Annals of Fuzzy Mathematics and Informatics Volume 12, No. 6, (December 2016), pp. 805–823 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Injectivity of intuitionistic fuzzy G-modules

P. K. Sharma, Simpi Chopra

Received 24 February 2016; Revised 20 June 2016; Accepted 24 June 2016

ABSTRACT. In this article, we introduce the notion of injectivity and quasi injectivity of an intuitionistic fuzzy G-module. We also establish a condition on finite dimensional G-modules for which an intuitionistic fuzzy G-module is injective with respect to another intuitionistic fuzzy G-module. We discuss the injectivity of an intuitionistic fuzzy G-module with respect to the quotient intuitionistic fuzzy G-module of another G-module. Some important properties of injectivity of intuitionistic fuzzy G-modules with regards to direct sum of intuitionistic fuzzy G-modules are also studied. A relationship between injectivity and quasi injectivity of intuitionistic fuzzy G-modules is also obtained.

2010 AMS Classification: 03F 55, 13C11

Keywords: Intuitionistic fuzzy G-modules, G-module homomorphism, Injective modules, Quasi-injective modules, Relatively injective modules.

Corresponding Author: P.K.Sharma (pksharma@davjalandhar.com)

1. INTRODUCTION

The concept of injectivity of modules was introduced by Eckmann and Schopf [8]. Banaschewski [5] extended this work of injective and projective modules. After this, many authors tried to generalize the concept of injective modules, for example, Johnson and Wong [14] introduced quasi-injective modules. The notion of M-injective modules was introduced by Azumaya in [4]. Singh [21] introduced the notion of Pseudo injective modules. After the introduction of fuzzy sets by Zadeh [23], the researchers have been carrying out research in various concepts of abstract algebra in fuzzy setting. Rosenfeld [17] was the first one to define the concept of fuzzy subgroups of a group. The literature of various fuzzy algebraic concepts have been growing rapidly. In particular, Nagoita and Ralescu [15] introduced and examined the notion of fuzzy submodule of a module. Zahedi and Ameri [22] studied about the fuzzy projectivity and fuzzy injectivity of modules. Fernadez introduced and studied the notion of fuzzy G-modules in [9] and fuzzy G-modules injectivity in [10].

As an important extension of fuzzy set theory, Atanassov [1, 2, 3] introduced and developed the theory of intuitionistic fuzzy sets. Using the Atanassov's idea, Biswas [6] established the intuitionistic fuzzification of the concept of subgroup of a group. Later on many mathematicians worked on it and introduced the notion of intuitionistic fuzzy subring, intuitionistic fuzzy submodule etc. (See [11, 12, 13, 16]). The author et al. in [18, 19, 20] have studied intuitionistic fuzzy G-modules ; intuitionistic fuzzy representation, reducibility and complete reducibility of intuitionistic fuzzy G-modules respectively. As a continuation of author's work [18, 19, 20] here the concept of intuitionistic fuzzy G-module injectivity has been introduced and analysed.

2. Preliminaries

Here we shall provide some definitions and a few elementary results associated with injectivity of G-modules. Throughout the paper, R and C denote the field of real numbers and field of complex numbers respectively. Unless otherwise stated all G-modules are assumed to be taken over the field K, where K is a subfield of the field of complex numbers and all homomorphisms are G-module homomorphism.

Definition 2.1 ([7]). Let G be a group and let M be a vector space over a field K. Then M is called a G-module if for every $g \in G$ and $m \in M$, \exists a product(called the action of G on M), $gm \in M$ satisfies the following axioms :

- (i) $1_G m = m, \forall m \in M \ (1_G \text{ being the identity of } G).$
- (ii) $(gh)m = g(hm), \forall m \in M, g, h \in G.$

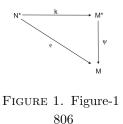
(iii) $g(k_1m_1 + k_2m_2) = k_1(gm_1) + k_2(gm_2), \forall k_1, k_2 \in K; m_1, m_2 \in M \text{ and } g \in G.$

Definition 2.2 ([7]). Let G be a group and let M be a G-module over the field K. Let N be a subspace of the vector space M over K. Then N is called a G-submodule of M if $an_1 + bn_2 \in N$, for all $a, b \in K$ and $n_1, n_2 \in N$.

Definition 2.3 ([7]). Let M and M^* be G-modules. A mapping $f: M \to M^*$ is called a G-module homomorphism if

- (i) $f(k_1m_1 + k_2m_2) = k_1f(m_1) + k_2f(m_2)$,
- (ii) $f(gm) = gf(m), \forall k_1, k_2 \in K; m, m_1, m_2 \in M \text{ and } g \in G.$

Definition 2.4 ([7]). A *G*-module *M* is said to be injective if for any *G*-module M^* and for any *G*-submodule N^* of M^* , every monomorphism from N^* into *M* can be extended to a homomorphism from M^* into *M*.



In other words, a G-module M is said to be injective if for all homomorphisms $\varphi: N^* \to M$ and injection $k: N^* \to M^*$, there exists homomorphism $\psi: M^* \to M$ such that $\psi ok = \varphi$ (i.e., injection defined on submodules can be extended to the entire module.i.e., $\psi|_{N^*} = \varphi$), that is such that the above diagram commutes.

Example 2.5 ([10]). Let $G = \{1, -1, i, -i\}$ and M = C, which is a vector space over C. Then M is a G - module with respect to trivial action. Also, we see that no proper subset of C becomes a G-module. Let M^* be any other G-module. Then following are some prominent cases of M^* :

(i) $M^* = \{0\}.$

(ii) $M^* = C^n (n \ge 1)$ or a *G*-submodule of C^n .

(iii) $M^* =$ Space of all functions from any set S into C.

(iv) $M^* = C^{m \times n} =$ Space of all $m \times n$ matrices over the field C or a G- submodule of M^* .

Let N^* be a G-submodule of M^* and $\varphi: N^* \to M$ be a homomorphism.

Case(i): Here $N^* = M^* = \{0\}$. Then $0 = \psi : M^* \to M$ extends the homomorphism φ .

Case(ii): Since C^n is n dimensional, we have $\dim M^* = k \leq n$. Let $\dim N^* = m$ and let $\{\alpha_1, \alpha_2, ..., \alpha_m\}$ be a basis of N^* such that $\{\alpha_1, \alpha_2, ..., \alpha_m, \alpha_{m+1}, ..., \alpha_k\}$ be a basis of M^* . Then

$$N^* = C\alpha_1 \oplus C\alpha_2 \oplus \dots \oplus C\alpha_m$$

and

$$M^* = C\alpha_1 \oplus C\alpha_2 \oplus \ldots \oplus C\alpha_m \oplus C\alpha_{m+1} \oplus \ldots \oplus C\alpha_k.$$

Thus the map $\psi: M^* \to M$ defined by

$$\psi(c_1\alpha_1 + c_2\alpha_2 + \dots + c_k\alpha_k) = \varphi(c_1\alpha_1 + c_2\alpha_2 + \dots + c_m\alpha_m)$$

is a homomorphism which extends φ .

Case(iii): Here $M^* = M_1 \oplus M_2$, where M_1 is the *G*-submodule of M^* consisting of all odd functions and M_2 is the *G*-submodule of M^* of all even functions. Then as in Case(ii), there exist a homomorphism $\psi : M^* \to M$ which extends φ .

Case(iv): Since $C^{m \times n}$ is an *mn*-dimensional vector space over C, dim $M^* \leq mn$. Then as in Case(ii), there exist a homomorphism $\psi: M^* \to M$ which extends φ .

Similarly, for any G-module M^* and any G-submodule N^* of M^* , every homomorphism $\varphi: N^* \to M$ can be extended to a homomorphism $\psi: M^* \to M$. Thus M is injective.

Definition 2.6 ([7]). Let M and M^* be G-modules. Then M is M^* -injective if for every G-submodule N^* of M^* , any homomorphism $\varphi : N^* \to M$ can be extended to a homomorphism $\psi : M^* \to M$.

Remark 2.7. A *G*-module *M* is injective if and only if *M* is M^* -injective for every *G*-module M^* .

Example 2.8. Let $M^* = R^n$, is an *n*-dimensional vector space over *R*.

Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a basis for M^* . Then $M^* = R\alpha_1 \oplus R\alpha_2 \oplus \dots \oplus R\alpha_n$. Let M = R and G be any finite multiplicative subgroup of R. Then both M^* and M are G-modules. Let N^* be any G-submodule of M^* and $\varphi : N^* \to M$ be a homomorphism.

- (1) If $N^* = \{0\}$, then $\varphi = 0$. Thus $\psi = 0 : M^* \to M$ extends φ .
- (2) If $N^* = R\alpha_j (1 \le j \le n)$, then $\psi : M^* \to M$ defined by

$$\psi(c_1\alpha_1 + \dots + c_j\alpha_j + \dots + c_n\alpha_n) = \varphi(c_j\alpha_j)$$

is a homomorphism which extends φ .

(3) $N^* = \bigoplus_{j=1}^k R\alpha_j (k \le n)$, then $\psi: M^* \to M$ defined by

 $\psi(c_1\alpha_1 + \dots + c_j\alpha_j + \dots + c_n\alpha_n) = \varphi(c_1\alpha_1 + \dots + c_k\alpha_k)$

is a homomorphism which extends φ . Thus M is M^* -injective.

Proposition 2.9 ([10]). Let $M = M_1 \oplus M_2$, where M_1 and M_2 are *G*-submodules of *M*. Then *M* is injective if and only if M_1 and M_2 are both injective.

Proof. Let M be injective. Let M^* be G-module and N^* be any G-submodule of M^* . Then the monomorphism $\varphi : N^* \to M$ can be extended to homomorphism $\psi : M^* \to M$ such that $\psi ok = \varphi$, where $k : N^* \to M^*$ is an injection homomorphism. Let $\pi_1 : M \to M_1$ and $\pi_2 : M \to M_2$ be the projection mappings. Then $\psi_1 = \pi_1 o \psi$:

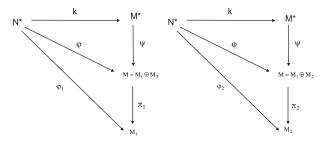


FIGURE 2. Figure-2

 $M^* \to M_1$ is an extension of $\varphi_1 = \pi_1 o \varphi : N^* \to M_1$ for

 $\psi_1 ok = (\pi_1 o \psi) ok = \pi_1 o(\psi ok) = \pi_1 o \varphi = \varphi_1$. Thus M_1 is injective.

Similarly, $\psi_2 = \pi_2 \circ \psi : M^* \to M_2$ is an extension of $\varphi_2 = \pi_2 \circ \varphi : N^* \to M_2$. So M_2 is injective.

Conversely, suppose both M_1 and M_2 are injective. Let M^* be a G-module and N^* be any G-submodule of M^* and let $\varphi : N^* \to M$ be a homomorphism. Let π_1 and π_2 be the projections of M_1 and M_2 on M respectively.

Then $\varphi_1 = \pi_1 o \varphi : N^* \to M_1$ and $\varphi_2 = \pi_2 o \varphi : N^* \to M_2$. Since both M_1 and

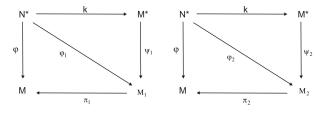


FIGURE 3. Figure-3

 M_2 are injective, the mappings ψ_1 and ψ_2 can be extended to homomorphisms $\psi_1: M^* \to M_1$ and $\psi_2: M^* \to M_2$ respectively such that $\psi_1 ok = \varphi_1$ and $\psi_2 ok = \varphi_2$.

Define $\psi: M^* \to M$ by $\psi(m) = \psi_1(m) + \psi_2(m)$, $\forall m \in M^*$. Then ψ is a homomorphism. Also for any $m \in M$, we have

$$\begin{aligned} (\psi ok)(m) &= \psi(k(m)) = \psi_1(k(m)) + \psi_2(k(m)) \\ &= (\psi_1 ok)(m) + (\psi_2 ok)(m) = \varphi_1(m) + \varphi_2(m) \\ &= (\varphi_1 + \varphi_2)(m) = \varphi(m). \end{aligned}$$

Thus $\psi ok = \varphi$. So ψ is an extention of φ . Hence M is injective.

Corollary 2.10. $M = \bigoplus_{i=1}^{n} M_i$ is injective if and only if M_i is injective, for every i = 1, 2, ..., n.

Proposition 2.11 ([10]). Let M and M^* be G-modules such that M is M^* -injective. If N^* is a G-submodule of M^* , then M is N^* -injective and M is M^*/N^* -injective.

Proof. Since $N^* \subseteq M^*$ and M is M^* -injective, it is obvious that M is N^* -injective. Let X^*/N^* be a G-submodule of M^*/N^* and $\varphi : X^*/N^* \to M$ be a homomorphism.

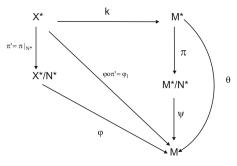


FIGURE 4. Figure-4

Let $\pi: M^* \to M^*/N^*$ be the canonical map, which is given by $\pi(x) = x + N^*$, $\forall x \in M^*$ and $\pi' = \pi|_{X^*}: X^* \to M^*/N^*$. Then $\varphi_1 = \varphi_0 \pi': X^* \to M$. Since M is M^* -injective, \exists an extension $\theta: M^* \to M$ of φ_1 . Thus, we have

$$\theta(N^*) = \varphi_1(N^*) = (\varphi o \pi^{'})(N^*) = \varphi(\pi^{'}(N^*)) = \varphi(0) = 0.$$

So Ker π is a G-submodule of Ker θ . Hence \exists 's a map $\psi : M^*/N^* \to M$ such that $\psi o \pi = \theta$. Also for any $x \in X^*$, we have

$$\psi(x+N^*) = \psi(\pi(x)) = (\psi o \pi)(x) = \theta(x) = (\varphi o \pi')(x) = (\varphi(\pi'(x))) = \varphi(x+N^*).$$

Therefore ψ extends φ and thus M is M^*/N^* -injective.

Definition 2.12 ([4]). A G-module M is called quasi-injective, or self-injective, when it is M- injective.

For example, injective modules and semisimple (or completely reducible) modules are quasi-injective and direct summands of quasi-injective modules are also quasiinjective.

Example 2.13. Let $S = \{1, \omega, \omega^2\}$, where ω is a complex cube root of unity and $G = S_3$, the symmetric group of degree three. Let $M = \{\alpha + \beta \omega + \gamma \omega^2 : \alpha, \beta, \gamma \in R\}$. Then M is a vector space over R spanned by S. For each $x \in G$, define $T_x : M \to M$ by

 $T_x(\alpha + \beta\omega + \gamma\omega^2) = \alpha x(1) + \beta x(\omega) + \gamma x(\omega^2).$

Then T_x is an isomorphism of M onto itself.

Also the map $T: G \to GL(M)$ defined by $T(x) = T_x, \forall x \in G$, is a representation of G. Thus M is a G-module. Also the only G-submodules of M are M and $\{0\}$.

We will show that M is M-injective. Let N be any G-submodule of M. Then $N = \{0\}$ or N = M. Let $\varphi : N \to M$ be any homomorphism.

Case(i): Suppose $N = \{0\}$. Then the map $\psi : M \to M$ defined by $\psi(x) = 0 \forall$ $x \in M$ extends φ .

Case(ii): Suppose N = M. Then φ is a homomorphism from M into itself. Thus $\psi = \varphi$ is the required extension.

So, in both cases, $\varphi: N \to M$ can be extend to a homomorphism $\psi: M \to M$. Hence M is M-injective. Therefore M is quasi-injective.

Proposition 2.14. Any finite dimensional quasi- injective G- module is the direct sum of quasi injective G-submodules.

Proof. Let M be a finite dimensional G-module. Then M is completely reducible. Thus M is a direct sum of irreducible G-submodules. Let $M = M_1 \oplus M_2 \oplus \ldots \oplus M_n$, where $M_i (1 \le i \le n)$ be irreducible G-submodules of M. If M is quasi-injective, then by Propositions 2.9 and 2.11, M_i 's are quasi-injective. Thus M is direct sum of quasi-injective G-submodules.

Definition 2.15 ([4]). Let M and M^* -injective be G-modules. Then M and M^* are relatively injective if M is M^* - injective and M^* is M-injective.

Example 2.16. Let $G = \{1, -1\}, M = Q\sqrt{3}$ and $M^* = Q\sqrt{5}$ are vector spaces over Q. Also both M and M^* are G-modules. It can be easily proved that M is M^* -injective and M^* is M-injective and hence M and M^* are relatively injective.

3. INTUITIONISTIC FUZZY G-MODULE INJECTIVITY

In this section we extend the notion of injectivity of G-modules to injectivity of intuitionistic fuzzy G-modules. Here homomorphism means G-homomorphism.

Definition 3.1 ([18]). Let G be a group and let M be a G-module over K, which is a subfield of C. Then an intuitionistic fuzzy G-module on M is an intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ such that following conditions are satisfied :

(i) $\mu_A(ax + by) \ge \mu_A(x) \land \mu_A(y)$ and $\nu_A(ax + by) \le \nu_A(x) \lor \nu_A(y), \forall a, b \in \mathbb{K}$ and $x, y \in \mathbf{M}.$

(ii) $\mu_A(gm) \ge \mu_A(m)$ and $\nu_A(gm) \le \nu_A(m), \forall g \in \mathbf{G}; m \in \mathbf{M}$.

Remark 3.2. If A is an intuitionistic fuzzy G-module of a G-module M, then $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x), \forall x \in M$.

Example 3.3 ([18]). Let $G = \{1, -1\}, M = R^n$ over R. Then M is a G-module. Define an intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ on M by

$$\mu_A(x) = \begin{cases} 1 & \text{if } x = 0\\ 0.5 & \text{if } x \neq 0 \end{cases}; \nu_A(x) = \begin{cases} 0 & \text{if } x = 0\\ 0.25 & \text{if } x \neq 0, \end{cases}$$

where $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. Then A is an intuitionistic fuzzy G-module on M. 810

Proposition 3.4. Let $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy *G*-module on *M*. Then for each $r \in [0, 1]$ the intuitionistic fuzzy set $A_r = (\mu_{A_r}, \nu_{A_r})$ defined by

 $\mu_{A_r}(x) = \mu_A(x) \wedge r \text{ and } \nu_{A_r}(x) = \nu_A(x) \vee (1-r), \forall x \in M$ is an intuitionistic fuzzy G-module on M.

Proof. Let $x, y \in M, a, b \in K$. Then

$$\mu_{A_r}(ax + by) = \mu_A(ax + by) \wedge r$$

$$\geq \mu_A(x) \wedge \mu_A(y) \wedge r$$

$$= (\mu_A(x) \wedge r) \wedge (\mu_A(y) \wedge r)$$

$$= \mu_{A_r}(x) \wedge \mu_{A_r}(y).$$

Similarly, $\nu_{A_r}(ax + by) \leq \nu_{A_r}(x) \vee \nu_{A_r}(y)$. For any $g \in G, x \in M$, we have

$$\mu_{A_r}(gx) = \mu_A(gx) \wedge r$$

$$\geq \mu_A(x) \wedge r$$

$$= \mu_{A_r}(x).$$

Similarly, $\nu_{A_r}(gx) \leq \nu_{A_r}(x)$.

Thus A_r is an intuitionistic fuzzy G-module on M.

Proposition 3.5 ([18]). Let $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy *G*-module of a *G*-module *M* and let *N* be a *G*-submodule of *M*. Then the restriction of *A* on *N* is an intuitionistic fuzzy set denoted by $A|_N = (\mu_{A|_N}, \nu_{A|_N})$ and is defined by

$$\mu_{A|_N}(x) = \mu_A(x) \text{ and } \nu_{A|_N}(x) = \nu_A(x), \ \forall \ x \in N,$$

is an intuitionistic fuzzy G-module on N.

Proposition 3.6. Let $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy *G*-module of a *G*-module *M* and let *N* be a *G*-submodule of *M*. Then the intuitionistic fuzzy set $A_N = (\mu_{A|_N}, \nu_{A|_N})$ of M/N defined by

$$\mu_{A_N}(x+N) = \mu_A(x) \text{ and } \nu_{A_N}(x+N) = \nu_A(x), \forall x \in M,$$

is an intuitionistic fuzzy G-module on M/N.

Proof. For $x + N, y + N \in M/N, g \in G$ and scalar $a, b \in K$, we have

$$\begin{split} \mu_{A_N} \{ a(x+N) + b(y+N) \} &= \mu_{A_N} \{ (ax+by) + N \} \\ &= \mu_A (ax+by) \\ &\geq \mu_A (x) \wedge \mu_A (y) \\ &\geq \mu_{A_N} (x+N) \wedge \mu_{A_N} (y+N). \end{split}$$

Similarly, $\nu_{A_N} \{ a(x+N) + b(y+N) \} \leq \nu_{A_N} (x+N) \vee \nu_{A_N} (y+N) \text{ and} \\ \mu_{A_N} [g(x+N)] &= \mu_{A_N} (gx+N) \\ &= \mu_A (gx) \\ &\geq \mu_A (x) \\ &= \mu_{A_N} (x+N). \end{split}$
Similarly, $\nu_{A_N} [g(x+N)] \leq \nu_{A_N} (x+N).$
Thus A_N is an intuitionistic fuzzy G-module on $M/N.$

811

Proposition 3.7 ([18]). Let M be a G-module and let A be an intuitionistic fuzzy set on M, then A is an intuitionistic fuzzy G-module on M if and only if either $C_{(\alpha,\beta)}(A) = \emptyset$ or $C_{(\alpha,\beta)}(A)$, for all $\alpha, \beta \in [0,1]$ such that $\alpha + \beta \leq 1$, is a G-submodule of M, where $C_{(\alpha,\beta)}(A) = \{x \in M : \mu_A(x) \geq \alpha \text{ and } \nu_A(x) \leq \beta\}.$

Theorem 3.8 ([20]). Consider a maximal chain of submodules of G-module M

$$M_0 \subset M_1 \subset M_2 \subset \dots \subset M_n = M$$

where \subset denotes proper inclusion. Then there exists an intuitionistic fuzzy G-module A of M given by

$$\mu_A(x) = \begin{cases} \alpha_0 & \text{if } x \in M_0 \\ \alpha_1 & \text{if } x \in M_1 \backslash M_0 \\ \alpha_2 & \text{if } x \in M_2 \backslash M_1 \\ \dots \dots \\ \alpha_n & \text{if } x \in M_n \backslash M_{n-1} \end{cases} ; \nu_A(x) = \begin{cases} \beta_0 & \text{if } x \in M_0 \\ \beta_1 & \text{if } x \in M_1 \backslash M_0 \\ \beta_2 & \text{if } x \in M_2 \backslash M_1 \\ \dots \\ \beta_n & \text{if } x \in M_n \backslash M_{n-1}, \end{cases}$$

where $\alpha_0 \geq \alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_n$ and $\beta_0 \leq \beta_1 \leq \beta_2 \leq \dots \leq \beta_n$; $\alpha_i, \beta_i \in [0, 1]$ such that $\alpha_i + \beta_i \leq 1, \forall i = 0, 1, 2, \dots, n$.

Remark 3.9 ([20]). The converse of the above theorem is also true i.e., any intuitionistic fuzzy G-module A of a G-module M can be expressed in the above form.

Definition 3.10 ([20]). If $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be intuitionistic fuzzy G-module of G-module M and M^* respectively. A function $f : M \to M^*$ is said to be a function from A to B if $\mu_B of = \mu_A$ and $\nu_B of = \nu_A$. Further, if f is a G-module

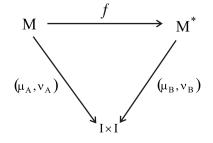


FIGURE 5. Figure-5

homomorphism or G-epimorphism or G-isomorphism, from M to M^* , then f is said to be intuitionistic fuzzy G-module homomorphism or G-epimorphism or G-isomorphism from A to B.

Suppose M and M^* be G-modules and let M be M^* -injective. Then for every monomorphism $\varphi : N^* \to M$ and injection $k : N^* \to M^*$, there exists homomorphism $\psi : M^* \to M$ such that $\psi ok = \varphi$, where N^* is a G-submodule of G-module M^* . In other words the map φ extends to ψ , i.e., $\psi|_{N^*} = \varphi$.

If $A = (\mu_B, \nu_A)$ and $B = (\mu_B, \nu_B)$ be intuitionistic fuzzy G-modules of M and M^* respectively and $(\mu_{B|_{N^*}}, \nu_{B|_{N^*}})$ be the intuitionistic fuzzy G-module of N^* . Then A is said to be *B*-injective if the following diagram is commutative. That is,

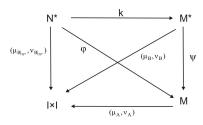


FIGURE 6. Figure-6

 $\mu_{B|_{N^*}}=\mu_Bok$ and $\nu_{B|_{N^*}}=\nu_Bok$; $\mu_B=\mu_Ao\psi$ and $\nu_B=\nu_Ao\psi$; $\mu_{B|_{N^*}} = \mu_A o \varphi$ and $\nu_{B|_{N^*}} = \nu_A o \varphi$. Thus, we notice that $\mu_B(k(m)) = (\mu_B o k)(m) = \mu_{B|_{N^*}}(m) = (\mu_A o \varphi)(m)$ $= \mu_A(\varphi(m)) = \mu_A((\psi ok)(m)) = \mu_A(\psi(k(m)))$ and $\nu_B(k(m)) = (\nu_B o k)(m) = \nu_{B|_{N^*}}(m) = (\nu_A o \varphi)(m)$

 $=\nu_A(\varphi)(m))=\nu_A((\psi ok)(m))=\nu_A(\psi(k(m))).$ So, $\mu_B(k(m)) = \mu_A(\psi(k(m)))$ and $\nu_B(k(m)) = \nu_A(\psi(k(m)))$. If $m \in N^*$, then k(m) = m. Thus $\mu_B(m) = \mu_A(\psi(m))$ and $\nu_B(m) = \nu_A(\psi(m))$. If $m \in M^* \setminus N^*$, then

$$\mu_B(k(m)) = 0 \le \mu_A(\psi(m))$$

and

$$\nu_B(k(m)) = 1 \ge \nu_A(\psi(k(m))).$$

Hence $\forall \psi \in Hom(M^*, M)$ and $m \in M^*$,

$$\mu_B(m) \leq \mu_A(\psi(m))$$
 and $\nu_B(m) \geq \nu_A(\psi(m))$

Now, we are ready to define the injectivity of intuitionistic fuzzy G-module.

Definition 3.11. Let M and M^* be G-modules. Let $A = (\mu_A, \nu_A)$ be any intuitionistic fuzzy G-module on M and $B = (\mu_B, \nu_B)$ be any intuitionistic fuzzy G-module on M^* . Then A is B-injective if

(i) M is M^* - injective and

(ii) $\mu_B(m) \leq \mu_A(\psi(m))$ and $\nu_B(m) \geq \nu_A(\psi(m)), \forall \psi \in Hom(M^*, M)$ and $m \in M^*$.

Example 3.12. Let G = $\{1, -1, i, -i\}$, M = C and $M^* = Q(i)$. Then M and M^* are G-modules over Q. Define intuitionistic fuzzy sets A and B of M and M^* respectively as follows:

$$\mu_A(x+iy) = \begin{cases} 1, & \text{if } x = 0\\ 1/2, & \text{if } x \in Q(i) - 0 \\ 1/4, & \text{if } x \in C - Q(i) \end{cases} \quad \nu_A(x+iy) = \begin{cases} 0, & \text{if } x = 0\\ 1/4, & \text{if } x \in Q(i) - 0\\ 1/2, & \text{if } x \in C - Q(i). \end{cases}$$

$$\mu_B(x) = \begin{cases} 1/4, & \text{if } x = 0\\ 1/5, & \text{if } x \neq 0 \end{cases}, \quad \nu_B(x) = \begin{cases} 0, & \text{if } x = 0\\ 1/4, & \text{if } x \neq 0. \end{cases}$$

Then, by Theorem 3.6, A and B are intuitionistic fuzzy G-modules on M and M^* respectively. Let X be any G-submodule of M^* . Then either X = 0 or $X = M^*$. Let $\varphi : X \to M$ be any homomorphism.

Case (i): If X = 0, then $\varphi = 0$. Thus $\psi = 0 : M^* \to M$ extends φ .

Case (ii): If $X = M^*$, then $\psi = \varphi$ extends φ .

Thus M is M^* -injective. Also it follows from the definition of A and B that $\mu_B(m) \leq \mu_A(\psi(m))$ and $\nu_B(m) \geq \nu_A(\psi(m)) \ \forall \psi \in Hom(M^*, M)$ and $m \in M^*$. So A is B-injective.

Proposition 3.13. Let M and M^* be G-modules such that M is finite dimensional and M is M^* -injective. Let $\{\beta_1, \beta_2, ..., \beta_n\}$ be a basis for M. If $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ are intuitionistic fuzzy G-module of M and M^* respectively such that $\mu_B(m) \leq \min\{\mu_A(\beta_j) : j = 1, 2, 3, ..., n\}$ and $\nu_B(m) \geq \max\{\nu_A(\beta_j) : j = 1, 2, 3, ..., n\}$ for all $m \in M^*$ respectively. Then A is B-injective.

Proof. Let A be an intuitionistic fuzzy of G-module M. Let $x, y \in M$ and $a, b \in K$, then

(3.13.1)
$$\mu_A(ax+by) \ge \mu_A(x) \land \mu_A(y) \text{ and } \nu_A(ax+by) \le \nu_A(x) \lor \nu_A(y).$$

As M is M^* -injective G-module and let $\psi \in Hom(M^*, M)$ be any G-homomorphism. For any $m \in M^*, \psi(m) \in M$. Thus $\psi(m) = \alpha_1 \beta_1 + \alpha_2 \beta_2 + \ldots + \alpha_n \beta_n$, where $\alpha_i \in K$ and $\beta_i \in M$. So, from our assumption and (3.13.1), we have

 $\mu_A(\psi(m)) = \mu_A(\alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_n\beta_n) \ge \min\{\mu_A(\beta_j) : j = 1, 2, \dots n\} \ge \mu_B(m)$ and

 $\nu_A(\psi(m)) = \nu_A(\alpha_1\beta_1 + \alpha_2\beta_2 + \dots + \alpha_n\beta_n) \leq max\{\nu_A(\beta_j) : j = 1, 2, \dots n\} \leq \nu_B(m).$ Hence $\mu_A(\psi(m)) \geq \mu_B(m)$ and $\nu_A(\psi(m)) \leq \nu_B(m), \forall \psi \in Hom(M^*, M)$ and $m \in M^*$. Therefore A is B-injective.

Example 3.14. Let $G = \{1, -1\}, M = Q(2^{1/2}, 2^{1/3})$ and $M^* = Q(i)$. Then M and M^* are G-modules over Q. Since G-module M^* and M are finite dimensional over Q and the sets $\{\alpha_1 = 1, \alpha_2 = 2^{1/2}, \alpha_3 = 2^{1/3}, \alpha_4 = 2^{5/6}, \alpha_5 = 2^{2/3}, \alpha_6 = 2^{7/6}\}$ and $\{1, i\}$ are basis of M and M^* respectively. Thus, as in Case (ii) of Example 2.5, we have M is M^* - injective.

Now we define intuitionistic fuzzy sets A on M^* and B on M by

$$\mu_A(x+iy) = \begin{cases} 1/8, & \text{if } x = y = 0, \forall x, y \in Q \\ 1/9, & \text{if } x \neq 0, y = 0 \\ 1/10, & \text{if } y \neq 0 \end{cases}$$
$$\nu_A(x+iy) = \begin{cases} 1/10, & \text{if } x = y = 0, \forall x, y \in Q \\ 1/9, & \text{if } x \neq 0, y = 0 \\ 1/8, & \text{if } y \neq 0. \\ 814 \end{cases}$$

$$\mu_B(c_1\alpha_1 + c_1\alpha_2, \dots, +c_6\alpha_6) = \begin{cases} 1, & \text{if } c_i = 0 \forall i \\ 1/2, & \text{if } c_1 \neq 0, c_2, c_3 = \dots \dots c_6 = 0 \\ 1/3, & \text{if } c_2 \neq 0, c_3, c_4 = \dots \dots c_6 = 0 \\ 1/4, & \text{if } c_3 \neq 0, c_4, c_5, c_6 = 0 \\ 1/5, & \text{if } c_4 \neq 0, c_5, c_6 = 0 \\ 1/6, & \text{if } c_5 \neq 0, c_6 = 0 \\ 1/7, & \text{if } c_6 \neq 0 \end{cases}$$

and

$$\nu_B(c_1\alpha_1 + c_1\alpha_2, \dots, +c_6\alpha_6) = \begin{cases} 0, & \text{if } c_i = 0 \forall i \\ 1/7, & \text{if } c_1 \neq 0, c_2, c_3 = \dots \dots c_6 = 0 \\ 1/6, & \text{if } c_2 \neq 0, c_3, c_4 = \dots \dots c_6 = 0 \\ 1/5, & \text{if } c_3 \neq 0, c_4, c_5, c_6 = 0 \\ 1/4, & \text{if } c_4 \neq 0, c_5, c_6 = 0 \\ 1/3, & \text{if } c_5 \neq 0, c_6 = 0 \\ 1/2, & \text{if } c_6 \neq 0. \end{cases}$$

Then A and B are intuitionistic fuzzy G-modules on M^* and M respectively. Also from the definition of A and B, we have

 $\mu_B(m) \le \min\{\mu_A(\alpha_j) : j = 1, 2, ..., n\}$ and $\nu_B(m) \ge \max\{\nu_A(\alpha_j) : j = 1, 2, ..., n\};$ $\forall m \in M^* \text{ and so,}$

 $\mu_B(m) \leq \mu_A(\psi(m))$ and $\nu_B(m) \geq \nu_A(\psi(m)) \ \forall \ \psi \in Hom(M^*, M)$ and $m \in M^*$. Hence A is B-injective.

Proposition 3.15. Let M and M^* be G-modules and A, B be intuitionistic fuzzy G-module on M and M^* respectively such that A is B-injective. If N^* is a G-submodule of M^* and C is an intuitionistic fuzzy G-module on N^* , then A is C-injective if $C \subseteq B|_{N^*}$.

Proof. Since M is M^* -injective and N^* is a G-submodule of M^* , by Proposition 2.11, M is N^* -injective. Let $\psi \in Hom(N^*, M)$. Since M is M^* -injective, there exist an extension homomorphism $\varphi : M^* \to M$. Thus $\psi = \varphi|_{N^*}$. Since A is B-injective, we have $\forall n \in N^*$,

(3.15.1)
$$\mu_B(n) \le \mu_A(\varphi(n)) = \mu_A(\psi(n)) \text{ and } \nu_B(n) \ge \mu_A(\varphi(n)) = \nu_A(\psi(n)).$$

Since $C \subseteq B|_{N^*}$,

(3.15.2)
$$\mu_C(n) \le \mu_B(n) \text{ and } \nu_C(n) \ge \nu_A(\psi(n)), \forall n \in N^*.$$

So, from (3.15.1) and (3.15.2), we have,

$$\mu_C(n) \leq \mu_A(\psi(n))$$
 and $\nu_C(n) \geq \nu_A(\psi(n)) \ \forall \ \psi \in Hom(N^*, M)$ and $n \in N^*$.

Hence A is C-injective.

Proposition 3.16. Let M and M^* be G-modules and let A and B be intuitionistic fuzzy G-modules on M and M^* respectively such that A is B-injective. Then for every $r \in [0, 1]$, the intuitionistic fuzzy set $B_r = (\mu_{B_r}, \nu_{B_r})$ where

 $\mu_{B_r}(m) = \mu_B(m) \wedge r \text{ and } \nu_{B_r}(m) = \nu_B(m) \vee (1-r), \forall m \in M^*;$ is an intuitionistic fuzzy G-module on M^* and A is B_r -injective.

Proof. It follows from Proposition 3.4 and Theorem 3.15 [Here $N^* = M^*$ and $B_r \subseteq B$].

Proposition 3.17. Let A and B be intuitionistic fuzzy G-modules on the G-modules M and M^* respectively such that A is B-injective. For any G-submodule N^* of M^* , define the intuitionistic fuzzy set B_{N^*} on M^*/N^* by

$$\mu_{B_{N^*}}(m+N^*) = \mu_B(m) \text{ and } \nu_{B_{N^*}}(m+N^*) = \nu_B(m), \forall m \in M^*.$$

Then B_{N^*} is an intuitionistic fuzzy G -module on M^*/N^* and A is B_{N^*} -injection.

Then B_{N^*} is an intuitionistic fuzzy G-module on M^*/N^* and A is B_{N^*} -injective.

Proof. It follows from Proposition 3.6 that B_{N^*} is an intuitionistic fuzzy G-module on M^*/N^* . Since N^* is a G-submodule of M^* , from Proposition 2.13, M is M^*/N^* injective. Let $\varphi \in Hom(M^*/N^*, M)$. Since M is M^* -injective, there exist an extension $\theta \in Hom(M^*, M)$. Since A is B-injective and $\theta \in Hom(M^*, M)$, we have

(3.17.1)
$$\mu_B(m) \le \mu_A(\theta(m)) \text{ and } \nu_B(m) \ge \nu_A(\theta(m)), \forall m \in M^*.$$

For any $m \in M^*, m + N^* \in M^*/N^*$, we have

$$\mu_A(\theta(m+N^*)) = \mu_A(\theta(m)+0)$$

= $\mu_A(1.\theta(m)+1.0)$
 $\geq \mu_A(\theta(m)) \wedge \mu_A(0)$
 $\geq \mu_A(\theta(m)).$

Similarly,

$$\nu_A(\theta(m+N^*)) = \nu_A(\theta(m)+0)$$

= $\nu_A(1.\theta(m)+1.0)$
 $\leq \nu_A(\theta(m)) \lor \nu_A(0)$
 $\leq \nu_A(\theta(m)).$

Thus,

(3.17.2)
$$\mu_A(\theta(m+N^*)) \ge \mu_A(\theta(m)) \text{ and } \nu_A(\theta(m+N^*)) \le \nu_A(\theta(m)).$$

Also,

$$\mu_{B_{N^*}}(m+N^*) = \mu_B(m)$$

$$\leq \mu_A(\theta(m))[\text{By (3.17.1)}]$$

$$\leq \mu_A(\theta(m+N^*))[\text{By (3.17.2)}]$$

$$\leq \mu_A(\varphi(m+N^*)), \forall \varphi \in Hom(M^*/N^*, M)$$

and

$$\nu_{B_{N^*}}(m+N^*) = \nu_B(m)$$

$$\geq \nu_A(\theta(m))[By1]$$

$$\geq \nu_A(\theta(m+N^*))[By (3.17.2)]$$

$$\geq \nu_A(\varphi(m+N^*)), \forall \varphi \in Hom(M^*/N^*, M).$$
816

So, $\forall \varphi \in \operatorname{Hom}(M^*/N^*, M)$,

$$\mu_{B_{N^*}}(m+N^*) \le \mu_A(\varphi(m+N^*))$$
 and $\nu_{B_{N^*}}(m+N^*) \ge \nu_A(\varphi(m+N^*))$.

Hence A is B_{N^*} – *injective*.

Definition 3.18. Let M be a G-module and let A be an intuitionistic fuzzy G-module on M. Then A is quasi-injective if

(i) M is quasi-injective and

(ii) $\mu_A(m) \le \mu_A(\psi(m))$ and $\nu_A(m) \ge \nu_A(\psi(m)), \forall \psi \in Hom(M, M)$ and $m \in M$.

Example 3.19. Every constant intuitionistic fuzzy set defined on a quasi-injective G-module M is always quasi-injective module i.e., if M is a quasi-injective G-module. Then an intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ on M defined by

 $\mu_A(x) = r$ and $\nu_A(x) = s, \forall x \in M$, where $r, s \in [0, 1]$ such that $r + s \leq 1$, is quasi-injective.

Example 3.20. We have, the G-module M as defined in Example 2.13 is quasiinjective. On this M, If we define an intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ by

$$\mu_A(x) = \begin{cases} 1, & \text{if } x = 0\\ r, & \text{if } x \neq 0. \end{cases}, \quad \nu_A(x) = \begin{cases} 0, & \text{if } x = 0\\ s, & \text{if } x \neq 0 \end{cases}$$

 $\forall x \in M$, where $r, s \in [0, 1]$ such that $r + s \leq 1$, is quasi-injective.

4. PROPERTIES OF INTUITIONISTIC FUZZY G-MODULE INJECTIVITY

Proposition 4.1 ([20]). Let M be a G-module and let $M = \bigoplus_{i=1}^{n} M_i$, where M_i 's are G-submodules of M. If A_i 's $(1 \le i \le n)$ are intuitionistic fuzzy G-modules on M_i 's, then an intuitionistic fuzzy set A of M defined by

 $\mu_A(m) = \wedge \{ \mu_{A_i}(m_i) : i = 1, 2, \dots, n \} \text{ and } \nu_A(m) = \vee \{ \nu_{A_i}(m_i) : i = 1, 2, \dots, n \},$ where $m = \sum_{i=1}^n m_i \in M$, is an intuitionistic fuzzy G-module on M.

Definition 4.2 ([20]). An intuitionistic fuzzy G-module A on $M = \bigoplus_{i=1}^{n} M_i$, in Proposition 4.1 with $\mu_A(0) = \mu_{A_i}(0)$ and $\nu_A(0) = \nu_{A_i}(0)$, $\forall i$, is called the direct sum of A_i and it is written as $A = \bigoplus_{i=1}^{n} A_i$.

Theorem 4.3. Let M be a G-module such that $M = \bigoplus_{i=1}^{n} M_i$, where M_i 's are G-submodules of M. Let B_i 's be intuitionistic fuzzy G-modules on M_i and let $B = \bigoplus_{i=1}^{n} B_i$. Let A be any intuitionistic fuzzy G-modules on M. Then A is B-injective if and only if A is B_i -injective for all $i \ (1 \le i \le n)$.

Proof. (\Rightarrow) : Assume that A is B-injective. Then

(i) M is $M = \bigoplus_{i=1}^{n} M_i$ -injective and

(ii) $\mu_B(m) \leq \mu_A(\psi(m))$ and $\nu_B(m) \geq \nu_A(\psi(m)), \forall \psi \in Hom(M, M)$ and $m \in M$. To prove that A is B_i -injective for all $i(1 \leq i \leq n)$, i.e., to prove that

(a) M is M_i -injective and

(b) $\mu_{B_i}(m_i) \leq \mu_A(\psi(m_i))$ and $\nu_{B_i}(m_i) \geq \nu_A(\psi(m_i)), \forall \psi \in \operatorname{Hom}(M_i, M) \forall m_i \in M_i$.

Proof of (a): Since M_i is a G-submodule of M, from Proposition 2.11, it follows that M is M_i -injective.

Proof of (b): Let $\psi \in Hom(M_i, M)$ and let $m_i \in M_i$. Then

$$m_i = 0 + 0 + \dots + m_i + 0 + \dots + 0$$

Thus

1

$$\begin{aligned}
\mu_B(m_i) &= \mu_B(0+0+.....+m_i+0+.....+0) \\
&= \mu_{B_1}(0) \wedge \mu_{B_2}(0) \wedge \wedge \mu_{B_i}(m_i) \wedge \wedge \mu_{B_n}(0) \\
&= \mu_{B_i}(m_i)[\because \mu_{B_i}(0) \ge \mu_{B_i}(m_i), \forall i]
\end{aligned}$$

and

$$\nu_B(m_i) = \nu_B(0+0+....+m_i+0+....+0) = \nu_{B_1}(0) \lor \nu_{B_2}(0) \lor \lor \nu_{B_i}(m_i) \lor \lor \nu_{B_n}(0) = \nu_{B_i}(m_i)[::\nu_{B_i}(0) \le \nu_{B_i}(m_i), \forall i].$$

Since M is M-injective, \exists an extension $\varphi: M \longrightarrow M$ of ψ . So, for each $m_i \in M_i$,

$$\mu_{B_i}(m_i) = \mu_B(m_i) \le \mu_A(\varphi(m_i)) \le \mu_A(\psi(m_i))$$

and

$$\nu_{B_i}(m_i) = \nu_B(m_i) \ge \nu_A(\varphi(m_i)) \ge \nu_A(\psi(m_i))[\text{by (ii)}]$$

Hence $\mu_{B_i}(m_i) \leq \mu_A(\psi(m_i))$ and $\nu_{B_i}(m_i) \geq \nu_A(\psi(m_i)) \ \forall \ \psi \in \text{Hom}(M_i, M)$. Therefore, A is B_i -injective for all $i(1 \leq i \leq n)$.

(\Leftarrow): Assume that A is B_i -injective for all $i(1 \le i \le n)$. To prove that A is B-injective, i.e., to prove

(c) M is M-injective and

(d) $\mu_B(m) \leq \mu_A(\psi(m))$ and $\nu_B(m) \geq \nu_A(\psi(m)) \forall \psi \in \text{Hom }(M, M)$ and $m \in M$. Proof of (c): Let N be a be a G-submodule of M and $\varphi : N \to M = \bigoplus_{i=1}^n M_i$ be a homomorphism. Then we have three cases:

(i) N is a G-submodule of M_i for some i.

(ii) $N = M_i$, for some *i*.

(iii) $N = \bigoplus_{i=1}^{t} M_i$, where $t \leq n$.

Case (i): Suppose N is a G-submodule of M_i , for some *i*. Since M is M_i -injective, \exists an extension $\psi : M_i \to M$ of φ . Then $\eta : M \to M$ defined $\eta(m) = \psi(m_i)$, where $m = \sum_{i=1}^n m_i \in M$ is a homomorphism and $\eta|_{M_i} = \psi$. Then $\eta|_N = \psi|_N = \varphi$. Thus η extends φ .

Case (ii): Suppose $N = M_i$, for some *i*. The function η obtained as in Case (i) with $\psi = \varphi$ is an extension of φ .

Case (iii): Suppose $N = \bigoplus_{i=1}^{t} M_i$, where $t \leq n$. Then the mapping $\eta : M \to M$ defined by $\eta(m) = \varphi(\sum_{i=1}^{t} m_i)$, where $m = \sum_{i=1}^{n} m_i \in M$ is a homomorphism and η extends φ .

So, in all the cases, $\eta: M \to M$ extends φ . Hence M is M-injective.

Proof of (d): Let $\psi \in \text{Hom }(M, M)$ and $m \in M$. Then $m = \sum_{i=1}^{n} m_i$, where $m_i \in M_i$, for each *i*. Now,

$$\mu_B(m) = \mu_B(\sum_{i=1}^n m_i) = \wedge \{\mu_{B_i}(m_i) : i = 1, 2, ..., n\} \le \mu_{B_i}(m_i)$$

and

 $\nu_B(m) = \nu_B(\sum_{i=1}^n m_i) = \forall \{\nu_{B_i}(m_i) : i = 1, 2, ..., n\} \ge \nu_{B_i}(m_i), \text{ for all } i.$

Thus

(4.3.1)
$$\mu_B(m) \le \mu_{B_i}(m_i) \text{ and } \nu_B(m) \ge \nu_{B_i}(m_i), \text{ for all } i.$$

Since A is B_i - injective, for every *i*, we have

(4.3.2)
$$\mu_{B_i}(m_i) \le \mu_B(\psi_i(m_i)) \text{ and } \nu_{B_i}(m_i) \ge \nu_B(\psi_i(m_i)), \text{ where } \psi_i = \psi|_{M_i}.$$

Thus

(1

(4.3.3)
$$\mu_{B_i}(m_i) \le \mu_B(\psi(m_i)) \text{ and } \nu_{B_i}(m_i) \ge \nu_B(\psi(m_i)), \text{ for all } i.$$

From (4.3.1) and (4.3.3), we have

 $\mu_B(m) \le \mu_{B_i}(m_i) \le \mu_B(\psi(m_i))$ and $\mu_B(m) \ge \nu_{B_i}(m_i) \ge \nu_B(\psi(m_i))$. for all *i*. So

$$\mu_B(m) \leq \wedge \{\mu_A(\psi(m_i)) : i = 1, 2, ..., n\}$$

$$\leq \mu_A(\psi(m_1) + \psi(m_2) + + \psi(m_n)) [\text{Since A is an IFGM}]$$

$$\leq \mu_A(\psi(m_1 + m_2 + + m_n))$$

$$\leq \mu_A(\psi(m)), \text{ since } m = \sum_{i=1}^n m_i.$$

Similarly,

$$\nu_B(m) \geq \forall \{\nu_A(\psi(m_i)) : i = 1, 2, ..., n\}$$

$$\geq \nu_A(\psi(m_1) + \psi(m_2) + + \psi(m_n)) [\text{Since A is an IFGM}]$$

$$\geq \nu_A(\psi(m_1 + m_2 + + m_n))$$

$$\geq \nu_A(\psi(m)), \text{ since } m = \sum_{i=1}^n m_i.$$

Hence $\mu_B(m) \leq \mu_A(\psi(m))$ and $\nu_B(m) \geq \nu_A(\psi(m))$, for all $\psi \in Hom(M, M)$. Therefore A is B-injective.

Theorem 4.4. Let M_1 and M_2 be two G-submodules of a G-module M such that $M = M_1 \oplus M_2$. If M is a quasi-injective, then M_i is M_j -injective for $i, j \in \{1, 2\}$. Further if B_i 's are intuitionistic fuzzy G-modules on $M_i(i = 1, 2)$ such that $B = B_1 \oplus B_2$ and if B is quasi-injective, then B_i is B_j -injective for $i, j \in \{1, 2\}$.

Proof. Assume that $M = M_1 \oplus M_2$ is quasi-injective. Then by Proposition 2.11, M is M_i -injective for $j = \{1, 2\}$. Also it follows from Proposition 2.9 that M_i is M_i -injective for $i, j \in 1, 2$. This proves the first part of the theorem.

Now assume that B is quasi-injective. Then

(i) M is M-injective and

(ii) $\mu_B(m) \leq \mu_B(\psi(m))$ and $\nu_B(m) \geq \nu_B(\psi(m)), \forall \psi \in Hom(M, M)$ and $m \in M$. First to prove B_1 is B_2 -injective, i.e., to prove

(a) M_1 is M_2 -injective and

(b) $\mu_{B_2}(m_2) \leq \mu_{B_1}(m_2)$ and $\nu_{B_2}(m_2) \geq \nu_{B_1}(m_2) \ \forall \ \psi \in Hom(M_2, M_1)$ and $m_2 \in M_2$.

Proof of (a): From (i), M is M-injective. Then it follows from the first part of the theorem that M_1 is M_2 -injective.

Proof of (b): Let $\psi \in \text{Hom } (M_2, M_1)$. Consider the inclusion homomorphism $\varphi : M_1 \to M_1 \oplus M_2 = M$. Then $\psi' = \varphi \circ \psi : M_2 \to M_1 \oplus M_2 = M$ is a homomorphism. Since M is M- injective, \exists an extension $\varphi' = \varphi \circ \psi : M \to M$ of ψ' . Thus

(4.4.1)
$$\varphi'|_{M_2} = \psi'.$$

Since $\varphi^{'} \in Hom(M, M)$, from (ii),

(4.4.2)
$$\mu_B(m) \le \mu_B(\varphi'(m)) \text{ and } \nu_B(m) \ge \nu_B(\varphi'(m)), \text{ for all } m \in M.$$

Since $M = M_1 \oplus M_2$, if $m_2 \in M_2$, then $m_2 = 0 + m_2 \in M_1 \oplus M_2 = M$. From (4.4.2), we get

(4.4.3)
$$\mu_B(m_2) \le \mu_B(\varphi'(m_2)) \text{ and } \nu_B(m_2) \ge \nu_B(\varphi'(m_2))$$

Also,

$$\mu_B(m_2) = \mu_B(0+m_2) = \mu_{B_1}(0) \land \mu_{B_2}(m_2) = \mu_{B_2}(m_2)$$

and

$$\nu_B(m_2) = \nu_B(0+m_2) = \nu_{B_1}(0) \lor \nu_{B_2}(m_2) = \nu_{B_2}(m_2)$$

Then,

(4.4.4)
$$\mu_B(m_2) = \mu_{B_2}(m_2) \text{ and } \nu_B(m_2) = \nu_{B_2}(m_2).$$

From (4.4.1), $\varphi'(m_2) = \psi'(m_2) = \varphi(\psi(m_2)) = \psi(m_2)$. Thus,

$$\mu_B(\varphi'(m_2)) = \mu_B(\psi(m_2)) = \mu_B(\psi(m_2) + 0)$$

= $\mu_{B_1}(\psi(m_2)) \wedge \mu_{B_2}(0)$
= $\mu_{B_1}(\psi(m_2))$
 $\nu_B(\varphi'(m_2)) = \nu_B(\psi(m_2)) = \nu_B(\psi(m_2) + 0)$
= $\nu_{B_1}(\psi(m_2)) \vee \nu_{B_2}(0)$
= $\nu_{B_1}(\psi(m_2))$

So,

(4.4.5)
$$\mu_B(\varphi'(m_2)) = \mu_{B_1}(\psi(m_2)) \text{ and } \nu_B(\varphi'(m_2)) = \nu_{B_1}(\psi(m_2)),$$

From (4.4.3), (4.4.4) and (4.4.5), we get

 $\mu_{B_2}(m_2) \leq \mu_{B_1}(\psi(m_2))$ and $\nu_{B_2}(m_2) \geq \nu_{B_1}(\psi(m_2)) \forall \psi \in \text{Hom } (M_2, M_1)$ and $m_2 \in M_2$.

Hence B_1 is B_2 -injective.

Similarly, we can show that B_2 is B_1 -injective.

Now to prove B_1 is B_1 -injective.

From (4.4.1), M is M-injective. Then, from the first part of this theorem, we get M_1 is M_1 -injective. Now, let $\psi \in \text{Hom } (M_1, M_1)$ and let $\varphi : M_1 \to M$ be the inclusion homomorphism. Then $\varphi \circ \psi : M_1 \to M$ is a homomorphism. Since M is M-injective, \exists an extension $\varphi'' : M \to M$ of $\varphi \circ \psi$. Thus $\varphi''|_{M_1} = \varphi \circ \psi$. Since $\varphi'' \in \text{Hom } (M, M)$, from (ii), we get

 $\mu_B(m) \le \mu_B(\varphi^{''}(m)) \text{ and } \nu_B(m) \ge \nu_B(\varphi^{''}(m)), \forall m \in M.$

That is,

(4.4.6)
$$\mu_B(m_1) \le \mu_B(\varphi^{''}(m_1)) \text{ and } \nu_B(m_1) \ge \nu_B(\varphi^{''}(m_1)), \text{ for all } m_1 \in M_1$$

If $m_1 \in M_1$, then we have

$$\mu_B(m_1) = \mu_B(m_1 + 0) = \mu_{B_1}(m_1) \land \mu_{B_2}(0) = \mu_{B_1}(m_1)$$

and

$$\nu_B(m_1) = \nu_B(m_1 + 0) = \nu_{B_1}(m_1) \lor \nu_{B_2}(0) = \nu_{B_1}(m_1)$$

That is,

(4.4.7)
$$\mu_B(m_1) = \mu_{B_1}(m_1) \text{ and } \nu_B(m_1) = \nu_{B_1}(m_1).$$

Also,
$$\varphi''(m_1) = (\varphi \circ \psi)(m_1) = \varphi(\psi(m_1)) = \psi(m_1) \in M_1$$
. So
 $\mu_B(\varphi''(m_1)) = \mu_B(\psi(m_1)) = \mu_B(\psi(m_1) + 0)$
 $= \mu_{B_1}(\psi(m_1)) \wedge \mu_{B_2}(0) = \mu_{B_1}(\psi(m_1))$

and

$$\nu_B(\varphi''(m_1)) = \nu_B(\psi(m_1)) = \nu_B(\psi(m_1) + 0)$$

= $\nu_{B_1}(\psi(m_1)) \lor \nu_{B_1}(0) = \nu_{B_1}(\psi(m_1)).$

That is,

(4.4.8)
$$\mu_B(\varphi^{''}(m_1)) = \mu_{B_1}(\psi(m_1)) \text{ and } \nu_B(\varphi^{''}(m_1)) = \nu_{B_1}(\psi(m_1)).$$

From (4.4.6), (4.4.7) and (4.4.8), we get

 $\mu_B(m_1) \le \mu_{B_1}(\psi(m_1))$ and $\nu_B(m_1) \ge \nu_{B_1}(\psi(m_1)) \ \forall \ \psi \in \text{Hom } (M_1, M_1) \text{ and } m_1 \in M_1.$

Hence B_1 is B_1 -injective.

Similarly, we can show that B_2 is B_2 -injective. This completes the proof.

Corollary 4.5. Let $M = \bigoplus_{i=1}^{n} M_i$ be a *G*-module, where M_i 's are *G*-submodules of *M*. If *M* is quasi-injective, then M_i is M_j -injective for $i, j \in \{1, 2, ..., n\}$. Also if B_i 's are intuitionistic fuzzy *G*-modules on M_i 's such that $B = \bigoplus_{i=1}^{n} B_i$ and if *B* is quasi-injective, then B_i is B_j -injective for every *i* and *j*.

5. Conclusions

In this paper, we have introduced the notion of injectivity and quasi injectivity of an intuitionistic fuzzy G-modules and have constructed some structure revealing examples. We have also analyzed the relative injectivity (quasi-injectivity) of an intuitionistic fuzzy G-module with regards to another intuitionistic fuzzy G-module.

Acknowledgements. Authors are very thankful to the university grant commission, New Delhi for providing necessary financial assistance to carry out the present work under major research project file no. F. 42-2 / 2013 (SR).

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986) 87–96.
- [2] K. T. Atanassov, New operation defined over the intuitionistic fuzzy sets, Fuzzy Sets and Systems 61 (1994) 137–142.
- [3] K. T. Atanassov, Intuitionistic Fuzzy Sets Theory and Applications, Studies on Fuzziness and Soft Computing, 35, Physica-Verlag, Heidelberg 1999.
- [4] G. Azumaya, M-projective and M-injective modules, unpublished notes 1974.
- [5] B. Banaschewski, On projective and injective modules, Arch. Math. 15 (1964) 271–275.
- [6] R. Biswas, Intuitionistic fuzzy subgroup, Mathematical Forum X (1989) 37–46.
- [7] C. W. Curties and I. Reiner, Representation Theory of finite groups and associated algebras, INC 1962.
- [8] B. Eckmann, and A. Schopf, Uber injective Moduln, Arch. Math. 4 (1953) 75-78.
- [9] Sherry Fernadez, A study of fuzzy G-modules, PhD Thesis, St. Albert's College, Rev. Dr. Konnully Memorial Research Centre and P.G. Department of Mathematics 2004.
- 10] Shery Fernandez, On fuzzy injective fuzzy G-modules, TAJOPAAM 2 (1) (2003) 213–220.
- [11] K. Hur, H. W. Kang and H. K. Song, Intuitionistic Fuzzy Subgroups and Subrings, Honam Math J. 25 (1) (2003) 19–41.
- [12] K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic Fuzzy Ideals of a Ring, Journal of the Korea Society of Mathematical Education, Series B 12 (3) (2005) 193–209.
- [13] Paul Isaac and Pearly P. John, On Intuitionistic Fuzzy Submodules of a Module, Int. J. of Mathematical Sciences and Applications 1 (3) (2011) 1447–1454.
- [14] R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961) 260–268.
- [15] C. V. Negoita and D. A. Ralescu, Applications of Fuzzy sets and systems Analysis, Birkhauser, Basel 1975.
- [16] S. Rahman and H. K. Saikia, Some aspects of Atanassov's intuitionistic fuzzy submodules, Int. J. Pure and Appl. Mathematics 77 (3) (2012) 369–383.
- [17] Rosenfeld, Fuzzy group, J. Math. Anal. Appl. 35 (1971) 512–517.
- [18] P. K. Sharma and Tarandeep Kaur, Intuitionistic fuzzy G-modules, Notes on Intuitionistic Fuzzy Sets 21 (1) (2015) 6–23.
- [19] P.K. Sharma and Tarandeep Kaur, On intuitionistic fuzzy representation of intuitionistic fuzzy G-modules, Ann. Fuzzy Math. Inform. 11 (4) (2016) 557–569.
- [20] P. K. Sharma, Reducibility and Complete Reducibility of intuitionistic fuzzy G-modules, Ann. Fuzzy Math. Inform. 11 (6) (2016) 885–898.
- [21] S. Singh, On pseudo-injective modules and self-pseudo injective rings, J. Math. Sci. 2 (1) (1967) 125–133.
- [22] M. M. Zahedi and A. Ameri, On fuzzy projective and injective modules, J. Fuzzy Math. 3 (1) (1995) 181–190.
- [23] L.A. Zadeh, Fuzzy Sets, Information and Control 8 (1965) 338–353.

<u>P. K. SHARMA</u> (pksharma@davjalandhar.com)

Post-Graduate Department of Mathematics, D.A.V.College, Jalandhar, Punjab (India)

<u>SIMPI CHOPRA</u> (simpichopra35@gmail.com)

Post-Graduate Department of Mathematics, D.A.V.College, Jalandhar, Punjab (India)