Annals of Fuzzy Mathematics and Informatics Volume 12, No. 6, (December 2016), pp. 781–790 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fuzzy bi-ideals of near-subtraction semigroups

V. CHINNADURAI, S. KADALARASI

Received 25 April 2016; Accepted 24 May 2016

ABSTRACT. In this paper, we introduce the notion of fuzzy bi-ideals of near-subtraction semigroups. Some of its characterizations with examples were also given.

2010 AMS Classification: 20M20,06E05, 06F35

Keywords: Near-subtraction semigroups, Bi-ideals, Fuzzy bi-ideals.

Corresponding Author: V. Chinnadurai (kv.chinnadurai@yahoo.com)

1. INTRODUCTION

A system of the form $(\phi; \circ; \backslash)$ where ϕ is a set of functions closed under the composition 'o'of function (hence $(\phi; \circ)$ is a function semigroup) and \backslash is the set theoretic subtraction is called a subtraction algebra in the sence of [1]. Scheine [9] showed that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. Zelinka[11] studied a special type of subtraction algebra called atomic subtraction algebra. The study of ideals in subtraction algebra was initiated by Jun et al.[4], who also established some basic properties. Dheena et al.[2, 3] discussed and derived some properties of near-subtraction semigroups, a generalization of subtraction semigroup. The concept of fuzzy set was first initiated by Zadeh[10]. Narayanan et al.[7] defined the concept of generalized fuzzy ideals of near-rings. Mahalakshmi et al.[5] studied the notion of bi-ideals of near-subtraction semigroups. Manikandan[6] studied fuzzy fuzzy bi-ideals of near-ring and established some of their properties.

In this paper we introduce the notion of fuzzy bi-ideals of near-subtraction semigroups and prove some characterizations with examples.

2. Preliminaries

In this section, we reproduce some basic definitions which are essential for the development of the paper.

Definition 2.1 ([4]). A nonempty set X together with a binary operation "-" is said to be a subtraction algebra if it satisfies the following conditions:

(i)
$$x - (y - x) = x$$
,

(ii) x - (x - y) = y - (y - x),

(iii) (x-y) - z = (x-z) - y for every $x, y, z \in X$.

The last identity permits us to omit parenthesis in expressions of the form (x-y)-z.

Definition 2.2 ([2]). A non-empty set X together with the binary operations "-" and " \cdot " is said to be a right near-subtraction semigroup if it satisfies the following:

(i) (X, -) is a subtraction algebra,

(ii) (X, \cdot) is a semigroup,

(iii) (x - y)z = xz - yz for all $x, y, z \in X$.

It is clear that 0x = 0, for all $x \in X$. Similarly we can define a left near-subtraction semigroup. Here after a near-subtraction semigroup means only a right near-subtraction semigroup, unless mentioned otherwise.

Definition 2.3 ([2]). A near-subtraction semigroup X is said to be zero-symmetric if x0 = 0 for every $x \in X$.

Definition 2.4 ([2]). A non-empty subset S of a subtraction algebra X is said to be a subalgebra of X, if $x - y \in S$, for all $x, y \in S$.

Definition 2.5 ([2]). A non-empty subset S of a near-subtraction semigroup X is said to be a near-subtraction subsemigroup of X, if $x - y, xy \in S$, for all $x, y \in S$.

Definition 2.6 ([2]). Let $(X, -, \cdot)$ be a near-subtraction semigroup. A non-empty subset *I* of *X* is called:

(I1) a left ideal if I is a subalgebra of (X, -) and $xi - x(y-i) \in I$ for all $x, y \in X$ and $i \in I$.

(I2) a right ideal if I is a subalgebra of (X, -) and $IX \subseteq I$.

(I3) an ideal if I is both a left and right ideal.

Definition 2.7 ([5]). Let A and B be two subsets of X. Then the product and \star product defined by $AB = \{ab | a \in A \text{ and } b \in B\}$ and $A \star B = \{ab - a(a' - b) | a, a' \in A \text{ and } b \in B\}$.

Definition 2.8 ([5]). An subalgebra *B* of *X* is said to be bi-ideal if $BXB \cap BX \star B \subseteq B$.

Definition 2.9 ([8]). A fuzzy subset μ is called a fuzzy ideal of X if it satisfies the following conditions:

(i) $\mu(x-y) \ge \min\{\mu(x), \mu(y)\},\$ (ii) $\mu(xi - x(y-i)) \ge \mu(i),$

(iii) $\mu(xy) \ge \mu(x)$, for all $x, y, i \in X$.

3. Fuzzy bi-ideals of Near-Subtraction semigroup

In this section, we introduc the new concept of fuzzy bi-ideals of near-subtraction semigroup. Throughout this paper, f_I is the characteristic function of the subset I of X and the characteristic function of X is denoted by \mathbf{X} , that means, $\mathbf{X} : X \to [0, 1]$ mapping every element of X to 1.

Definition 3.1. Let μ and λ be any two fuzzy subsets of X. Then $\mu \cap \lambda$, $\mu \cup \lambda$, $\mu - \lambda$, $\mu\lambda$ and $\mu \star \lambda$ are fuzzy subsets of X defined by:

$$\begin{split} &(\mu \cap \lambda)(x) = \min\{\mu(x), \ \lambda(x)\}.\\ &(\mu \cup \lambda)(x) = \max\{\mu(x), \ \lambda(x)\}.\\ &(\mu - \lambda)(x) = \begin{cases} \sup_{x=y-z} \min\{\mu(y), \ \lambda(z)\} & \text{if } x \text{ can be expressed as } x=y-z\\ 0 & \text{otherwise.} \end{cases}\\ &(\mu\lambda)(x) = \begin{cases} \sup_{x=yz} \min\{\mu(y), \ \lambda(z)\} & \text{if } x \text{ can be expressed as } x=yz\\ 0 & \text{otherwise.} \end{cases}\\ &(\mu \star \lambda)(x) = \begin{cases} \sup_{x=ac-a(b-c)} \min\{\mu(a), \ \lambda(c)\} & \text{if } x \text{ can be expressed as } x=ac-a(b-c)\\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Definition 3.2. A fuzzy subset μ of X is said to be a fuzzy subalgebra of X, if $x, y \in X$ implies $\mu(x - y) \ge \min\{\mu(x), \mu(y)\}$.

Definition 3.3. A fuzzy subalgebra μ of X is called a fuzzy bi-ideal of X, if $(\mu \mathbf{X} \mu) \cap (\mu \mathbf{X} \star \mu) \subseteq \mu$.

Example 3.4. Let $X = \{0, a, b, c\}$ in which "-" and "." are defined by:

_	0	a	b	c		•	0	a	b
0	0	0	0	0		0	0	0	0
a	a	0	a	a	(a	a	a	a
b	b	b	0	b		b	0	0	0
c	c	c	c	0		c	0	0	0

Then $(X, -, \cdot)$ is a near-subtraction semigroup. Let $\mu : X \to [0, 1]$ be a fuzzy subset of X defined as $\mu(0) = 0.9, \mu(a) = 0.7, \mu(b) = 0.6$ and $\mu(c) = 0.4$. Then μ is a fuzzy bi-ideal of X.

Lemma 3.5. Let μ be a fuzzy subset of X. If μ is a fuzzy left ideal of X then μ is a fuzzy bi-ideal of X.

Proof. Let $x' \in X$ be such that x' = abc = xz - x(y - z), where a, b, c, x, y and z are in X. Then

If x' is not expressible as x' = abc = xz - x(y-z) then $(\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu)(x') = 0 \le \mu(x')$. Thus $\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu \subseteq \mu$. Hence μ is a fuzzy bi-ideal of X.

Lemma 3.6. Let μ be a fuzzy subset of X. If μ is a fuzzy right ideal of X then μ is a fuzzy bi-ideal of X.

Proof. Let $x' \in X$ be such that x' = ab = xz - x(y - z), $a = a_1a_2$, where a, a_1, a_2, b, x, y and z are in X. Consider,

If x' is not expressible as x' = ab = xz - x(y-z) then $(\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu)(x') = 0 \le \mu(x')$. Thus $\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu \subseteq \mu$. Hence μ is a fuzzy bi-ideal of X.

Theorem 3.7. Let μ be a fuzzy subset of X. If μ is a fuzzy ideal of X then μ is a fuzzy bi-ideal of X.

Proof. Straightforward from Lemma 3.5 and Lemma 3.6.

Remark 3.8. The converse of the Theorem 3.7 is not true in general which is demonstrated by the following Example.

Example 3.9. Let $X = \{0, a, b, c\}$ in which "-" and " \cdot " are defined as in Example 3.4. Let $\mu : X \to [0, 1]$ be a fuzzy subset of X defined by $\mu(0) = 0.9, \mu(a) = 0.6 = \mu(c)$ and $\mu(b) = 0.3$. Then μ is a fuzzy bi-ideal of X but μ is not a fuzzy ideal of X, since $\mu(bc - b(0 - c)) = \mu(b) = 0.3 \ngeq 0.6 = \mu(c)\}$.

Theorem 3.10. Let μ be a fuzzy subset of X. Then μ is a fuzzy bi-ideal of X if and only if the level subset μ_t is a bi-ideal of X, for all $t \in [0, 1]$.

Proof. Assume that μ is a fuzzy bi-ideal of X. Let $t \in [0, 1]$. Let $x, y \in \mu_t$. Then $\mu(x) \ge t$ and $\mu(y) \ge t$. Since μ is a fuzzy bi-ideal of X, we have

$$\mu(x-y) \ge \min\{\mu(x), \mu(y)\} \ge t$$

It follows that $x - y \in \mu_t$. Let $x' \in X$ and $x' \in \mu_t \mathbf{X} \mu_t \cap \mu_t \mathbf{X} * \mu_t$. If there exist $a_1, b, x_1, z \in \mu_t$ and $a_2, a, x, x_2, y \in X$ such that

$$x' = ab = xz - x(y - z), a = a_1a_2$$
 and $x = x_1x_2$.

Then $\mu(a_1) \ge t, \mu(b) \ge t, \mu(z) \ge t$ and $\mu(x_1) \ge t$. Thus

This implies that $\mu(x') \ge t$. So $x' \in \mu_t$, that is, $\mu_t \mathbf{X} \mu_t \cap \mu_t \mathbf{X} \star \mu_t \subseteq \mu_t$. Hence μ_t is a bi-ideal of X.

Conversely, assume that μ_t is a bi-ideal of X for $t \in [0, 1]$. Let $x' \in X$. Suppose that $(\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu)(x') > \mu(x')$. Choose $0 < t \leq 1$ such that

$$(\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu)(x') > t > \mu(x').$$

This implies that $(\mu \mathbf{X} \mu)(x') \ge t$ and $(\mu \mathbf{X} \star \mu)(x') \ge t$. Then

$$(\mu \mathbf{X}\mu)(x') = \sup_{x'=ab} \min\{\sup_{a=a_1a_2} \min\{\mu(a_1), \mathbf{X}(a_2)\}, \mu(b)\}$$
$$= \min\{\mu(a_1), \mu(b)\} \ge t$$

and

$$(\mu \mathbf{X} \star \mu)(x') = \sup_{\substack{x' = xz - x(y-z) \\ x' = xz - x(y-z)}} \min\{(\mu \mathbf{X})(x), \mu(z)\}$$

=
$$\sup_{\substack{x' = xz - x(y-z) \\ x' = xz - x(y-z)}} \min\{\sup_{x = x_1 x_2} \min\{\mu(x_1), \mathbf{X}(x_2)\}, \mu(z)\}$$

=
$$\min\{\mu(x_1), \mu(z)\} \ge t.$$

Thus $a_1, b, x_1, z \in \mu_t$. Since μ_t is a bi-ideal of X, we have

$$x' = a_1 a_2 b \in \mu_t \mathbf{X} \mu_t \text{ and } x' = x_1 x_2 z - x_1 x_2 (y - z) \in \mu_t \mathbf{X} \star \mu_t.$$

So $x' \in \mu_t \mathbf{X} \mu_t \cap \mu_t \mathbf{X} \star \mu_t$, implying, $x' \in \mu_t$, since μ_t is a bi-ideal of X. Hence $\mu(x') \geq t$ which is a contradiction. Therefore $\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu \subseteq \mu$ and hence μ is a fuzzy bi-ideal of X.

Lemma 3.11. Let A and B be two nonempty subsets of X. Then the following are true:

(1) $f_A \cap f_B = f_{A \cap B}$. (2) $f_A \cup f_B = f_{A \cup B}$. (3) $f_A f_B = f_{AB}$. (4) $f_A \star f_B = f_{A \star B}$.

Proof. Straightforward.

Lemma 3.12. A nonempty subset B of X is a bi-ideal of X if and only if f_B is a fuzzy bi-ideal of X.

Proof. Assume that B is a bi-ideal of X. Let f_B be a fuzzy subset of X defined by

$$f_B(x) = \begin{cases} 1 & \text{if } x \in B\\ 0 & \text{otherwise.} \end{cases}$$

Let $x, y \in X$. Suppose that $f_B(x-y) < \min\{f_B(x), f_B(y)\}$. Then

$$f_B(x-y) = 0$$
 and $\min\{f_B(x), f_B(y)\} = 1$.

This point out that $x, y \in B$ and $x - y \notin B$, which is a contradiction to our conjecture. Thus, f_B is a fuzzy subalgebra of X. For some $x \in X$, take $f_B(x) < \min\{(f_B \mathbf{X} f_B)(x), (f_B \mathbf{X} \star f_B)(x)\}$. Then

$$f_B(x) = 0$$
 and $\min\{(f_B \mathbf{X} f_B)(x), (f_B \mathbf{X} \star f_B)(x)\} = 1$,

that is,

$$(f_B \mathbf{X} f_B)(x) = 1$$
 and $(f_B \mathbf{X} \star f_B)(x) = 1$.

This means that $f_{BXB}(x) = 1$ and $f_{BX\star B}(x) = 1$. Thus by Lemma 3.11,

$$(f_{BXB} \cap f_{BX\star B})(x) = f_{BXB \cap BX\star B}(x) = 1.$$

So $x \in BXB \cap BX \star B$. This implies that $x \in B$, which is a contradiction. Hence,

$$f_B(x) \ge \min\{(f_B \mathbf{X} f_B)(x), (f_B \mathbf{X} \star f_B)(x)\}.$$

Therefore, f_B is a fuzzy bi-ideal of X.

Conversely, assume that f_B is a fuzzy bi-ideal of X. Let $x' \in BXB \cap BX \star B$. Then $x' \in BXB$ and $x' \in BX \star B$. Let $a_1, b, z, x_1 \in B$ and $a_2, x, y, x_2, z \in X$ be such that $x' = a_1a_2b = xz - x(y-z), x = x_1x_2$. Now,

$$f_{B}(x') \geq (f_{B}\mathbf{X}f_{B} \cap f_{B}\mathbf{X} \star f_{B})(x')$$

$$= \min\{(f_{B}\mathbf{X}f_{B})(x'), (f_{B}\mathbf{X} \star f_{B})(x')\}$$

$$= \min\{\sup_{x'=ab}\min\{(f_{B}\mathbf{X})(a), f_{B}(b)\}, \sup_{x'=xz-x(y-z)}\min\{(f_{B}\mathbf{X})(x), f_{B}(z)\}\}$$

$$= \min\{\sup_{x'=ab}\min\{\sup_{a=a_{1}a_{2}}\min\{f_{B}(a_{1}), \mathbf{X}(a_{2})\}, f_{B}(b)\},$$

$$\sup_{x'=xz-x(y-z)}\min\{\sup_{x=x_{1}x_{2}}\min\{f_{B}(x_{1}), \mathbf{X}(x_{2})\}, f_{B}(z)\}\}$$

$$= \min\{f_{B}(a_{1}), f_{B}(b), f_{B}(x_{1}), f_{B}(z)\} = 1.$$

$$786$$

This implies that $f_B(x') = 1$. Thus $x' \in B$, that is, $BXB \cap BX \star B \subseteq B$. So B is a bi-ideal of X.

Theorem 3.13. Let μ be a fuzzy subalgebra of X. If $\mu \mathbf{X} \mu \subseteq \mu$ then μ is a fuzzy bi-ideal of X.

Proof. Assume that μ is a fuzzy subalgebra of X and $\mu \mathbf{X} \mu \subseteq \mu$. Let $x \in X$. Then

$$(\mu \mathbf{X}\mu \cap \mu \mathbf{X} \star \mu)(x) = \min\{(\mu \mathbf{X}\mu)(x), (\mu \mathbf{X} \star \mu)(x)\} \le (\mu \mathbf{X}\mu)(x) \le \mu(x).$$

Thus $\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu \subseteq \mu$ and μ is a fuzzy bi-ideal of X.

Theorem 3.14. If X is a zero-symmetric near-subtraction semigroup and μ be a fuzzy bi-ideal of X then $\mu \mathbf{X} \mu \subseteq \mu$.

Proof. Let μ be a fuzzy bi-ideal of X. Then $\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu \subseteq \mu$. Clearly $\mu(0) \geq \mu(x)$. Thus $(\mu \mathbf{X})(0) \geq (\mu \mathbf{X})(x)$ for all $x \in X$. Since X is a zero-symmetric near-subtraction semigroup, $\mu \mathbf{X} \mu \subseteq \mu \mathbf{X} \star \mu$. So $\mu \mathbf{X} \mu \cap \mu \mathbf{X} \star \mu = \mu \mathbf{X} \mu \subseteq \mu$, which is the required result.

Theorem 3.15. Let X be a zero-symmetric near-subtraction semigroup and μ be a fuzzy subalgebra of X. Then the following conditions are equivalent:

(1) μ is a fuzzy bi-ideal of X.

(2)
$$\mu \mathbf{X} \mu \subseteq \mu$$
.

Proof. The proof is straightward from Theorem 3.13 and Theorem 3.14.

Theorem 3.16. Let μ be a fuzzy bi-ideal of a zero-symmetric near-subtraction semigroup X. Then $\mu(xyz) \ge \min\{\mu(x), \mu(z)\}.$

Proof. Assume that μ is a fuzzy bi-ideal of zero-symmetric near-subtraction semigroup X. By Theorem 3.13, $\mu \mathbf{X} \mu \subseteq \mu$. Let $x, y, z \in X$. Then

$$\mu(xyz) \ge (\mu \mathbf{X}\mu)(xyz)$$

$$= \sup_{xyz=ab} \min\{(\mu \mathbf{X})(a), \mu(b)\}$$

$$\ge \min\{(\mu \mathbf{X})(xy), \mu(z)\}$$

$$\ge \min\{\mu(x), \mathbf{X}(y), \mu(z)\}$$

$$= \min\{\mu(x), 1, \mu(z)\}$$

$$= \min\{\mu(x), \mu(z)\}.$$

Thus $\mu(xyz) \ge \min\{\mu(x), \mu(z)\}.$

Theorem 3.17. Let μ be a fuzzy bi-ideal of a zero-symmetric near-subtraction semigroup X. Then the following are equivalent:

(1) $\mu(xyz) \ge \min\{\mu(x), \mu(z)\}.$ (2) $\mu \mathbf{X} \mu \subseteq \mu.$

Proof. Let μ be a fuzzy bi-ideal of zero-symmetric near-subtraction semigroup X. Let $x' \in X$.

(1) \Longrightarrow (2): If there exist $x, y, x_1, x_2 \in X$ such that x' = xy and $x = x_1x_2$. Then by hypothesis, $\mu(x_1x_2y) \ge \min\{\mu(x_1), \mu(y)\}$. We have

$$(\mu \mathbf{X} \mu)(x') = \sup_{x'=xy} \min\{(\mu \mathbf{X})(x), \mu(y)\}$$

=
$$\sup_{x'=xy} \min\{\sup_{x=x_1x_2} \min\{\mu(x_1), \mathbf{X}(x_2)\}, \mu(y)\}$$

=
$$\sup_{x'=xy} \min\{\sup_{x=x_1x_2} \min\{\mu(x_1), 1\}, \mu(y)\}$$

=
$$\sup_{x'=x_1x_2y} \min\{\mu(x_1), \mu(y)\}$$

$$\leq \sup_{x'=x_1x_2y} \mu(x_1x_2y) = \mu(x').$$

Thus, $\mu \mathbf{X} \mu \subseteq \mu$. So (2) holds.

(2)=>(1): Assume that $\mu \mathbf{X} \mu \subseteq \mu$. Let $x, y, z, x' \in X$ be such that x' = xyz. Then

$$\mu(xyz) = \mu(x') \ge (\mu \mathbf{X}\mu)(x')$$

= $\sup_{x'=ab} \min\{(\mu \mathbf{X})(a), \mu(b)\}$
= $\sup_{x'=ab} \min\{\sup_{a=a_1a_2} \min\{\mu(a_1), \mathbf{X}(a_2)\}, \mu(b)\}$
 $\ge \min\{\mu(x), \mathbf{X}(y), \mu(z)\}$
= $\min\{\mu(x), 1, \mu(z)\} = \min\{\mu(x), \mu(z)\}.$

Thus (1) holds.

Theorem 3.18. Let μ be a fuzzy subalgebra of a zero-symmetric near-subtraction semigroup X. Then the following conditions are equivalent:

(1) μ is a fuzzy bi-ideal of X. (2) $\mu(xyz) \ge \min\{\mu(x), \mu(y)\}.$ (3) $\mu \mathbf{X} \mu \subseteq \mu.$

Proof. Straightforward.

Theorem 3.19. Let λ and μ be any two fuzzy bi-ideals of X. Then $\mu \cap \lambda$ is also a fuzzy bi-ideal of X.

Proof. Let λ and μ be any two fuzzy bi-ideals of X. Let $x, y \in X$. Then

$$(\mu \cap \lambda)(x - y) = \min\{\mu(x - y), \lambda(x - y)\}$$

$$\geq \min\{\min\{\mu(x), \mu(y)\}, \min\{\lambda(x), \lambda(y)\}\}$$

$$= \min\{\min\{\mu(x), \lambda(x)\}, \min\{\mu(y), \lambda(y)\}\}$$

$$= \min\{(\mu \cap \lambda)(x), (\mu \cap \lambda)(y)\}.$$

Let $x' \in X$. Choose $a, b, x, y, z \in X$ such that x' = abc = xz - x(y - z). Since λ and μ are fuzzy bi-ideals of X, we have

(3.1)
$$\min\left\{\sup_{\substack{x'=abc}}\min\{\mu(a),\mu(c)\},\sup_{\substack{x'=xz-x(y-z)\\788}}\mu(z)\right\} \le \mu(x)$$

_	_

and

(3.2)
$$\min\left\{\sup_{x'=abc}\min\{\lambda(a),\lambda(c)\},\sup_{x'=xz-x(y-z)}\lambda(z)\right\} \le \lambda(x).$$

Now

$$\min\{((\mu \cap \lambda)\mathbf{X}(\mu \cap \lambda))(x'), ((\mu \cap \lambda)\mathbf{X} \star (\mu \cap \lambda))(x')\} = \min\{\sup_{x'=abc} \min\{(\mu \cap \lambda)(a), (\mu \cap \lambda)(c)\}, \sup_{x'=xz-x(y-z)} (\mu \cap \lambda)(z)\} = \min\{\sup_{x'=abc} \min\{\mu(a), \lambda(a)\}, \min\{\mu(c), \lambda(c)\}\},$$
$$= \min\{\min\{\sup_{x'=abc} \min\{\mu(a), \mu(c)\}, \sup_{x'=xz-x(y-z)} \mu(z)\}, \min\{\sup_{x'=abc} \min\{\lambda(a), \lambda(c)\}, \sup_{x'=xz-x(y-z)} \lambda(z)\}\} = \min\{\mu(x), \lambda(x)\}, \text{ [from (3.1) and (3.2)]}$$

Thus $\mu \cap \lambda$ is a fuzzy bi-ideal of X.

Acknowledgments

The second author was supported in part by UGC-BSR Grant # F4-1/2006(BSR)/7-254/2009(BSR) in India.

References

- [1] J. C. Abbott, Sets, lattices and Boolean algebras, Allyn and Bacon, Boston 1969.
- [2] P. Dheena and G. Satheeshkumar, On strongly regular near-subtraction semigroups, Commun. Korean Math. Soc. 22 (3) (2007) 323–330.
- [3] P. Dheena and G. Satheeshkumar, Weakly prime left ideals in near-subtraction semigroups, Commun. Korean Math. Soc. 23 (3) (2008) 325–331.
- [4] Y. B. Jun, Kyung Ja Lee and Asghar Khan, Ideal theory of subtraction algebras, Sci. Math. Jpn 61 (2005) 459–464.
- [5] V. Mahalakshmi, S. Maharasi and S. Jayalakshmi, Bi-ideals of Near-Subtraction semigroup, Indian Advances in Algebra 6 (1) (2013) 35–48.
- [6] T. Manikantan, Fuzzy bi-ideals of near-rings, J. Fuzzy Math. 17 (3) (2009) 659-671.
- [7] Al. Narayanan and T. Manikantan, (∈, ∈ ∨q)-fuzzy subnear-rings and (∈, ∈ ∨q)-fuzzy ideals of near-rings, J. Appl. Math. and Computing 18 (2005) 419–430.
- [8] D. R. Prince Williams, Fuzzy ideals in near-subtraction semigroups, International Scholarly and Scientific Research & Innovation 2 (7) (2008) 625–632.
- [9] B. M. Schein, Difference semigroups, Algebra 20 (1992) 2513–2169.
- [10] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338-353.
- [11] B. Zelinka, Subtraction semigroups, Math. Bohemia 120 (1995) 445-447.

V. CHINNADURAI (kv.chinnadurai@yahoo.com)

Department of Mathematics, Annamalai University, Annamalainagar, postal code 608 002, India

 $\underline{S. KADALARASI}$ (kadalarasi89@gmail.com)

Department of Mathematics, Annamalai University, Annamalainagar, postal code 608 002, India