math. Inform. 13 (2017), No. 3, 297–315

Theorem 2.32 ([12]). Let X̌ be a soft normed linear space. Then for any sequence
of soft elements in X̌, strong convergence implies weak convergence.

Theorem 2.33 ([12]). If a sequence {x̃n} of soft elements of X̌ converges weakly
then the sequence of norms {‖x̃n‖} is bounded.

Theorem 2.34 ([13]). Let X̌, Y̌ be soft normed linear spaces. Let T : SE(X̌) →
SE(Y̌ ) be a continuous soft linear operator. If {x̃n} be a sequence of soft elements
of X̌, then x̃n→wkx̃0 implies T (x̃n)→wkT (x̃0) .

We now state the modified version of Uniform Boundedness Principle Theorem
of [13].

Theorem 2.35 ([13], Uniform Boundedness Principle). Let X̌ be a soft Banach
space and Y̌ be a soft normed linear space. Let {Ti} be a non-empty sequence of
continuous soft linear operators such that Ti : SE(X̌) → SE(Y̌ ) for each i. If the
sequence {Ti (x̃)} is bounded in Y̌ for each x̃∈̃X̌, then {‖Ti‖} is a bounded sequence
of soft real numbers.

Theorem 2.36 ([13], Riesz Representation Theorem). Let H̃ be a soft Hilbert space

and f be a soft linear functional on H̃. Then f is continuous on H̃ if and only if
there exists a unique soft element ỹ in H̃ such that f (x̃) = 〈x̃, ỹ〉 for each x̃∈̃H̃.
Also, ‖f‖ = ‖ỹ‖.

Definition 2.37 ([13]). Let H̃ be a soft Hilbert space and let T be a continuous soft

linear operator such that T : SE(H̃) → SE(H̃) and ỹ∈̃H̃. We define a functional

fỹ on H̃ by

(2.1) fỹ (x̃) = 〈T (x̃), ỹ〉 .
Then fỹ is a soft linear functional. Moreover, fỹ is bounded and thus fỹ is a

continuous soft linear functional defined everywhere on H̃ and ‖fỹ (x̃)‖ ≤̃ ‖T‖ ‖ỹ‖.
By Theorem 2.36, fỹ has the form

(2.2) fỹ (x̃) = 〈x̃, ỹ∗〉

for each x̃∈̃H̃, where ỹ∗∈̃H̃ is uniquely determined by fỹ. Thus to each ỹ∈̃H̃, we
get a unique ỹ∗ satisfying (2.2). So we obtain an operator T ∗ such that

ỹ∗ = T ∗ (ỹ) .

This operator T ∗ : SE(H̃)→ SE(H̃) is called the adjoint operator to T . From (2.1)
and (2.2), we see that the operator T and its adjoint operator T ∗ are connected by
the relation

(2.3) 〈T (x̃), ỹ〉 = 〈x̃, T ∗ (ỹ)〉 .

Theorem 2.38 ([13]). Let H̃ be a soft Hilbert space. Let T be a continuous soft

linear operator such that T : SE(H̃)→ SE(H̃) and T ∗ be the adjoint operator to T .
Then the following properties are satisfied:

(1) T ∗ is unique.
(2) T ∗ is a soft linear operator.

(3) T ∗ is a continuous soft linear operator with ‖T ∗‖ ≤̃ ‖T‖.
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(4) T ∗∗ = T .
(5) ‖T ∗‖ = ‖T‖.
(6) (T1T2)

∗
= T2

∗T1
∗, where T1, T2 : SE(H̃) → SE(H̃) are continuous soft

linear operators.
(7) ‖T ∗T‖ = ‖T‖2.

(8) ‖TT ∗‖ = ‖T‖2.

(9) (T1 + T2)
∗

= T1
∗+T2

∗, where T1, T2 : SE(H̃)→ SE(H̃) are continuous soft
linear operators.

(10) If α̃ be any soft scalar, then (α̃T )
∗

= α̃T ∗; where α̃ denote the conjugate of
α̃.

(11) T ∗T = the null soft linear operator if and only if T is the null soft linear
operator.

Proposition 2.39 ([13]). Let H̃ be a soft Hilbert space and let T be a continuous

soft linear operator such that T : SE(H̃) → SE(H̃) and T ∗ be the adjoint operator
to T . Then T ∗λ defined by T ∗λ (x̃(λ)) = (T ∗(x̃))(λ) is the adjoint operator of Tλ, for
each λ ∈ A.

Proposition 2.40 ([13]). Let H̃ be a soft Hilbert space and let T be a continuous

soft linear operator such that T : SE(H̃)→ SE(H̃). Let {T ∗λ , λ ∈ A} be a family of
adjoint operators of Tλ. Then the soft linear operator T ∗ defined by (T ∗(x̃))(λ) =

T ∗λ (x̃(λ)), for each λ ∈ A, for each x̃∈̃H̃ is the adjoint operator of T .

Definition 2.41 ([13]). A continuous soft linear operator T : SE(H̃) → SE(H̃) is
called self-adjoint soft linear operator or simply self-adjoint, if T ∗ = T .

Theorem 2.42 ([13]). (1) If T1, T2 are self-adjoint, so is T1 + T2.
(2) If T is self-adjoint and α̃ is a soft real number, then α̃T is self-adjoint.
(3) If T is any continuous soft linear operator, then T ∗T, TT ∗ and T + T ∗ are

self-adjoint.
(4) If T1, T2 are self-adjoint, then T1T2 is self-adjoint if and only if T1T2 = T2T1.

Theorem 2.43 ([13]). Let H̃ be a soft Hilbert space. Let T : SE(H̃) → SE(H̃) be

a self-adjoint soft linear operator. Then Tλ is self-adjoint on H̃ (λ) for each λ ∈ A.

Theorem 2.44 ([13]). Let H̃ be a soft Hilbert space. Let {Tλ;λ ∈ A} be a family

of self-adjoint continuous linear operators such that Tλ : H̃ (λ)→ H̃ (λ) for each λ.

Then the operator T : SE(H̃) → SE(H̃) defined by T (x̃) (λ) = Tλ(x̃(λ)), for each

λ ∈ A and for each x̃∈̃H̃, is a self-adjoint soft linear operator.

Theorem 2.45 ([13]). Suppose that T ∈ L(H̃, H̃). Then 〈T (x̃), ỹ〉 = 0 for all

x̃, ỹ∈̃H̃ if and only if T = O, the zero soft linear operator.

Theorem 2.46 ([13]). Suppose that T ∈ L(H̃, H̃). Then 〈T (x̃), x̃〉 = 0 for all x̃∈̃H̃
if and only if T = O, the zero operator.

Lemma 2.47 ([13]). Suppose that T : SE(H̃)→ SE(H̃) is a self-adjoint soft linear
operator. Then

{|〈T (x̃) , x̃〉| (λ) : x̃∈̃H̃, ‖x̃‖ = 1} = {|〈Tλ (x) , x〉λ| : x ∈ H̃ (λ) , ‖x‖λ = 1}.
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Theorem 2.48 ([13]). Suppose that T : SE(H̃) → SE(H̃) is a self-adjoint soft
linear operator. Then

‖T‖ (λ) = sup{|〈T (x̃) , x̃〉| (λ) : ‖x̃‖ = 1},∀λ ∈ A.

Definition 2.49 ([13]). Let H̃ and H̃1 be soft Hilbert spaces. A soft linear operator

T : SE(H̃) → SE(H̃1) is said to be completely continuous soft linear operator or

simply completely continuous, if given any sequence of soft elements {x̃n} of H̃ such
that {‖x̃n‖} is bounded, the sequence {T (x̃n)} has a convergent subsequence.

Theorem 2.50 ([13]). A completely continuous soft linear operator is continuous.

Theorem 2.51 ([13]). If S and T are completely continuous, then S + T is com-
pletely continuous.

3. Normal soft linear operators

Definition 3.1. A continuous soft linear operator T mapping a soft Hilbert space
H̃ into itself is said to be normal soft linear operator or simply normal if it commutes
with its adjoint, that is, if TT ∗ = T ∗T .

From the fact that T ∗∗ = T , we can say immediately that if T is normal then its
adjoint T ∗ is also normal. The following theorem gives a criteria for a soft linear
operator to be normal.

Theorem 3.2. A continuous soft linear operator T is normal if and only if ‖T ∗(x̃)‖ =

‖T (x̃)‖ for every x̃∈̃H̃.

Proof. ‖T ∗(x̃)‖ = ‖T (x̃)‖, for every x̃∈̃H̃
if and only if ‖T ∗(x̃)‖2 = ‖T (x̃)‖2, for every x̃∈̃H̃
if and only if 〈T ∗(x̃), T ∗(x̃)〉 = 〈T (x̃), T (x̃)〉, for every x̃∈̃H̃
if and only if 〈TT ∗(x̃), x̃〉 = 〈T ∗T (x̃), x̃〉, for every x̃∈̃H̃
if and only if 〈[TT ∗ − T ∗T ](x̃), x̃〉 = 0, for every x̃∈̃H̃
if and only if TT ∗ = T ∗T , by Theorem 2.46.

Then ‖T ∗(x̃)‖ = ‖T (x̃)‖, for each x̃∈̃H̃ if and only if T is normal. This proves the
theorem. �

The sum and product of two normal soft linear operators are normal under certain
restrictions, as the following theorem shows.

Definition 3.3. Two soft linear operators T1 and T2 are said to permute, if T1T2 =
T2T1, i.e., for every x̃, T1T2(x̃) = T2T1(x̃).

Theorem 3.4. If T1 and T2 are normal soft linear operators such that one of them
permutes with the adjoint of the other then T1 + T2 and T1T2 are normal.

Proof. Suppose that T1 permutes with the adjoint of T2 i.e., T1T
∗
2 = T ∗2 T1. Then

we see that (T1T
∗
2 )∗ = (T ∗2 T1)∗, i.e., T2T

∗
1 = T ∗1 T2, i.e., T2 also permutes with the

adjoint of T1.
To verify that T1 + T2 is normal, we see that

(T1 + T2)(T1 + T2)∗ = (T1 + T2)(T ∗1 + T ∗2 ) = T1T
∗
1 + T1T

∗
2 + T2T

∗
1 + T2T

∗
2
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and

(T1 + T2)∗(T1 + T2) = (T ∗1 + T ∗2 )(T1 + T2) = T ∗1 T1 + T ∗1 T2 + T ∗2 T1 + T ∗2 T2.

Under the stated conditions, the right hand sides are equal. Thus T1 +T2 is normal.
To see that T1T2 is normal, we have

(T1T2)(T1T2)∗ = T1T2T
∗
2 T
∗
1 = T1T

∗
2 T2T

∗
1 = T ∗2 T1T

∗
1 T2 = T ∗2 T

∗
1 T1T2 = (T1T2)∗(T1T2).

This proves the theorem. �

Theorem 3.5. If T is a normal soft linear operator, then ‖T 2‖ = ‖T‖2.

Proof. We first observe that if ‖T1(x̃)‖ = ‖T2(x̃)‖ for each x̃∈̃H̃, then ‖T1‖ = ‖T2‖.
By Theorem 3.2, ‖T 2(x̃)‖ = ‖TT (x̃)‖ = ‖T ∗T (x̃)‖ for every x̃∈̃H̃. Then

(3.1) ‖T 2‖ = ‖T ∗T‖.

From Theorem 2.38, we have

(3.2) ‖T ∗T‖ = ‖T‖2.

Combining (3.1) and (3.2), we get ‖T 2‖ = ‖T‖2 and this proves the theorem. �

Theorem 3.6. If T is any continuous soft linear operator from a soft Hilbert space
H̃ into itself, then T can be expressed uniquely in the form T = T1 + īT2 where T1
and T2 are self-adjoint soft linear operators(Here ī is the soft complex number such
that ī(λ) = i, for each λ ∈ A).

Proof. We define T1 and T2 by the formulas T1 = ( 1
2 )(T + T ∗), T2 = ( 1

2i )(T − T
∗).

Then T ∗1 = ( 1
2 )(T ∗ + T ) = T1 and T ∗2 = −( 1

2i )(T
∗ − T ) = ( 1

2i )(T − T
∗) = T2. Thus

T1 and T2 are self-adjoint soft linear operators and T = T1 + iT2.
If T = T3 + iT4, where T3 and T4 are self-adjoint soft linear operators, then

T ∗ = (T3 + iT4)∗ = T3 − iT4. Thus T + T ∗ = 2T3 and T − T ∗ = 2iT4. So T1 = T3
and T2 = T4. Hence T is expressed uniquely. �

Definition 3.7. The self-adjoint soft linear operators T1 and T2 are called the real
part and the imaginary part of the operator T , respectively.

Theorem 3.8. If T is a continuous soft linear operator from a soft Hilbert space H̃
into itself, then T is normal if and only if its real and imaginary parts permute.

Proof. Let T = T1+ īT2, where T1 and T2 are self-adjoint soft linear operators. Then
T ∗ = T1 − īT2,
TT ∗ = (T1 + īT2)(T1 − īT2) = T 2

1 + T 2
2 + ī(T2T1 − T1T2)

and
T ∗T = (T1 − īT2)(T1 + īT2) = T 2

1 + T 2
2 + ī(T1T2 − T2T1).

Suppose T1T2 = T2T1. Then it is clear that TT ∗ = T ∗T , i.e., T is normal.
Conversely, suppose T is normal, i.e., TT ∗ = T ∗T . Then T1T2 − T2T1 = T2T1 −

T1T2. Thus 2̄T1T2 = 2̄T2T1. So T1T2 = T2T1. This proves the theorem. �

Theorem 3.9. Let T be normal. Then T (x̃) = λ̃x̃ if only if T ∗(x̃) =
¯̃
λx̃, for x̃∈̃H̃

and for any soft scalar λ̃.
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Proof. We consider the operator T − λ̃I, where I being the identity soft linear
operator. Then we have

(T − λ̃I)(T − λ̃I)∗ = (T − λ̃I)(T ∗ − ¯̃
λI) = TT ∗ − ¯̃

λT − λ̃T ∗ + |λ̃|2I
and

(T − λ̃I)∗(T − λ̃I) = (T ∗ − ¯̃
λI)(T − λ̃I) = T ∗T − λ̃T ∗ − ¯̃

λT + |λ̃|2I.

Since T is normal, TT ∗ = T ∗T . Thus it follows that T − λ̃I is normal.
By Theorem 3.2, ‖(T − λ̃I)(x̃)‖ = ‖(T − λ̃I)∗(x̃)‖ for every x̃∈̃H̃. So

‖T (x̃)− λ̃(x̃)‖ = ‖(T ∗(x̃)− ¯̃
λ(x̃)‖ for every x̃∈̃H̃.

Hence, T (x̃) = λ̃(x̃) if and only if T ∗(x̃) =
¯̃
λ(x̃). This proves the theorem. �

Theorem 3.10. (1) Every self-adjoint operator is normal.

(2) If T is normal and λ̃ is a soft scalar, then λ̃T is normal.

(3) If Tn is a sequence of normal operators that converges (in the norm of L(H̃, H̃))
to T , then T is normal.

Proof. Proofs of (1) and (2) are obvious. We prove only (3).
(3). Suppose Tn is a sequence of normal operators that converges (in the norm

of L(H̃, H̃)) to T . Then ‖Tn − T‖ → 0̄ as n→∞.
On one hand, ‖T ∗n − T ∗‖ = ‖(Tn − T )∗‖ = ‖Tn − T‖. then ‖T ∗n − T ∗‖ → 0̄ as

n→∞. Thus,
‖TnT ∗n − TT ∗‖ ≤̃ ‖TnT ∗n − TnT ∗‖+ ‖TnT ∗ − TT ∗‖

≤̃ ‖Tn‖‖T ∗n − T ∗‖+ ‖T ∗‖‖Tn − T‖ → 0̄ as n→∞,
because ‖Tn − T‖ → 0̄. So ‖Tn‖ is bounded. Hence, TnT

∗
n → TT ∗.

Similarly, T ∗nTn → T ∗T . Now,

‖TT ∗ − T ∗T‖≤̃‖TT ∗ − TnT ∗n‖+ ‖TnT ∗n − T ∗nTn‖+ ‖T ∗nTn − T ∗T‖
= ‖TT ∗ − TnT ∗n‖+ ‖T ∗nTn − T ∗T‖ → 0̄ as n→∞.

Then, TT ∗ = T ∗T . Thus T is normal. This proves the theorem. �

4. Unitary and isometric soft linear operators

Definition 4.1. A continuous soft linear operator T : SE(H̃) → SE(H̃) is said to
be unitary, if it satisfies the condition TT ∗ = T ∗T = I, where I is the identity soft
linear operator.

Proposition 4.2. The unitary operators on H̃ are those operators whose inverses
are equal to their adjoints.

Proof. Let T be unitary. Suppose T (x̃1) = T (x̃2). Then operating both sides by the
operator T ∗, we get T ∗T (x̃1) = T ∗T (x̃2) and TT ∗ = T ∗T = I. Thus x̃1 = x̃2. So T
is injective.

Also for ỹ∈̃H̃, T (T ∗(ỹ)) = TT ∗(ỹ) = I(ỹ) = ỹ. Then T is surjective. Thus T is
bijective. So the result holds. �

Every self-adjoint soft linear operator is normal. Also, it is evident that every
unitary operator is normal. We now exhibit an example to show that a normal
operator need not be self-adjoint or unitary.
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Example 4.3. Let I : SE(H̃) → SE(H̃) be the identity soft linear operator. Let

T = 2iI. Then T ∗ = (2iI)∗ = −2iI and also T−1 = −( 1
2 )iI. Thus, TT ∗ = T ∗T =

4I, T ∗ 6= T−1. So T is normal which is neither self-adjoint nor unitary.

Theorem 4.4. If T ∈ L(H̃, H̃), then the following conditions are equivalent to one
another:

(1) T ∗T = I.

(2) 〈T (x̃), T (ỹ)〉 = 〈x̃, ỹ〉, for each x̃, ỹ∈̃H̃.

(3) ‖T (x̃)‖ = ‖x̃‖, for each x̃∈̃H̃.

Proof. Suppose that (1) is true. Since 〈T ∗T (x̃), ỹ〉 = 〈T (x̃), T (ỹ)〉, for each x̃, ỹ∈̃H̃,

〈T (x̃), T (ỹ)〉 = 〈x̃, ỹ〉, for each x̃, ỹ∈̃H̃. Then (2) holds.
Suppose that (2) is true. Then by making ỹ = x̃, we obtain
〈T (x̃), T (x̃)〉 = 〈x̃, x̃〉 or ‖T (x̃)‖2 = ‖x̃‖2 or ‖T (x̃)‖ = ‖x̃‖.

Thus (3) holds.
Now suppose that (3) is true. Then ‖T (x̃)‖ = ‖x̃‖ or ‖T (x̃)‖2 = ‖x̃‖2 or

〈T (x̃), T (x̃)〉 = 〈x̃, x̃〉, i.e., 〈T ∗T (x̃), x̃〉 = 〈x̃, x̃〉, i.e., 〈(T ∗T − I)(x̃), x̃〉 = 0̄.
By Theorem 2.46, T ∗T = I. Thus (1) holds. This proves the theorem. �

Theorem 4.5. A continuous soft linear operator T : SE(H̃) → SE(H̃) is unitary
if and only if T is an isomorphism.

Proof. Suppose T is unitary. Then T is injective and surjective, by Proposition 4.2
and T ∗T = I. Thus by Theorem 4.4, ‖T (x̃)‖ = ‖x̃‖. So T is an isomorphism.

Conversely, suppose T is an isomorphism. Then T−1 exists and ‖T (x̃)‖ = ‖x̃‖.
Thus by Theorem 4.4, T ∗T = I. It follows that (T ∗T )T−1 = IT−1 or T ∗ = T−1 or
TT ∗ = I. So TT ∗ = T ∗T = I. Hence T is unitary. �

Definition 4.6. A continuous soft linear operator T : SE(H̃) → SE(H̃) is called

isometric, if ‖T (x̃)‖ = ‖x̃‖, for each x̃∈̃H̃.

Theorem 4.4 shows immediately that a unitary soft linear operator is isometric.
But the converse is not true as shown by the following example.

Example 4.7. Consider the soft Hilbert space H̃ as defined in Example 2.12.
Then a soft element of the soft Hilbert space is of the form x̃, where x̃(λ) =
{ξλ1 , ξλ2 , ξλ3 , ...}, λ ∈ A; {ξλ1 , ξλ2 , ξλ3 , ...} being an element of the Hilbert space l2. Let

us define T : SE(H̃) → SE(H̃) by T (x̃) = ỹ, where ỹ(λ) = {0, ξλ1 , ξλ2 , ...}, for each

λ ∈ A. Then ‖T (x̃)‖ = ‖x̃‖, for each x̃∈̃H̃.

But T is not unitary, because T does not map SE(H̃) onto itself.

5. Square roots of positive operators

Definition 5.1. Let H̃ be a soft Hilbert space and T : SE(H̃) → SE(H̃) be a
self-adjoint soft linear operator. The operator T is called positive, if 〈T (x̃), x̃〉≥̃0,

for each x̃∈̃H̃. In notation, we write T ≥̃O.

Let T1 and T2 be two self-adjoint soft linear operators on H̃. If for each x̃∈̃H̃,
〈T1(x̃), x̃〉≥̃〈T2(x̃), x̃〉, i.e., 〈(T1 − T2)(x̃), x̃〉≥̃0, then T1 is called greater than T2

or T2 is said to be smaller than T1. In notation, T1≥̃T2 or T2≤̃T1.
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If T is a self-adjoint soft linear operator on H̃, then
〈T 2(x̃), x̃〉 = 〈T (T (x̃)), x̃〉 = 〈T (x̃), T ∗(x̃)〉 = 〈T (x̃), T (x̃)〉 = ‖T (x̃)‖2≥̃0.

Thus T 2≥̃O.
If T is any continuous soft linear operator on H̃, then the operators TT ∗ and T ∗T

are self adjoint. We have also
〈TT ∗(x̃), x̃〉 = 〈T ∗(x̃), T ∗(x̃)〉 = ‖T ∗(x̃)‖2≥̃0

and
〈T ∗T (x̃), x̃〉 = 〈T (x̃), T (x̃)〉 = ‖T (x̃)‖2≥̃0.

Thus, the operators TT ∗ and T ∗T are always positive.

Theorem 5.2. The product of two positive permutable soft linear operators S and
T is positive.

Proof. We consider the following two cases:
(Case 1): Let ‖S‖(λ) 6= 0, for any λ ∈ A. By theorem 2.42 (4), ST is self-adjoint.

We construct a sequence of operators {Sn}, by the definition

(5.1) S1 =
S

‖S‖
, S2 = S1−S1

2, S3 = S2−S2
2, ···, Sn+1 = Sn−S2

n, ···andO≤̃Sn≤̃I

for n = 1, 2, · · ·.
Since S is self-adjoint, it is clear that each Sn is self-adjoint.

Let n = 1. Then 〈S1(x̃), x̃〉 = 1
‖S‖ 〈S(x̃), x̃〉≥̃0. Thus S1≥̃O and

〈(I − S1)(x̃), x̃〉 = 〈x̃, x̃〉 − 〈S1(x̃), x̃〉≥̃0,

because 〈S1(x̃), x̃〉≤̃‖S1(x̃)‖‖x̃‖≤̃‖S1‖‖x̃‖2 = ‖x̃‖2 = 〈x̃, x̃〉. This shows that S1≤̃I.
So, (5.1) is true for n = 1.

Let (5.1) be true for n = k. Then
〈S2
k(I − Sk)(x̃), x̃〉 = 〈Sk(I − Sk)(x̃), S∗k(x̃)〉 = 〈(I − Sk)Sk(x̃), Sk(x̃)〉≥̃0,

because (I − Sk) is positive. Thus, S2
k(I − Sk)≥̃O. Similarly, it follows that Sk(I −

Sk)2≥̃O. As the sum of two positive operators is clearly positive, it follows that

Sk+1 = S2
k(I − Sk) + Sk(I − Sk)2≥̃O.

Also, I−Sk+1 = (I−Sk) +S2
k≥̃O. So, O≤̃Sk+1≤̃I, i.e., (5.1) is true for n = k+ 1.

Hence (5.1) is true.
Now S1 = S2

1 + S2 = S2
1 + S2

2 + S3 = · · · = S2
1 + S2

2 + S3 + · · · + S2
n + Sn+1

and this implies that

(5.2)

n∑
k=1

S2
k = S1 − Sn+1≤̃S1.

Then, S1−
∑n
k=1 S

2
k≥̃O or 〈(S1−

∑n
k=1 S

2
k)(x̃), x̃〉≥̃0 or 〈S1(x̃), x̃〉−

∑n
k=1〈S2

k(x̃), x̃〉≥̃0

or 〈S1(x̃), x̃〉 −
∑n
k=1〈Sk(x̃), Sk(x̃)〉≥̃0, because Sk is self-adjoint. Thus we see that∑n

k=1〈Sk(x̃), Sk(x̃)〉≤̃〈S1(x̃), x̃〉,
whatever n may be. This gives that the series

∑n
k=1〈Sk(x̃), Sk(x̃)〉 =

∑n
k=1 ‖Sk(x̃)‖2

is convergent. So ‖Sk(x̃)‖ → 0 as k →∞. Hence from (5.2),
(
∑n
k=1 S

2
k)(x̃) = S1(x̃)− Sn+1(x̃)→ S1(x̃) as n→∞.

On the other hand, by continuity of T ,
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T (
∑n
k=1 S

2
k)(x̃)→ TS1(x̃) or

∑n
k=1 T (S2

k)(x̃)→ TS1(x̃).
Then

〈T (
∑n
k=1 S

2
k)(x̃), x̃〉 → 〈TS1(x̃), x̃〉 or

∑n
k=1〈TS2

k(x̃), x̃〉 → 〈TS1(x̃), x̃〉.
Now T is permutable with S. So T is permutable with Sk. Hence we obtain

〈ST (x̃), x̃〉 = ‖S‖〈TS1(x̃), x̃〉 = ‖S‖ lim
∑n
k=1〈TS2

k(x̃), x̃〉
= ‖S‖ lim

∑n
k=1〈S2

kT (x̃), x̃〉 = ‖S‖ lim
∑n
k=1〈SkT (x̃), S∗k(x̃)〉

= ‖S‖ lim
∑n
k=1〈TSk(x̃), Sk(x̃)〉≥̃0,

because T is positive. This shows that ST is a positive operator.
(Case 2): Let ‖S‖(λ) = 0, for some λ ∈ A. Let D ⊂ A be such that ‖S‖(λ) = 0,

for each λ ∈ D and ‖S‖(µ) 6= 0, for any µ ∈ (A −D). Then ‖Sλ‖λ = ‖S‖(λ) = 0,
for each λ ∈ D, i.e., Sλ = 0, for each λ ∈ D.

Let us define a soft linear operator W such that W (λ) = Iλ, for each λ ∈ D and
W (µ) = S(µ), for each µ ∈ (A − D). Then ‖W‖(λ) 6= 0, for any λ ∈ A. Thus

by (Case 1), the operator WT is positive, i.e., 〈WT (x̃), x̃〉≥̃0, for each x̃∈̃H̃, i.e.,

〈WT (x̃), x̃〉(λ) ≥ 0, i.e., 〈WλTλ(x̃(λ)), x̃(λ)〉λ ≥ 0, for each x̃∈̃H̃ and for each λ ∈ A.

Now, for each x̃∈̃H̃, we have,

〈ST (x̃), x̃〉(µ) = 〈SµTµ(x̃(µ)), x̃(µ)〉µ = 〈WµTµ(x̃(µ)), x̃(µ)〉µ ≥ 0,

for each µ ∈ (A−D) (Since Wµ = W (µ) = S(µ) = Sµ, for each µ ∈ (A−D)).
And 〈ST (x̃), x̃〉(λ) = 〈SλTλ(x̃(λ)), x̃(λ)〉λ = 0, for each λ ∈ D.
So, 〈ST (x̃), x̃〉(λ) = 〈SλTλ(x̃(λ)), x̃(λ)〉λ ≥ 0, for each λ ∈ A, i.e., 〈ST (x̃), x̃〉≥̃0,
i.e., ST is positive.

Hence in either case, the product of two permutable positive soft linear operators
is positive. �

Definition 5.3. A sequence {Tn} of self-adjoint soft linear operators on a soft

Hilbert space H̃ is called monotone increasing, if T1≤̃T2≤̃T3≤̃ · ··
and monotone decreasing, if T1≥̃T2≥̃T3≥̃ · ··.

Theorem 5.4. Let {Tn} be a sequence of self-adjoint soft linear operators on a soft

Hilbert space H̃ such that

T1≤̃T2≤̃T3≤̃ · · · ≤̃S,
where S is a self-adjoint soft linear operator on H̃. Suppose, further that any Tj
permutes with S and with every Tm. Then {Tn} is strongly convergent and the limit
operator is soft linear, bounded and self-adjoint and satisfies T ≤̃S. An analogous
result holds for monotone decreasing sequence.

Proof. Let Cn = S − Tn. Then
(i) Cn is self-adjoint soft linear operator, because S and Tn are so,
(ii) Cn is a positive operator because Tn≤̃S,
(iii) since Tj permutes with S and with every Tm, we have CnCm = CmCn, so

that Cn’s are permutable operators,
(iv) if n > m, then Cm−Cn = Tn−Tm≥̃O, so that Cn is monotonically decreasing

sequence.
For n > m, the operator Cm − Cn is positive and also Cn and Cm are positive.

Thus by Theorem 5.2, their products Cm(Cm − Cn) and Cn(Cm − Cn) are also
positive. So,
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〈(C2
m − CmCn)(x̃), x̃〉≥̃0 or 〈C2

m(x̃), x̃〉≥̃〈CmCn(x̃), x̃〉
and

〈(CnCm − C2
n)(x̃), x̃〉≥̃0 or 〈CnCm(x̃), x̃〉≥̃〈C2

n(x̃), x̃〉.
These together imply

(5.3) 〈C2
m(x̃), x̃〉≥̃〈CmCn(x̃), x̃〉≥̃〈C2

n(x̃), x̃〉.

Now, C2
n is positive. Then 〈C2

n(x̃), x̃〉≥̃0. From Equation (5.3), we obtain for
n > m, 〈C2

n(x̃), x̃〉≤̃〈C2
m(x̃), x̃〉. Thus, the sequence {〈C2

n(x̃), x̃〉} is monotonically
decreasing sequence of non-negative soft real numbers and so has a limit. Form
(5.3), it follows that the sequence

{〈CmCn(x̃), x̃〉} converges to the same limit as m, n→∞.
Since for any self-adjoint soft linear operator T , ‖T (x̃)‖2 = 〈T 2(x̃), x̃〉. Then we
have

‖Cm(x̃)− Cn(x̃)‖2
= ‖(Cm − Cn)(x̃)‖2
= 〈(Cm − Cn)2(x̃), x̃〉
= 〈(C2

m − 2CmCn + C2
n)(x̃), x̃〉

= 〈C2
m(x̃), x̃〉 − 2〈CmCn(x̃), x̃〉+ 〈C2

n(x̃), x̃〉 → 0 as m, n→∞.
Thus, {Cn(x̃)} is a Cauchy sequence and therefore convergent. Because Cn = S−Tn,
i.e., Cn(x̃) = S(x̃) − Tn(x̃), this implies that {Tn(x̃)} converges to T (x̃), say for

arbitrary x̃∈̃H̃, i.e., T (x̃) = limTn(x̃) for x̃∈̃H̃. This defines a soft linear operator

T : SE(H̃) → SE(H̃) which is clearly soft linear. Uniform boundedness principle
(Theorem 2.35) implies that T is bounded. Also T is self-adjoint, because Tn is
self-adjoint and the soft inner product is continuous.

Now, for each n, 〈(S − Tn)(x̃), x̃〉≥̃0 or 〈S(x̃), x̃〉≥̃〈Tn(x̃), x̃〉.
Since Tn(x̃)→ T (x̃), we have 〈S(x̃), x̃〉≥̃〈T (x̃), x̃〉, i.e., 〈(S − T )(x̃), x̃〉≥̃0 or T ≤̃S.

This proves the theorem. �

Definition 5.5. Let T : SE(H̃) → SE(H̃) be a positive soft linear operator on a

soft Hilbert space H̃. Then a self-adjoint soft linear operator S is called a square
root of T , if S2 = T . If, in addition S≥̃O, then S is called a positive square root of
T and is denoted by S = T

1
2 .

Theorem 5.6. The positive square root S of an arbitrary positive self-adjoint soft
linear operator T exists and is unique. It is permutable with each operator permutable
with T .

Proof. We consider the following two cases.
(Case 1): Let ‖T‖(λ) 6= 0, for each λ ∈ A.
We can further assume that T ≤̃I, where I is the identity operator. Because

if not, we can start with the operator T1, where T1 = T
‖T‖ , then ‖T1‖ = 1. By

Schwarz inequality, 〈T1(x̃), x̃〉≤̃‖T1‖‖x̃‖2 = ‖x̃‖2 = 〈x̃, x̃〉, i.e., 〈I(x̃) − T1(x̃), x̃〉≥̃0
or 〈(I − T1)(x̃), x̃〉≥̃0. Then T1≤̃I.

We now construct a sequence of operators by
S0 = O,
S1 = S0 + 1

2 (T − S2
0) = 1

2T ,

S2 = S1 + 1
2 (T − S2

1),
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· · · · · · · · ·

(5.4) Sn+1 = Sn +
1

2
(T − S2

n)

and so on. Because T is self-adjoint and square of a self-adjoint soft linear operator
is self-adjoint, it follows that Sn are self-adjoint. It also follows that all Sn are
permutable with every operator permutable with T . In particular, we have SnT =
TSn and SmT = TSm and thus SnSm = SmSn.

Now 1
2 (I − Sn)2 + 1

2 (I − T ) = I − [Sn + 1
2 (T − S2

n)] = I − Sn+1 and so

(5.5) Sn≤̃I, ∀n.

Further using (5.4), we obtain that

(5.6) Sn+1 − Sn =
1

2
[(I − Sn−1) + (I − Sn)](Sn − Sn−1).

We now show that Sn≤̃Sn+1 for each n. Equality (5.6) shows that Sn+1−Sn≥̃O
if Sn − Sn−1≥̃O. But S1 = 1

2T ≥̃O = S0. Then Sn≤̃Sn+1, for each n. Thus, we
obtain a monotonically increasing sequence {Sn} of self-adjoint operators

S0≤̃S1≤̃S2≤̃ · · · ≤̃Sn≤̃ · · · ≤̃I.

By Theorem 5.4, this sequence converges to an operator S which is self-adjoint.
We now show that S is positive. We have S1 = 1

2T is positive and because the

sequnce {Sn} is monotone increasing, each Sn is positive. Then 〈Sn(x̃), x̃〉≥̃0 for
each n. Passing to the limit, 〈S(x̃), x̃〉≥̃0. Thus S is positive. Letting n → ∞ in
(5.4), we get S = S + 1

2 (T − S2), i.e., S2 = T .
(Case 2): Let ‖T‖(λ) = 0, for some λ ∈ A. Let D ⊂ A be such that ‖T‖(λ) = 0,

for each λ ∈ D and ‖T‖(µ) 6= 0, for any µ ∈ (A −D). Then ‖Tλ‖λ = ‖T‖(λ) = 0,
for each λ ∈ D, i.e., Tλ = 0, for each λ ∈ D. Let us define a soft linear operator
W such that W (λ) = Iλ, for each λ ∈ D and W (µ) = T (µ), for each µ ∈ (A −D).
Then ‖W‖(λ) 6= 0, for any λ ∈ A. Thus by (Case 1), there exists a positive soft
linear operator V such that V 2 = W .

Let us consider the soft linear operator S defined by S(µ) = V (µ), for each

µ ∈ (A − D) and S(λ) = 0, for all λ ∈ D. Then S2 = T . Let x̃∈̃H̃ and let
µ ∈ (A−D). Since Vµ = V (µ) = S(µ) = Sµ,

〈S(x̃), x̃〉(µ) = 〈Sµ(x̃(µ)), x̃(µ)〉µ = 〈Vµ(x̃(µ)), x̃(µ)〉µ ≥ 0.

Furthermore, 〈S(x̃), x̃〉(λ) = 〈Sλ(x̃(λ)), x̃(λ)〉λ = 0, for each λ ∈ D.
Then, 〈S(x̃), x̃〉(λ) = 〈Sλ(x̃(λ)), x̃(λ)〉λ ≥ 0, for each λ ∈ A. Thus 〈S(x̃), x̃〉≥̃0. So
S is positive and hence S is a positive square root of T .

Therefore in either case, the existence of a positive square root S of the operator
T is obtained.

Now, Sn is permutable with every operator permutable with T . Let the operator
C permute with T , then SnC = CSn i.e., SnC(x̃) = CSn(x̃), for each x̃∈̃H̃. Taking

limit, SC(x̃) = CS(x̃), for each x̃∈̃H̃, i.e., SC = CS. So, S is permutable with C,
i.e., S is permutable with every operator permutable with T .

We now prove the uniqueness. Let S1 be another positive square root of T . Since
S1 permutes with T , by the preceding observation, S1S = SS1.
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If x̃∈̃H̃ and ỹ = (S − S1)x̃, then
〈S(ỹ), ỹ〉+ 〈S1(ỹ), ỹ〉 = 〈(S+S1)(ỹ), ỹ〉 = 〈(S2−S2

1)(x̃), ỹ〉 = 〈(T −T )(x̃), ỹ〉 = 0.
Since both S and S1 are positive, it follows that 〈S(ỹ), ỹ〉 = 0 and 〈S1(ỹ), ỹ〉 = 0.
Because S is positive, by what we have already proved, there exists a self-adjoint
soft linear operator C such that S = C2. Thus,

‖C(ỹ)‖2 = 〈C(ỹ), C(ỹ)〉 = 〈ỹ, C∗C(ỹ)〉
= 〈ỹ, C2(ỹ)〉 = 〈ỹ, S(ỹ)〉 = 0, i.e., C(ỹ) = Θ.

So S(ỹ) = C2(ỹ) = C(C(ỹ)) = Θ. Similarly, S1(ỹ) = Θ. Hence for x̃∈̃H̃,
‖S(x̃)−S1(x̃)‖2 = 〈(S−S1)2(x̃), x̃〉 = 〈(S−S1)(ỹ), x̃〉 = 〈S(ỹ), x̃〉−〈S1(ỹ), x̃〉 = 0.

Therefore, S(x̃) = S1(x̃), for each x̃∈̃H̃, i.e., S = S1. This proves the uniqueness of
the square root. �

6. Conclusions

The concept of operator plays a very important role in many aspects of linear
algebra and functional analysis. In the dynamics of quantum theory, one must
study operators on infinite dimensional Hilbert spaces. On the other hand, the usual
uncertainty principle of Heisenberg ultimates generalized uncertainty principle, this
has been motivated by string theory and non-commutative geometry. In string
quantum gravity regime space-time points are determined in a fuzzy manner. Thus
Hilbert spaces and operators on Hilbert spaces involving the uncertainties need to
be developed. In this regard it is to be noted that the study of operator theory
on fuzzy inner product spaces is limited since in fuzzy setting complex valued inner
product space is not so developed. In soft set settings it has been possible to develop
the concept of soft inner product nicely. A concept of operator theory on soft inner
product spaces is also introduced in [13]. In this paper we have further extended
the operator theory on soft inner product spaces. This concept can be extended to
spectral theory of bounded self-adjoint operators and unbounded linear operators
on soft Hilbert spaces. A generalization of quantum mechanics can be done by using
the generalized unbounded linear operators on soft inner product spaces. There is
an ample scope for further research on operators on soft inner product spaces.
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