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Abstract. In this paper, we introduce directing congruence, trapping
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sary and sufficient condition for congruence relation of a fuzzy automaton
to be directing. We find the least directing congruence on a fuzzy automa-
ton and a generalized directable fuzzy automaton. Finally, we provide an
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a generalized directable fuzzy automaton.
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1. Introduction

The concept of fuzzy set was introduced by L. A. Zadeh in 1965 [19]. The
mathematical formulation of a fuzzy automaton was first proposed by W.G. Wee in
1967 [18]. E. S. Santos proposed fuzzy automata as a model of pattern recognition
[17]. The concept of fuzzy set is applied in different discipline including medical
sciences, artificial intelligence, pattern recognition and automata theory. For in-
stance, γ-synchronized fuzzy automaton were introduced by V. Karthikeyan and M.
Rajasekar in [8]. Using the concept of synchronization the authors were introduced
an application related to petrol passing through different pipelines in n cities with
minimal flow capacity and minimum maintenance cost [11].

Regular expression is applied in different applications such as string matching,
parsing text data files into sections for import into a database etc. Conversion of
fuzzy regular expressions into fuzzy automata using the concept of follow automata
were discussed in [14]. Similarly, Conversion of parallel fuzzy regular expression to
its epsilon free fuzzy automaton were discussed in [4].

The notion of a generalized directable automata were introduced by T. Petkovic
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et.al [16]. Directability and stronger directability of fuzzy automata were intro-
duced in [9, 10, 12] and Generalized directable fuzzy automata were introduced by
V. Karthikeyan and M. Rajasekar [13].

Directing congruences on automata were considered in [6], and it was noted that
every finite automaton has the least directing congruence, and an algorithm for find-
ing this congruence was given in [5].

We introduce directing congruence, trapping congruence, trap-directing congru-
ence of a fuzzy automaton.

The main purpose of this paper is to introduce the structural characterizations
of fuzzy automata and generalized directable fuzzy automata. Also, we provide a
a necessary and sufficient condition for congruence relation of a fuzzy automaton
to be directing, provide an algorithm to find the least directing congruence on a
fuzzy automaton and a generalized directable fuzzy automaton. Finally, we find the
relation between the least directing congruence and the least trapping congruence.

2. Preliminaries

This section present basic concept and results to be used in the sequel.
Let X denote a universal set. Then a fuzzy set A in X is set of ordered pairs:
A = {(x, µA(x)|x ∈ X} , µA(x) is called the membership function or grade of
membership of x in A which maps X to the membership space [0, 1][20].

A finite fuzzy automaton is a system of 5 tuples, M = (Q, Σ, fM , q0, F ),
where, Q is set of states, Σ is input symbols, fM is transition function from Q ×
Σ×Q→ [0, 1], q0 is an initial state and q0 ∈ Q, and F ⊆ Q set of final states. The
transition in a fuzzy automaton is as follows:
fM (qi, a, qj) = µ, 0 ≤ µ ≤ 1, means that when M is in state qi and reads the input
a will move to the state qj with weight function µ.
fM can be extended to Q× Σ∗ ×Q→ [0, 1] by,

fM (qi, ε, qj) =

{
1 if qi = qj

0 if qi 6= qj

fM (qi, w, qm) = Max{Min{fM (qi, a1, q1), fM (q1, a2, q2), .., fM (qm−1, am, qm)}}

for w = a1 a2 a3 ... am ∈ Σ∗, where Max is taken over all the paths from qi to
qm [7].

Throughout this paper, we consider a fuzzy automaton without initial state and
final state and M denotes M = (Q,Σ, fM ), fM is transition function from Q×Σ×
Q→ [0, 1].

A fuzzy automaton M is called deterministic if for each a ∈ Σ and qi ∈ Q,
there exists a unique state qa such that fM (qi, a, qa) > 0 otherwise it is called
nondeterministic [3].

Let M ′ = (Q′, Σ, fM ′), Q′ ⊆ Q and fM ′ is the restriction of fM . The fuzzy
automaton M ′ is called a subautomaton of M if

(i) fM ′ : Q′ × Σ×Q′ → [0, 1] and
(ii) For any qi ∈ Q′ and fM ′(qi, u, qj) > 0 for some u ∈ Σ∗, then qj ∈ Q′.
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M is said to be strongly connected if for every qi, qj ∈ Q, there exists u ∈ Σ∗

such that fM (qi, u, qj) > 0. Equivalently, M is strongly connected if it has no
proper subautomaton [15].

Let qi ∈ Q. The subautomaton of M generated by qi is denoted by 〈qi〉 and is
given by 〈qi〉 = { qj / fM (qi, u, qj) > 0, u ∈ Σ∗}. It is called a least subautomaton
of M containing qi and it is also called a monogenic subautomaton of M. For any
non-empty H ⊆ Q, the subautomaton of M generated by H is denoted by 〈H〉 and
is given by 〈H〉 = { qj / fM (qi, w, qj) > 0, qi ∈ H, w ∈ Σ∗}. It is called a least
subautomaton of M containing H. The least subautomaton of a fuzzy automaton
M is called the kernel of M [8].

A state qj ∈ Q is called a neck of M, for every qi ∈ Q if there exists u ∈ Σ∗ such
that fM (qi, u, qj) > 0. In that case qj is also said to be a u-neck of M and the
word u is called a directing word of M . If M has a directing word, then we say that
M is a directable fuzzy automaton. The set of all necks of M is denoted by N(M)
and the set of all directing words of M is denoted by DW (M). If N(M) 6= φ, then
N(M) is a subautomaton of M [8].

A state qj ∈ Q is called local neck of M if it is neck of some directable subau-
tomaton of M. The set of all local necks of M is denoted by LN(M)[8].

A state qi ∈ Q is called reversible if for every word v ∈ Σ∗, there exists a word
u ∈ Σ∗ such that fM (qi, vu, qi) > 0. The set of all reversible states of M are called
the reversible part of M. It is denoted by R(M). R(M) is non empty, then R(M) is
a subautomaton of M . If each state of a fuzzy automaton M is reversible, then the
fuzzy automaton M is called reversible fuzzy automaton [8].

A fuzzy automaton M is said to be a direct sum of its subautomata Mα, α ∈ Y,
if M = ∪α ∈ Y Qα and Qα ∩ Qβ = φ, for every α, β ∈ Y such that α 6= β.

A subset I of a semigroup S is called an ideal if SIS ⊆ I [8].
An equivalence relation R on Q in M is called a congruence relation if for all

qi, qj ∈ Q and a ∈ Σ, qi R qj implies that, then there exists ql, qk ∈ Q such that
fM (qi, a, ql) > 0, fM (qj , a, qk) > 0 and ql R qk[1, 2].

Let M be a fuzzy automaton. The quotient fuzzy automaton determined by the
congruence ∼= is a fuzzy automaton
M/ ∼= = (Q/ ∼=,Σ, fM/∼=), where Q/ ∼== {Qi = [qi]} and
fM/∼=(Q1, a,Q2) = Min {fM (q1, a, q2) > 0 / q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ}[10].

We say that two states qi, qj ∈ Q are said to be mergeable or reducible if there
exists a word u ∈ Σ∗ and qj ∈ Q such that fM (qi, u, qk) > 0⇔ fM (qj , u, qk) > 0 [9].

A state qj ∈ Q is called a trap of M if fM (qj , u, qj) > 0, for every word u ∈ Σ∗

[9].
If M has exactly one trap, then M is called one-trap fuzzy automaton. The set

of all traps of a fuzzy automaton M is denoted by Tr(M) [9].
A fuzzy automaton M is called a trapped fuzzy automaton, for each qi ∈ Q,if

there exists a word u ∈ Σ∗ such that fM (qi, u, qj) > 0, qj ∈ Tr(M) [9].
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Example 2.1.
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In the above fuzzy automaton, the states q1 and q2 are traps. In this case,
the above fuzzy automaton M is said to be a trapped fuzzy automaton. Since
fM (qi, u, q1) > 0, fM (qi, u, q2) > 0, q1, q2 ∈ Tr(M), for each u ∈ Σ∗ and qi ∈ Q.

Let M = (Q, Σ, fM ) be a fuzzy automaton. If M has a single neck, then M is
called a trap-directable fuzzy automaton.

Example 2.2.
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Fig - 2.2
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In the above fuzzy automaton, there exists a word bb ∈ Σ∗ such that fM (qi, bb, q2) >
0, for every qi ∈ Q and the state q2 is a single neck. Hence, the above fuzzy automa-
ton is a trap-directable fuzzy automaton.
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Generalized directable fuzzy automaton 2.3 [11].

Let M = (Q, Σ, fM ) be a fuzzy automaton. M is called a generalized directable
fuzzy automaton if for every v ∈ Σ∗ and qi ∈ Q, there exists a word u ∈ Σ∗ and
qj ∈ Q such that fM (qi, uvu, qj) > 0 ⇔ fM (qi, u, qj) > 0 and the word u is called
generalized directing word of a fuzzy automaton M and the set of all generalized
directing words of M are denoted by GDW (M).

Example 2.4.

M


b
(0

.1
)


a(0.3)


a
,b

(0
.7

)


Fig - 2.3


M1
 M2


a(0.7)


a(0.7)


a
,b

(0
.7

)


b(0.1)


b
(0

.2
)


a(
0.

4)



a(0.7)


b(0.1)


b
(0

.2
)


a(
0.

4)



q
1


q
4

q
3


q
2


q
8

q
7


q
6
q
5


b(0
.6

)


In the above fuzzy automaton, for any v ∈ Σ∗, ∃ aa ∈ Σ∗ such that fM (qi, aavaa, qj) >
0 ⇔ fM (qi, aa, qj) > 0 ∀qi, qj ∈ Q. In that case, the word aa ∈ Σ∗ is a generalized
directing word of M.

3. Least directing congruence on fuzzy automata

Nonmergeable Pair of a Fuzzy Automaton 3.1.

Let M = (Q, Σ, fM ) be a fuzzy automaton. Two states qi and qj are said to be
nonmergeable, if there is no ql ∈ Q such that
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fM (qi, w, ql) > 0⇔ fM (qj , w, ql) > 0, for every w ∈ Σ∗.

The set of nonmergeable pair is denoted byMnmp = {{qi, qj} / qi, qj ∈ Q, qi 6= qj} .

Example 3.2.
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Nonmergeable pair of Mnmp = {{q1, q2} , {q2, q3} , {q1, q3}} .
We define a new fuzzy automaton M ′1 by using nonmergeable pairs of M.
M ′1 = (Q′1, Σ, fM1′ ), where,

Q′1 = {{q1, q2} , {q2, q3} , {q1, q3}} , Σ = {a, b} and
fM1′ ({qi, qj} , a, {qk, ql}) = Min {fM (qi, a, qk), fM (qj , a, ql)} > 0, for

some qk, ql ∈ Q and for every a ∈ Σ.
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Remark 3.3. Let M = (Q, Σ, fM ) be a fuzzy automaton. If {qi, qj} is a non-
mergeable pair, then {qj , qi} is also a nonmergeable pair.

Directing, trapping and trap-directing congruence 3.4.

Let M = (Q, Σ, fM ) be a fuzzy automaton. The set of all equivalence relations
on a set Q is denoted by Eq(Q). Let δM ∈ Eq(Q). If for any two states qi, qj ∈ Q
are called δM -Mergeable, then there exists (qk, ql) ∈ δM such that fM (qi, w, qk) > 0
and fM (qj , w, ql) > 0, for some w ∈ Σ∗.

Let ρ be the congruence relation on the states set Q in M. If ρ is called directing,
then the quotient fuzzy automaton M/ρ is a directable fuzzy automaton.

If ρ is called trapping congruence, then the quotient fuzzy automaton M/ρ is a
trapped fuzzy automaton.

If ρ is called trap-directing, then the quotient fuzzy automaton M/ρ is a trap-
directable fuzzy automaton.

Compatible relation 3.5.

A relation R on Q is said to be compatible if (qi, qj) ∈ R, then there exists
(qk, ql) ∈ R such that fM (qi, a, qk) > 0 and fM (qj , a, ql) > 0, for some a ∈ Σ.

Least directing congruence on fuzzy automata

Theorem 3.1. Let M = (Q, Σ, fM ) be a fuzzy automaton and let δM be the
transitive closure of the relation ρM defined on Q in M by

(qi, qj) ∈ ρM ⇔ qi = qj
or
{{qi, qj} /(∀v ∈ Σ∗)(∃u ∈ Σ∗) such that fM (qi, vu, qi) > 0, fM (qj , vu, qj) > 0} .

Then δM is the least directing congruence on the states set Q in M.

Proof. Clearly ρM is reflexive and symmetric. Let (qi, qj) ∈ ρM and a ∈ Σ. Then
for each av1 ∈ Σ∗, there exists u1 ∈ Σ∗ such that

fM (qi, av1u1, qi) = Minqk ∈ Q {fM (qi, a, qk), fM (qk, v1u1, qi)} > 0

and

fM (qj , av1u1, qj) = Minql ∈ Q {fM (qj , a, ql), fM (ql, v1u1, qj)} > 0.

Since fM (qi, a, qk) > 0 and fM (qj , a, ql) > 0, we have fM (qk, v1u1a, qk) > 0 and
fM (ql, v1u1a, ql) > 0. Thus, (qk, ql) ∈ ρM . So, ρM is a compatible relation on Q in
M . Being the transitive closure of a reflexive, symmetric and compatible relation,δM
has the same properties and is transitive. Hence it is a congruence relation on M.

To prove δM is a directing congruence, consider any qi, qj ∈ Q.
Suppose there exists a qm ∈ Q such that fM (qi, w, qm) > 0 and fM (qj , w, qm) > 0,

for some w ∈ Σ∗. Then (qm, qm) ∈ δM . In this case, qi and qj are δM -mergeable.
Suppose now there is no qn ∈ Q such that fM (qi, w, qn) > 0 and fM (qj , w, qn) > 0,

for every w ∈ Σ∗. Clearly {qi, qj} is a state of the nonmergeable pair of a fuzzy
automaton Mnmp of M. By proof of the Theorem 3.1 [11], there exists w ∈ Σ∗
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such that fM (qi, w, qr) > 0 and fM (qj , w, qs) > 0, qr 6= qs. Thus, {qr, qs} is a
reversible state of Mnmp. That is, fM (qr, vu, qr) > 0 and fM (qs, vu, qs) > 0. So,
(qr, qs) ∈ ρM ⊆ δM . Hence, all pairs of qi, qj ∈ Q are δM -mergeable. Therefore, by
Theorem 4.2 [12], δM is a directing congruence on M.

It remains to prove that δM is contained in an arbitrary directing congruence η
on M.
Let (qi, qj) ∈ ρM . Then by the hypothesis and Theorem 4.2 [12], qi and qj are
η-mergeable. That is, there exists a word v ∈ Σ∗ such that

fM (qi, v, qt) > 0 and fM (qj , v, qy) > 0 and (qt, qy) ∈ η.

On the other hand, (qi, qj) ∈ ρM implies that for each v ∈ Σ∗, there exists u ∈ Σ∗

such that {{qi, qj} /fM (qi, vu, qi) > 0, fM (qj , vu, qj) > 0}, where

fM (qi, vu, qi) = Minqt ∈ Q {fM (qi, v, qt), fM (qt, u, qi)} > 0.

Then
fM (qt, u, qi) > 0

and

fM (qj , vu, qj) = Max
{
Minqy ∈ Q {fM (qj , v, qy), fM (qy, u, qj)}

}
> 0.

Thus fM (qy, u, qj) > 0. Since (qt, qy) ∈ η, by the property of congruence, we have
(qi, qj) ∈ η. So, ρM ⊆ δM ⊆ η. Hence, δM is the least directing congruence on Q in
M. �

Algorithm for finding the least directing congruence on fuzzy
automata 3.6.

Let M = (Q,Σ, fM ) be a fuzzy automaton.
Step1: Compute ∆Q in M, where ∆Q is an identical relation on states set Q of

M, i.e., ∆Q = {(qi, qi)/qi ∈ Q}.
Step2: Find all nonmergeable pairs Q in M. That is, Mnmp.
Step3: Compute ρM = ∆Q ∪Mnmp.
Step4: Find the transitive closure of ρM which is called δM . δM is called the

least directing congruence on the states set Q in M.

Example 3.7.
Step1: ∆Q = {(q1, q1), (q2, q2), (q3, q3), (q4, q4)}.
Step2: The nonmergeable pairs

Mnmp = { {q1, q2} , {q2, q3} , {q3, q1} , {q2, q1} , {q3, q2} , {q1, q3} }.
Step3: ρM = ∆Q ∪Mnmp

ρM = {(q1, q1), (q2, q2), (q3, q3), (q4, q4),

(q1, q2), (q2, q3), (q3, q1), (q2, q1), (q3, q2), (q1, q3)}.
Step4:

δM = {(q1, q1), (q2, q2), (q3, q3), (q4, q4), (q1, q2),

(q2, q3), (q3, q1), (q2, q1), (q3, q2), (q1, q3)}.
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This δM is the least directing congruence on the above fuzzy automaton M.

4. Least directing congruence on generalized directable fuzzy
automata

Language associate by a state qi 4.1.

Let M = (Q, Σ, fM ) be a fuzzy automaton. Then to each state qi ∈ Q, we can
associate a language G(qi) ⊆ Σ∗ and defined as follows:

G(qi) = {u ∈ Σ∗/(∀v ∈ Σ∗), fM (qi, vu, qi) > 0} .
Remark 4.2. Let M = (Q, Σ, fM ) be a fuzzy automaton. Let qi, qj ∈ Q. Then
GQ is defined as follows:

GQ = {(qi, qj) / G(qi) ∩G(qj) 6= φ} .

Lemma 4.1. Let M = (Q, Σ, fM ) be a fuzzy automaton and qi ∈ Q. Then G(qi) 6=
φ if and only if 〈qi〉 is a strongly directable fuzzy automaton. In that case the following
conditions hold:

(1) G(qi) = {u ∈ Σ∗/qi is a u− neck of 〈qi〉} .
(2) G(qi) is a left ideal of Σ∗.
(3) G(qi)w ⊆ G(qj) such that fM (qi, w, qj) > 0, for every w ∈ Σ∗.

Proof. (1) Let qi ∈ Q. If G(qi) 6= φ, then for every v ∈ Σ∗, there exists u ∈ Σ∗ such
that fM (qi, vu, qi) > 0. On the one hand,

fM (qi, vu, qi) = Minqk ∈ 〈qi〉 {fM (qi, v, qk), fM (qk, u, qi)} > 0.

Then, this implies that fM (qk, u, qi) > 0 for every qk ∈ 〈qi〉 . Thus, 〈qi〉 is a directable
fuzzy automaton and u is a directing word. On the other hand, qi is reversible, we
can conclude that 〈qi〉 is strongly connected. So, 〈qi〉 is strongly directable fuzzy
automaton.
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Conversely, let 〈qi〉 be strongly directable. Then qi is u-neck of 〈qi〉 for some
u ∈ Σ∗. Thus u ∈ G(qi)

(2) Let w ∈ Σ∗. Then for each vw with v ∈ Σ∗, there exist u ∈ G(qi) such that
fM (qi, vwu, qi) > 0. Thus wu ∈ G(qi). So G(qi) is a left ideal of Σ∗.

(3) Consider arbitrary u ∈ G(qi) and w ∈ Σ∗. Let fM (qi, w, qj) > 0. Then for all
wv ∈ Σ∗, there exists u ∈ Σ∗ such that fM (qi, wvu, qi) > 0. Now,

fM (qi, wvuw, qj) = Minqj ∈ Q {fM (qi, w, qj), fM (qj , vuw, qj)} > 0.

Thus fM (qj , vuw, qj) > 0. So uw ∈ G(qj). Hence G(qi)w ⊆ G(qj). �

Theorem 4.2. Let M = (Q, Σ, fM ) be an arbitrary generalized directable fuzzy
automaton and let υM be the transitive closure of the relation νM defined on Q in
M by (qi, qj) ∈ νM ⇔ qi = qj or G(qi) ∩G(qj) 6= φ. Then υM is the least directing
congruence on the states set Q in M.

Proof. Clearly νM is reflexive and symmetric. Let (qi, qj) ∈ νM and a ∈ Σ. Then
for each av1 ∈ Σ∗, there exists u1 ∈ Σ∗ such that

fM (qi, av1u1, qi) = Minqk ∈ Q {fM (qi, a, qk), fM (qk, v1u1, qi)} > 0

and

fM (qj , av1u1, qj) = Minql ∈ Q {fM (qj , a, ql), fM (ql, v1u1, qj)} > 0.

Since fM (qi, a, qk) > 0 and fM (qj , a, ql) > 0, we have fM (qk, v1u1a, qk) > 0 and
fM (ql, vu1a, ql) > 0. Thus, (qk, ql) ∈ νM . So νM is a compatible relation on M.
Being the transitive closure of a reflexive, symmetric and compatible relation,
υM has the same properties and is transitive. Hence it is a υM is a congruence
relation on M.

To prove that υM is a directing congruence on M.
Consider an arbitrary u ∈ GDW (M) and qi, qj ∈ Q. Since u ∈ GDW (M), we

have

fM (qi, uvu, qk) > 0⇔ fM (qi, u, qk) > 0, for some qk ∈ Q

and

fM (qj , uvu, ql) > 0⇔ fM (qj , u, ql) > 0, for some ql ∈ Q.

Now,

fM (qi, uvu, qk) > 0⇔Minqk∈Q {fM (qi, u, qk), fM (qk, vu, qk)} > 0.

Then fM (qk, vu, qk) > 0. Thus u ∈ G(qk).
Also,

fM (qj , uvu, ql) > 0⇔Minql∈Q {fM (qj , u, ql), fM (ql, vu, ql)} > 0.

Then fM (ql, vu, ql) > 0. Thus u ∈ G(ql). So, u ∈ G(qk) ∩ G(ql). Hence, (qk, ql) ∈
νM ⊆ υM . Therefore, υM is a directing congruence on Q in M.

It remains to prove that υM is contained in an arbitrary directing congruence θ
on M. Let (qi, qj) ∈ νM and qi 6= qj . Then there exist u ∈ G(qi) ∩G(qj). On the
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other hand, for an arbitrary v ∈ Σ∗ and (qi, qj) ∈ Q, we have (qk, ql) ∈ θ such
that fM (qi, v, qk) > 0 and fM (qj , v, ql) > 0. Now,u ∈ G(qi) ∩G(qj) implies that

fM (qi, vu, qi) = Minqk ∈ Q {fM (qi, v, qk), fM (qk, u, qi)} > 0

and

fM (qj , vu, qj) = Minql ∈ Q {fM (qj , v, ql), fM (ql, u, qj)} > 0

implies that fM (qk, u, qi) > 0 and fM (ql, u, qj) > 0. By directing congruence of θ,
(qi, qj) ∈ θ. Thus, νM ⊆ θ. So, υM ⊆ θ. Hence, υM is the least directing congruence
on M. �

Algorithm for finding the least directing congruence on generalized
directable fuzzy automata 4.2.

Let M = (Q,Σ, fM ) be a generalized directable fuzzy automaton.
Step1: Compute ∆Q in M, where ∆Q is an identical relation on states set Q of

M.
Step2: Find GQ = {(qi, qj)/G(qi) ∩G(qj) 6= φ} .
Step3: Compute νM = ∆Q ∪GQ.
Step4: Find the transitive closure of νM which is called υM .

υM is called the least directing congruence on the states set Q in M.

Consider the Example 2.4.
Step1: ∆Q = {(q1, q1), (q2, q2), (q3, q3), (q4, q4), (q5, q5), (q6, q6), (q7, q7), (q8, q8)}.
Step2:

GQ = {(q1, q2), (q1, q3), (q2, q3), (q2, q1), (q3, q1), (q3, q2),

(q5, q6), (q5, q7), (q6, q7), (q6, q5), (q7, q5), (q7, q6)}.

Step3: νM = ∆Q ∪GQ.

νM = {(q1, q1), (q2, q2), (q3, q3), (q4, q4), (q5, q5), (q6, q6),

(q7, q7), (q8, q8), (q1, q2), (q1, q3), (q2, q3), (q2, q1),

(q3, q1), (q3, q2), (q5, q6), (q5, q7), (q6, q7), (q6, q5), (q7, q5), (q7, q6)}.

Step4:

υM = {(q1, q1), (q2, q2), (q3, q3), (q4, q4), (q5, q5), (q6, q6),

(q7, q7), (q8, q8), (q1, q2), (q1, q3), (q2, q3), (q2, q1),

(q3, q1), (q3, q2), (q5, q6), (q5, q7), (q6, q7), (q6, q5), (q7, q5), (q7, q6)}.

This υM is called the least directing congruence on the states set Q in M.

Time complexity 4.3.

The time complexity for finding the least directing congruence on fuzzy automata
and generalized directable fuzzy automata with n states and m input symbols are
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O(mn2 + n3).

Relation between the least directing congruence and the least trapping
congruence 4.4.

(1) Let M = (Q, Σ, fM ) be a generalized directable fuzzy automaton. Then the
relation τM defined on Q in M by

(qi, qj) ∈ τM ⇔ qi = qj

or

(∀u, v ∈ Σ∗)(∃u1, v1 ∈ Σ∗) such that fM (qi, uu1, qj) > 0 and fM (qj , vv1, qi) > 0.

Then τM is the least trapping congruence on Q in M. In other words, (qi, qj) ∈ τM
if and only if either qi = qj or qi and qj belong to the same strongly connected
subautomaton of M.

(2) Let M = (Q, Σ, fM ) be a generalized directable fuzzy automaton. Then the
relation γM defined on Q in M by

(qi, qj) ∈ γM ⇔ qi = qj

or

(∀u, v ∈ Σ∗)(∃u1, v1 ∈ Σ∗) such that fM (qi, uu1, qi) > 0 and fM (qj , vv1, qj) > 0.

Then γM is the least trap-directing congruence onQ inM. Equivalently, (qi, qj) ∈ γM
if and only if either qi = qj or qi, qj ∈ R(M).

Theorem 4.3. Let M = (Q,Σ, fM ) be a generalized directable fuzzy automaton.
Then υM ◦ τM = τM ◦ υM = γM .

Proof. Since υM ⊆ γM and τM ⊆ γM , then υM ◦ τM ⊆ γM and τM ◦ υM ⊆ γM .
It remains to prove the opposite inclusions.
Now consider an arbitrary pair (qi, qj) ∈ γM . If qi = qj , then clearly (qi, qj) ∈

υM ◦ τM and (qi, qj) ∈ τM ◦ υM . Assume that qi 6= qj . Then qi, qj ∈ R(M). Thus by
proof of the Theorem 3.3 [11],〈qi〉 and 〈qj〉 are strongly directable fuzzy automata,
i.e. G(qi) 6= φ and G(qj) 6= φ.

Take an arbitrary u ∈ G(qi) and v ∈ G(qj). Since u ∈ G(qi), fM (qi, w1u, qi) > 0,
for some w1 ∈ Σ∗. Then by (2) and (3) of Lemma 4.1, we have that

(4.1) uv ∈ Σ∗G(qj) ⊆ G(qj) and uv ∈ G(qi)v ⊆ G(qk),

where fM (qi, v, qk) > 0. Thus by (4.1), fM (qk, w2uv, qk) > 0, for some w2 ∈ Σ∗.
On one hand,

(4.2) fM (qi, w1uv, qk) > 0.

On the other hand, fM (qi, vw2u, qi) = Minqk∈Q {fM (qi, v, qk), fM (qk, w2u, qi)} > 0.
Then,

(4.3) fM (qk, w2u, qi) > 0.

From (4.2) and (4.3),

(4.4) (qi, qk) ∈ τM .
From (4.1),uv ∈ G(qj) ∩G(qk). Thus,

(4.5) (qk, qj) ∈ νM ⊆ υM .
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From (4.4) and (4.5), (qi, qj) ∈ τM ◦ υM .
Now take an arbitrary u ∈ G(qi) and v ∈ G(qj). Since v ∈ G(qj), fM (qj , w3v, qj) >

0, for any w3 ∈ Σ∗. Then by (2) and (3) of Lemma 4.1, we have that

(4.6) vu ∈ Σ∗G(qi) ⊆ G(qi) and vu ∈ G(qj)u ⊆ G(ql),

where fM (qj , u, ql) > 0. From (4.6), vu ∈ G(qi) ∩ G(ql). Thus,

(4.7) (qi, ql) ∈ υM .

Also, from (4.6), since vu ∈ G(ql), fM (ql, w4vu, ql) > 0, for some w4 ∈ Σ∗.
Now,

(4.8) fM (qj , w3vu, ql) > 0.

Then

fM (qj , uw4v, qj) = Minql ∈ Q {fM (qj , u, ql), fM (ql, w4v, qj)} > 0.

Thus

(4.9) fM (ql, w4v, qj) > 0.

So, from (4.8) and (4.9),

(4.10) (ql, qj) ∈ τM .

Hence, from (4.7) and (4.10), we have (qi, qj) ∈ υM ◦ τM . �

5. Conclusion

The main aim this paper is to find the least directing congruence on a fuzzy
automaton and a generalized directable fuzzy automaton. We introduce directing
congruence, trapping congruence, trap-directing congruence of a fuzzy automaton
and a necessary and sufficient condition for congruence relation of a fuzzy automa-
ton to be directing. Finally, we provide an algorithm to find the least directing
congruence on a fuzzy automaton and a generalized directable fuzzy automaton.
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