Annals of Fuzzy Mathematics and Informatics Volume 12, No. 6, (December 2016), pp. 767–780 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

## Least directing congruence on fuzzy automata

V. KARTHIKEYAN, M. RAJASEKAR

Received 13 March 2016; Revised 29 April 2016; Accepted 5 June 2016

ABSTRACT. In this paper, we introduce directing congruence, trapping congruence, trap-directing congruence of a fuzzy automaton and a necessary and sufficient condition for congruence relation of a fuzzy automaton to be directing. We find the least directing congruence on a fuzzy automaton and a generalized directable fuzzy automaton. Finally, we provide an algorithm to find the least directing congruence on a fuzzy automaton and a generalized directable fuzzy automaton.

2010 AMS Classification: 18B20, 68Q70

Keywords: Necks, Congruence relation, Directing congruence, Generalized directable fuzzy automaton.

Corresponding Author: V. Karthikeyan (vkarthikau@gmail.com)

### 1. INTRODUCTION

The concept of fuzzy set was introduced by L. A. Zadeh in 1965 [19]. The mathematical formulation of a fuzzy automaton was first proposed by W.G. Wee in 1967 [18]. E. S. Santos proposed fuzzy automata as a model of pattern recognition [17]. The concept of fuzzy set is applied in different discipline including medical sciences, artificial intelligence, pattern recognition and automata theory. For instance,  $\gamma$ -synchronized fuzzy automaton were introduced by V. Karthikeyan and M. Rajasekar in [8]. Using the concept of synchronization the authors were introduced an application related to petrol passing through different pipelines in n cities with minimal flow capacity and minimum maintenance cost [11].

Regular expression is applied in different applications such as string matching, parsing text data files into sections for import into a database etc. Conversion of fuzzy regular expressions into fuzzy automata using the concept of follow automata were discussed in [14]. Similarly, Conversion of parallel fuzzy regular expression to its epsilon free fuzzy automaton were discussed in [4].

The notion of a generalized directable automata were introduced by T. Petkovic

et.al [16]. Directability and stronger directability of fuzzy automata were introduced in [9, 10, 12] and Generalized directable fuzzy automata were introduced by V. Karthikeyan and M. Rajasekar [13].

Directing congruences on automata were considered in [6], and it was noted that every finite automaton has the least directing congruence, and an algorithm for finding this congruence was given in [5].

We introduce directing congruence, trapping congruence, trap-directing congruence of a fuzzy automaton.

The main purpose of this paper is to introduce the structural characterizations of fuzzy automata and generalized directable fuzzy automata. Also, we provide a a necessary and sufficient condition for congruence relation of a fuzzy automaton to be directing, provide an algorithm to find the least directing congruence on a fuzzy automaton and a generalized directable fuzzy automaton. Finally, we find the relation between the least directing congruence and the least trapping congruence.

### 2. Preliminaries

This section present basic concept and results to be used in the sequel. Let X denote a universal set. Then a fuzzy set A in X is set of ordered pairs:  $A = \{(x, \mu_A(x)|x \in X\}, \mu_A(x) \text{ is called the membership function or grade of membership of x in A which maps X to the membership space [0, 1][20].$ 

A finite fuzzy automaton is a system of 5 tuples,  $M = (Q, \Sigma, f_M, q_0, F)$ , where, Q is set of states,  $\Sigma$  is input symbols,  $f_M$  is transition function from  $Q \times \Sigma \times Q \to [0, 1]$ ,  $q_0$  is an initial state and  $q_0 \in Q$ , and  $F \subseteq Q$  set of final states. The transition in a fuzzy automaton is as follows:

 $f_M(q_i, a, q_j) = \mu, \ 0 \le \mu \le 1$ , means that when M is in state  $q_i$  and reads the input a will move to the state  $q_j$  with weight function  $\mu$ .

 $f_M$  can be extended to  $Q \times \Sigma^* \times Q \to [0, 1]$  by,

$$f_M(q_i, \ \epsilon, \ q_j) = \begin{cases} 1 & \text{if } q_i = q_j \\ 0 & \text{if } q_i \neq q_j \end{cases}$$

 $f_M(q_i, w, q_m) = Max\{Min\{f_M(q_i, a_1, q_1), f_M(q_1, a_2, q_2), \dots, f_M(q_{m-1}, a_m, q_m)\}\}$ 

for  $w = a_1 a_2 a_3 \dots a_m \in \Sigma^*$ , where Max is taken over all the paths from  $q_i$  to  $q_m$  [7].

Throughout this paper, we consider a fuzzy automaton without initial state and final state and M denotes  $M = (Q, \Sigma, f_M)$ ,  $f_M$  is transition function from  $Q \times \Sigma \times Q \rightarrow [0, 1]$ .

A fuzzy automaton M is called deterministic if for each  $a \in \Sigma$  and  $q_i \in Q$ , there exists a unique state  $q_a$  such that  $f_M(q_i, a, q_a) > 0$  otherwise it is called nondeterministic [3].

Let  $M' = (Q', \Sigma, f_{M'}), Q' \subseteq Q$  and  $f_{M'}$  is the restriction of  $f_M$ . The fuzzy automaton M' is called a subautomaton of M if

(i)  $f_{M'}: Q' \times \Sigma \times Q' \to [0,1]$  and

(ii) For any  $q_i \in Q'$  and  $f_{M'}(q_i, u, q_j) > 0$  for some  $u \in \Sigma^*$ , then  $q_j \in Q'$ .

M is said to be strongly connected if for every  $q_i$ ,  $q_j \in Q$ , there exists  $u \in \Sigma^*$  such that  $f_M(q_i, u, q_j) > 0$ . Equivalently, M is strongly connected if it has no proper subautomatom [15].

Let  $q_i \in Q$ . The subautomaton of M generated by  $q_i$  is denoted by  $\langle q_i \rangle$  and is given by  $\langle q_i \rangle = \{ q_j / f_M(q_i, u, q_j) > 0, u \in \Sigma^* \}$ . It is called a least subautomaton of M containing  $q_i$  and it is also called a monogenic subautomaton of M. For any non-empty  $H \subseteq Q$ , the subautomaton of M generated by H is denoted by  $\langle H \rangle$  and is given by  $\langle H \rangle = \{ q_j / f_M(q_i, w, q_j) > 0, q_i \in H, w \in \Sigma^* \}$ . It is called a least subautomaton of M containing H. The least subautomaton of a fuzzy automaton M is called the kernel of M [8].

A state  $q_j \in Q$  is called a neck of M, for every  $q_i \in Q$  if there exists  $u \in \Sigma^*$  such that  $f_M(q_i, u, q_j) > 0$ . In that case  $q_j$  is also said to be a *u*-neck of M and the word u is called a directing word of M. If M has a directing word, then we say that M is a directable fuzzy automaton. The set of all necks of M is denoted by N(M) and the set of all directing words of M is denoted by DW(M). If  $N(M) \neq \phi$ , then N(M) is a subautomaton of M [8].

A state  $q_j \in Q$  is called local neck of M if it is neck of some directable subautomaton of M. The set of all local necks of M is denoted by LN(M)[8].

A state  $q_i \in Q$  is called reversible if for every word  $v \in \Sigma^*$ , there exists a word  $u \in \Sigma^*$  such that  $f_M(q_i, vu, q_i) > 0$ . The set of all reversible states of M are called the reversible part of M. It is denoted by R(M). R(M) is non empty, then R(M) is a subautomaton of M. If each state of a fuzzy automaton M is reversible, then the fuzzy automaton M is called reversible fuzzy automaton [8].

A fuzzy automaton M is said to be a direct sum of its subautomata  $M_{\alpha}$ ,  $\alpha \in Y$ , if  $M = \bigcup_{\alpha \in Y} Q_{\alpha}$  and  $Q_{\alpha} \cap Q_{\beta} = \phi$ , for every  $\alpha, \beta \in Y$  such that  $\alpha \neq \beta$ . A subset I of a semigroup S is called an ideal if  $SIS \subseteq I$  [8].

A subset *I* of a semigroup *S* is called an ideal if  $SIS \subseteq I$  [8].

An equivalence relation R on Q in M is called a congruence relation if for all  $q_i, q_j \in Q$  and  $a \in \Sigma$ ,  $q_i R q_j$  implies that, then there exists  $q_l, q_k \in Q$  such that  $f_M(q_i, a, q_l) > 0$ ,  $f_M(q_j, a, q_k) > 0$  and  $q_l R q_k[1, 2]$ .

Let M be a fuzzy automaton. The quotient fuzzy automaton determined by the congruence  $\cong$  is a fuzzy automaton

 $M/\cong = (Q/\cong, \Sigma, f_{M/\cong}),$  where  $Q/\cong = \{Q_i = [q_i]\}$  and

 $f_{M/\cong}(Q_1, a, Q_2) = Min \{ f_M(q_1, a, q_2) > 0 \ / \ q_1 \in Q_1, \ q_2 \in Q_2 \ \text{ and } a \in \Sigma \} [10].$ 

We say that two states  $q_i, q_j \in Q$  are said to be mergeable or reducible if there exists a word  $u \in \Sigma^*$  and  $q_j \in Q$  such that  $f_M(q_i, u, q_k) > 0 \Leftrightarrow f_M(q_j, u, q_k) > 0$  [9]. A state  $q_j \in Q$  is called a trap of M if  $f_M(q_j, u, q_j) > 0$ , for every word  $u \in \Sigma^*$  [9].

If M has exactly one trap, then M is called one-trap fuzzy automaton. The set of all traps of a fuzzy automaton M is denoted by Tr(M) [9].

A fuzzy automaton M is called a trapped fuzzy automaton, for each  $q_i \in Q$ , if there exists a word  $u \in \Sigma^*$  such that  $f_M(q_i, u, q_j) > 0$ ,  $q_j \in Tr(M)$  [9]. Example 2.1.



In the above fuzzy automaton, the states  $q_1$  and  $q_2$  are traps. In this case, the above fuzzy automaton M is said to be a trapped fuzzy automaton. Since  $f_M(q_i, u, q_1) > 0, f_M(q_i, u, q_2) > 0, q_1, q_2 \in Tr(M)$ , for each  $u \in \Sigma^*$  and  $q_i \in Q$ . Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton. If M has a single neck, then M is called a trap-directable fuzzy automaton.

Example 2.2.



In the above fuzzy automaton, there exists a word  $bb \in \Sigma^*$  such that  $f_M(q_i, bb, q_2) > 0$ , for every  $q_i \in Q$  and the state  $q_2$  is a single neck. Hence, the above fuzzy automaton is a trap-directable fuzzy automaton.

### Generalized directable fuzzy automaton 2.3 [11].

Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton. M is called a generalized directable fuzzy automaton if for every  $v \in \Sigma^*$  and  $q_i \in Q$ , there exists a word  $u \in \Sigma^*$  and  $q_j \in Q$  such that  $f_M(q_i, uvu, q_j) > 0 \Leftrightarrow f_M(q_i, u, q_j) > 0$  and the word u is called generalized directing word of a fuzzy automaton M and the set of all generalized directing words of M are denoted by GDW(M).

## Example 2.4.





In the above fuzzy automaton, for any  $v \in \Sigma^*$ ,  $\exists aa \in \Sigma^*$  such that  $f_M(q_i, aavaa, q_j) > 0 \Leftrightarrow f_M(q_i, aa, q_j) > 0 \ \forall q_i, q_j \in Q$ . In that case, the word  $aa \in \Sigma^*$  is a generalized directing word of M.

## 3. Least directing congruence on fuzzy automata

### Nonmergeable Pair of a Fuzzy Automaton 3.1.

Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton. Two states  $q_i$  and  $q_j$  are said to be nonmergeable, if there is no  $q_l \in Q$  such that

 $f_M(q_i, w, q_l) > 0 \Leftrightarrow f_M(q_i, w, q_l) > 0$ , for every  $w \in \Sigma^*$ . The set of nonmergeable pair is denoted by  $M_{nmp} = \{\{q_i, q_j\} / q_i, q_j \in Q, q_i \neq q_j\}.$ 

Example 3.2.



Nonmergeable pair of  $M_{nmp} = \{\{q_1, q_2\}, \{q_2, q_3\}, \{q_1, q_3\}\}$ . We define a new fuzzy automaton  $M'_1$  by using nonmergeable pairs of M.

 $\begin{array}{l} M_1' = (Q_1', \ \Sigma, \ f_{M_{1'}}), \text{ where,} \\ Q_1' = \{\{q_1, q_2\}, \ \{q_2, q_3\}, \ \{q_1, q_3\}\}, \ \Sigma = \{a, \ b\} \text{ and} \\ f_{M_{1'}}(\{q_i, q_j\}, \ a, \ \{q_k, q_l\}) = Min \{f_M(q_i, \ a, \ q_k), \ f_M(q_j, \ a, \ q_l)\} > 0, \text{ for some } q_k, \ q_l \in Q \text{ and for every } a \in \Sigma. \end{array}$ 



**Remark 3.3.** Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton. If  $\{q_i, q_j\}$  is a nonmergeable pair, then  $\{q_i, q_i\}$  is also a nonmergeable pair.

### Directing, trapping and trap-directing congruence 3.4.

Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton. The set of all equivalence relations on a set Q is denoted by Eq(Q). Let  $\delta_M \in Eq(Q)$ . If for any two states  $q_i, q_j \in Q$ are called  $\delta_M$ -Mergeable, then there exists  $(q_k, q_l) \in \delta_M$  such that  $f_M(q_i, w, q_k) > 0$ and  $f_M(q_i, w, q_l) > 0$ , for some  $w \in \Sigma^*$ .

Let  $\rho$  be the congruence relation on the states set Q in M. If  $\rho$  is called directing, then the quotient fuzzy automaton  $M/\rho$  is a directable fuzzy automaton.

If  $\rho$  is called trapping congruence, then the quotient fuzzy automaton  $M/\rho$  is a trapped fuzzy automaton.

If  $\rho$  is called trap-directing, then the quotient fuzzy automaton  $M/\rho$  is a trapdirectable fuzzy automaton.

#### Compatible relation 3.5.

A relation R on Q is said to be compatible if  $(q_i, q_j) \in R$ , then there exists  $(q_k, q_l) \in R$  such that  $f_M(q_i, a, q_k) > 0$  and  $f_M(q_j, a, q_l) > 0$ , for some  $a \in \Sigma$ .

#### Least directing congruence on fuzzy automata

**Theorem 3.1.** Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton and let  $\delta_M$  be the transitive closure of the relation  $\rho_M$  defined on Q in M by

 $(q_i, q_j) \in \rho_M \Leftrightarrow q_i = q_j$ or

 $\{\{q_i, q_j\} / (\forall v \in \Sigma^*) (\exists u \in \Sigma^*) \text{ such that } f_M(q_i, vu, q_i) > 0, f_M(q_j, vu, q_j) > 0\}.$ Then  $\delta_M$  is the least directing congruence on the states set Q in M.

*Proof.* Clearly  $\rho_M$  is reflexive and symmetric. Let  $(q_i, q_j) \in \rho_M$  and  $a \in \Sigma$ . Then for each  $av_1 \in \Sigma^*$ , there exists  $u_1 \in \Sigma^*$  such that

$$f_M(q_i, av_1u_1, q_i) = Min_{q_k} \in Q\{f_M(q_i, a, q_k), f_M(q_k, v_1u_1, q_i)\} > 0$$

and

$$f_M(q_j, av_1u_1, q_j) = Min_{q_l} \in Q \{ f_M(q_j, a, q_l), f_M(q_l, v_1u_1, q_j) \} > 0.$$

Since  $f_M(q_i, a, q_k) > 0$  and  $f_M(q_j, a, q_l) > 0$ , we have  $f_M(q_k, v_1u_1a, q_k) > 0$  and  $f_M(q_l, v_1u_1a, q_l) > 0$ . Thus,  $(q_k, q_l) \in \rho_M$ . So,  $\rho_M$  is a compatible relation on Q in M. Being the transitive closure of a reflexive, symmetric and compatible relation,  $\delta_M$  has the same properties and is transitive. Hence it is a congruence relation on M.

To prove  $\delta_M$  is a directing congruence, consider any  $q_i, q_j \in Q$ .

Suppose there exists a  $q_m \in Q$  such that  $f_M(q_i, w, q_m) > 0$  and  $f_M(q_j, w, q_m) > 0$ , for some  $w \in \Sigma^*$ . Then  $(q_m, q_m) \in \delta_M$ . In this case,  $q_i$  and  $q_j$  are  $\delta_M$ -mergeable.

Suppose now there is no  $q_n \in Q$  such that  $f_M(q_i, w, q_n) > 0$  and  $f_M(q_j, w, q_n) > 0$ , for every  $w \in \Sigma^*$ . Clearly  $\{q_i, q_j\}$  is a state of the nonmergeable pair of a fuzzy automaton  $M_{nmp}$  of M. By proof of the Theorem 3.1 [11], there exists  $w \in \Sigma^*$  such that  $f_M(q_i, w, q_r) > 0$  and  $f_M(q_j, w, q_s) > 0$ ,  $q_r \neq q_s$ . Thus,  $\{q_r, q_s\}$  is a reversible state of  $M_{nmp}$ . That is,  $f_M(q_r, vu, q_r) > 0$  and  $f_M(q_s, vu, q_s) > 0$ . So,  $(q_r, q_s) \in \rho_M \subseteq \delta_M$ . Hence, all pairs of  $q_i, q_j \in Q$  are  $\delta_M$ -mergeable. Therefore, by Theorem 4.2 [12],  $\delta_M$  is a directing congruence on M.

It remains to prove that  $\delta_M$  is contained in an arbitrary directing congruence  $\eta$  on M.

Let  $(q_i, q_j) \in \rho_M$ . Then by the hypothesis and Theorem 4.2 [12],  $q_i$  and  $q_j$  are  $\eta$ -mergeable. That is, there exists a word  $v \in \Sigma^*$  such that

$$f_M(q_i, v, q_t) > 0$$
 and  $f_M(q_j, v, q_y) > 0$  and  $(q_t, q_y) \in \eta$ .

On the other hand,  $(q_i, q_j) \in \rho_M$  implies that for each  $v \in \Sigma^*$ , there exists  $u \in \Sigma^*$  such that  $\{\{q_i, q_j\} / f_M(q_i, vu, q_i) > 0, f_M(q_j, vu, q_j) > 0\}$ , where

$$f_M(q_i, vu, q_i) = Min_{q_t} \in Q\{f_M(q_i, v, q_t), f_M(q_t, u, q_i)\} > 0.$$

Then

and

 $f_M(q_t, u, q_i) > 0$ 

$$f_M(q_j, vu, q_j) = Max \left\{ Min_{q_y \in Q} \left\{ f_M(q_j, v, q_y), f_M(q_y, u, q_j) \right\} \right\} > 0.$$

Thus  $f_M(q_y, u, q_j) > 0$ . Since  $(q_t, q_y) \in \eta$ , by the property of congruence, we have  $(q_i, q_j) \in \eta$ . So,  $\rho_M \subseteq \delta_M \subseteq \eta$ . Hence,  $\delta_M$  is the least directing congruence on Q in M.

# Algorithm for finding the least directing congruence on fuzzy automata 3.6.

Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton.

**Step1:** Compute  $\Delta_Q$  in M, where  $\Delta_Q$  is an identical relation on states set Q of M, i.e.,  $\Delta_Q = \{(q_i, q_i)/q_i \in Q\}$ .

**Step2:** Find all nonmergeable pairs Q in M. That is,  $M_{nmp}$ .

**Step3:** Compute  $\rho_M = \Delta_Q \cup M_{nmp}$ .

**Step4:** Find the transitive closure of  $\rho_M$  which is called  $\delta_M$ .  $\delta_M$  is called the least directing congruence on the states set Q in M.

## Example 3.7.

 $\begin{array}{l} \textbf{Step1:} \ \Delta_Q = \{(q_1,q_1),(q_2,q_2),(q_3,q_3),(q_4,q_4)\}.\\ \textbf{Step2:} \ \text{The nonmergeable pairs}\\ M_{nmp} = \{ \ \{q_1,q_2\},\{q_2,q_3\},\{q_3,q_1\},\{q_2,q_1\},\{q_3,q_2\},\{q_1,q_3\} \ \}.\\ \textbf{Step3:} \ \rho_M = \Delta_Q \cup M_{nmp} \end{array}$ 

$$\rho_M = \{ (q_1, q_1), (q_2, q_2), (q_3, q_3), (q_4, q_4), (q_1, q_2), (q_2, q_3), (q_3, q_1), (q_2, q_1), (q_3, q_2), (q_1, q_3) \}$$

Step4:

$$\delta_M = \{ (q_1, q_1), (q_2, q_2), (q_3, q_3), (q_4, q_4), (q_1, q_2), (q_2, q_3), (q_3, q_1), (q_2, q_1), (q_3, q_2), (q_1, q_3) \}.$$



This  $\delta_M$  is the least directing congruence on the above fuzzy automaton M.

### 4. Least directing congruence on generalized directable fuzzy Automata

## Language associate by a state $q_i$ 4.1.

Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton. Then to each state  $q_i \in Q$ , we can associate a language  $G(q_i) \subseteq \Sigma^*$  and defined as follows:

 $G(q_i) = \{ u \in \Sigma^* / (\forall v \in \Sigma^*), f_M(q_i, vu, q_i) > 0 \}.$ 

**Remark 4.2.** Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton. Let  $q_i, q_j \in Q$ . Then  $G_Q$  is defined as follows:

$$G_Q = \{ (q_i, q_j) / G(q_i) \cap G(q_j) \neq \phi \}.$$

**Lemma 4.1.** Let  $M = (Q, \Sigma, f_M)$  be a fuzzy automaton and  $q_i \in Q$ . Then  $G(q_i) \neq \phi$  if and only if  $\langle q_i \rangle$  is a strongly directable fuzzy automaton. In that case the following conditions hold:

- $(1) \ G(q_i) = \left\{ u \in \Sigma^*/q_i \ is \ a \ u neck \ of \ \langle q_i \rangle \right\}.$
- (2)  $G(q_i)$  is a left ideal of  $\Sigma^*$ .
- (3)  $G(q_i)w \subseteq G(q_j)$  such that  $f_M(q_i, w, q_j) > 0$ , for every  $w \in \Sigma^*$ .

*Proof.* (1) Let  $q_i \in Q$ . If  $G(q_i) \neq \phi$ , then for every  $v \in \Sigma^*$ , there exists  $u \in \Sigma^*$  such that  $f_M(q_i, vu, q_i) > 0$ . On the one hand,

$$f_M(q_i, vu, q_i) = Min_{q_k} \in \langle q_i \rangle \{ f_M(q_i, v, q_k), f_M(q_k, u, q_i) \} > 0.$$

Then, this implies that  $f_M(q_k, u, q_i) > 0$  for every  $q_k \in \langle q_i \rangle$ . Thus,  $\langle q_i \rangle$  is a directable fuzzy automaton and u is a directing word. On the other hand,  $q_i$  is reversible, we can conclude that  $\langle q_i \rangle$  is strongly connected. So,  $\langle q_i \rangle$  is strongly directable fuzzy automaton.

Conversely, let  $\langle q_i \rangle$  be strongly directable. Then  $q_i$  is u-neck of  $\langle q_i \rangle$  for some  $u \in \Sigma^*$ . Thus  $u \in G(q_i)$ 

(2) Let  $w \in \Sigma^*$ . Then for each vw with  $v \in \Sigma^*$ , there exist  $u \in G(q_i)$  such that  $f_M(q_i, vwu, q_i) > 0$ . Thus  $wu \in G(q_i)$ . So  $G(q_i)$  is a left ideal of  $\Sigma^*$ .

(3) Consider arbitrary  $u \in G(q_i)$  and  $w \in \Sigma^*$ . Let  $f_M(q_i, w, q_j) > 0$ . Then for all  $wv \in \Sigma^*$ , there exists  $u \in \Sigma^*$  such that  $f_M(q_i, wvu, q_i) > 0$ . Now,

$$f_M(q_i, wvuw, q_j) = Min_{q_j \in Q} \{ f_M(q_i, w, q_j), f_M(q_j, vuw, q_j) \} > 0.$$

Thus  $f_M(q_j, vuw, q_j) > 0$ . So  $uw \in G(q_j)$ . Hence  $G(q_i)w \subseteq G(q_j)$ .

**Theorem 4.2.** Let  $M = (Q, \Sigma, f_M)$  be an arbitrary generalized directable fuzzy automaton and let  $v_M$  be the transitive closure of the relation  $v_M$  defined on Q in M by  $(q_i, q_j) \in v_M \Leftrightarrow q_i = q_j$  or  $G(q_i) \cap G(q_j) \neq \phi$ . Then  $v_M$  is the least directing congruence on the states set Q in M.

*Proof.* Clearly  $\nu_M$  is reflexive and symmetric. Let  $(q_i, q_j) \in \nu_M$  and  $a \in \Sigma$ . Then for each  $av_1 \in \Sigma^*$ , there exists  $u_1 \in \Sigma^*$  such that

$$f_M(q_i, av_1u_1, q_i) = Min_{q_k} \in Q\{f_M(q_i, a, q_k), f_M(q_k, v_1u_1, q_i)\} > 0$$

and

$$f_M(q_j, av_1u_1, q_j) = Min_{q_l} \in Q \{ f_M(q_j, a, q_l), f_M(q_l, v_1u_1, q_j) \} > 0.$$

Since  $f_M(q_i, a, q_k) > 0$  and  $f_M(q_j, a, q_l) > 0$ , we have  $f_M(q_k, v_1u_1a, q_k) > 0$  and  $f_M(q_l, vu_1a, q_l) > 0$ . Thus,  $(q_k, q_l) \in \nu_M$ . So  $\nu_M$  is a compatible relation on M. Being the transitive closure of a reflexive, symmetric and compatible relation,  $v_M$  has the same properties and is transitive. Hence it is a  $v_M$  is a congruence relation on M.

To prove that  $v_M$  is a directing congruence on M.

Consider an arbitrary  $u \in GDW(M)$  and  $q_i, q_j \in Q$ . Since  $u \in GDW(M)$ , we have

$$f_M(q_i, uvu, q_k) > 0 \Leftrightarrow f_M(q_i, u, q_k) > 0$$
, for some  $q_k \in Q$ 

and

$$f_M(q_j, uvu, q_l) > 0 \Leftrightarrow f_M(q_j, u, q_l) > 0$$
, for some  $q_l \in Q_{\mathcal{A}}$ 

Now,

$$f_M(q_i, uvu, q_k) > 0 \Leftrightarrow Min_{q_k \in Q} \{ f_M(q_i, u, q_k), f_M(q_k, vu, q_k) \} > 0.$$

Then  $f_M(q_k, vu, q_k) > 0$ . Thus  $u \in G(q_k)$ . Also,

$$f_M(q_j, uvu, q_l) > 0 \Leftrightarrow Min_{q_l \in Q} \{ f_M(q_j, u, q_l), f_M(q_l, vu, q_l) \} > 0.$$

Then  $f_M(q_l, vu, q_l) > 0$ . Thus  $u \in G(q_l)$ . So,  $u \in G(q_k) \cap G(q_l)$ . Hence,  $(q_k, q_l) \in \nu_M \subseteq v_M$ . Therefore,  $v_M$  is a directing congruence on Q in M.

It remains to prove that  $v_M$  is contained in an arbitrary directing congruence  $\theta$ on M. Let  $(q_i, q_j) \in v_M$  and  $q_i \neq q_j$ . Then there exist  $u \in G(q_i) \cap G(q_j)$ . On the

other hand, for an arbitrary  $v \in \Sigma^*$  and  $(q_i, q_j) \in Q$ , we have  $(q_k, q_l) \in \theta$  such that  $f_M(q_i, v, q_k) > 0$  and  $f_M(q_j, v, q_l) > 0$ . Now,  $u \in G(q_i) \cap G(q_j)$  implies that

$$f_M(q_i, vu, q_i) = Min_{q_k} \in Q \{ f_M(q_i, v, q_k), f_M(q_k, u, q_i) \} > 0$$

and

$$f_M(q_j, vu, q_j) = Min_{q_l} \in Q\{f_M(q_j, v, q_l), f_M(q_l, u, q_j)\} > 0$$

implies that  $f_M(q_k, u, q_i) > 0$  and  $f_M(q_l, u, q_j) > 0$ . By directing congruence of  $\theta$ ,  $(q_i, q_j) \in \theta$ . Thus,  $\nu_M \subseteq \theta$ . So,  $\nu_M \subseteq \theta$ . Hence,  $\nu_M$  is the least directing congruence on M.

## Algorithm for finding the least directing congruence on generalized directable fuzzy automata 4.2.

Let  $M = (Q, \Sigma, f_M)$  be a generalized directable fuzzy automaton. **Step1:** Compute  $\Delta_{\Omega}$  in M where  $\Delta_{\Omega}$  is an identical relation on states

**Step1:** Compute  $\Delta_Q$  in M, where  $\Delta_Q$  is an identical relation on states set Q of M.

**Step2:** Find  $G_Q = \{(q_i, q_j)/G(q_i) \cap G(q_j) \neq \phi\}$ .

**Step3:** Compute  $\nu_M = \Delta_Q \cup G_Q$ .

**Step4:** Find the transitive closure of  $\nu_M$  which is called  $\nu_M$ .

 $v_M$  is called the least directing congruence on the states set Q in M.

Consider the Example 2.4. **Step1:**  $\Delta_Q = \{(q_1, q_1), (q_2, q_2), (q_3, q_3), (q_4, q_4), (q_5, q_5), (q_6, q_6), (q_7, q_7), (q_8, q_8)\}.$ **Step2:** 

$$G_Q = \{ (q_1, q_2), (q_1, q_3), (q_2, q_3), (q_2, q_1), (q_3, q_1), (q_3, q_2), (q_5, q_6), (q_5, q_7), (q_6, q_7), (q_6, q_5), (q_7, q_5), (q_7, q_6) \}$$

Step3:  $\nu_M = \Delta_Q \cup G_Q$ .

$$\nu_{M} = \{ (q_{1}, q_{1}), (q_{2}, q_{2}), (q_{3}, q_{3}), (q_{4}, q_{4}), (q_{5}, q_{5}), (q_{6}, q_{6}), (q_{7}, q_{7}), (q_{8}, q_{8}), (q_{1}, q_{2}), (q_{1}, q_{3}), (q_{2}, q_{3}), (q_{2}, q_{1}), (q_{3}, q_{1}), (q_{3}, q_{2}), (q_{5}, q_{6}), (q_{5}, q_{7}), (q_{6}, q_{7}), (q_{6}, q_{5}), (q_{7}, q_{5}), (q_{7}, q_{6}) \}$$

Step4:

$$v_{M} = \{(q_{1}, q_{1}), (q_{2}, q_{2}), (q_{3}, q_{3}), (q_{4}, q_{4}), (q_{5}, q_{5}), (q_{6}, q_{6}), (q_{7}, q_{7}), (q_{8}, q_{8}), (q_{1}, q_{2}), (q_{1}, q_{3}), (q_{2}, q_{3}), (q_{2}, q_{1}), (q_{3}, q_{1}), (q_{3}, q_{2}), (q_{5}, q_{6}), (q_{5}, q_{7}), (q_{6}, q_{7}), (q_{6}, q_{5}), (q_{7}, q_{5}), (q_{7}, q_{6})\}.$$

This  $v_M$  is called the least directing congruence on the states set Q in M.

### Time complexity 4.3.

The time complexity for finding the least directing congruence on fuzzy automata and generalized directable fuzzy automata with n states and m input symbols are

 $O(mn^2 + n^3).$ 

## Relation between the least directing congruence and the least trapping congruence 4.4.

(1) Let  $M = (Q, \Sigma, f_M)$  be a generalized directable fuzzy automaton. Then the relation  $\tau_M$  defined on Q in M by

$$(q_i, q_j) \in \tau_M \Leftrightarrow q_i = q_j$$

or

 $(\forall u, v \in \Sigma^*)(\exists u_1, v_1 \in \Sigma^*)$  such that  $f_M(q_i, uu_1, q_j) > 0$  and  $f_M(q_j, vv_1, q_i) > 0$ . Then  $\tau_M$  is the least trapping congruence on Q in M. In other words,  $(q_i, q_j) \in \tau_M$  if and only if either  $q_i = q_j$  or  $q_i$  and  $q_j$  belong to the same strongly connected subautomaton of M.

(2) Let  $M = (Q, \Sigma, f_M)$  be a generalized directable fuzzy automaton. Then the relation  $\gamma_M$  defined on Q in M by

$$(q_i, q_j) \in \gamma_M \Leftrightarrow q_i = q_j$$

or

 $(\forall u, v \in \Sigma^*)(\exists u_1, v_1 \in \Sigma^*)$  such that  $f_M(q_i, uu_1, q_i) > 0$  and  $f_M(q_j, vv_1, q_j) > 0$ . Then  $\gamma_M$  is the least trap-directing congruence on Q in M. Equivalently,  $(q_i, q_j) \in \gamma_M$  if and only if either  $q_i = q_j$  or  $q_i, q_j \in R(M)$ .

**Theorem 4.3.** Let  $M = (Q, \Sigma, f_M)$  be a generalized directable fuzzy automaton. Then  $v_M \circ \tau_M = \tau_M \circ v_M = \gamma_M$ .

*Proof.* Since  $v_M \subseteq \gamma_M$  and  $\tau_M \subseteq \gamma_M$ , then  $v_M \circ \tau_M \subseteq \gamma_M$  and  $\tau_M \circ v_M \subseteq \gamma_M$ . It remains to prove the opposite inclusions.

Now consider an arbitrary pair  $(q_i, q_j) \in \gamma_M$ . If  $q_i = q_j$ , then clearly  $(q_i, q_j) \in \upsilon_M \circ \tau_M$  and  $(q_i, q_j) \in \tau_M \circ \upsilon_M$ . Assume that  $q_i \neq q_j$ . Then  $q_i, q_j \in R(M)$ . Thus by proof of the Theorem 3.3 [11],  $\langle q_i \rangle$  and  $\langle q_j \rangle$  are strongly directable fuzzy automata, i.e.  $G(q_i) \neq \phi$  and  $G(q_j) \neq \phi$ .

Take an arbitrary  $u \in G(q_i)$  and  $v \in G(q_j)$ . Since  $u \in G(q_i)$ ,  $f_M(q_i, w_1u, q_i) > 0$ , for some  $w_1 \in \Sigma^*$ . Then by (2) and (3) of Lemma 4.1, we have that

(4.1) 
$$uv \in \Sigma^* G(q_j) \subseteq G(q_j) \text{ and } uv \in G(q_i)v \subseteq G(q_k),$$

where  $f_M(q_i, v, q_k) > 0$ . Thus by (4.1),  $f_M(q_k, w_2 u v, q_k) > 0$ , for some  $w_2 \in \Sigma^*$ . On one hand,

(4.2) 
$$f_M(q_i, w_1 uv, q_k) > 0.$$

On the other hand,  $f_M(q_i, vw_2u, q_i) = Min_{q_k \in Q} \{ f_M(q_i, v, q_k), f_M(q_k, w_2u, q_i) \} > 0.$ Then,

(4.3) 
$$f_M(q_k, w_2 u, q_i) > 0.$$

From (4.2) and (4.3),

$$(4.4) \qquad (q_i, q_k) \in \tau_M$$

From  $(4.1), uv \in G(q_j) \cap G(q_k)$ . Thus,

(4.5) 
$$(q_k, q_j) \in \nu_M \subseteq \upsilon_M$$
778

From (4.4) and (4.5),  $(q_i, q_j) \in \tau_M \circ v_M$ .

Now take an arbitrary  $u \in G(q_i)$  and  $v \in G(q_j)$ . Since  $v \in G(q_j)$ ,  $f_M(q_j, w_3 v, q_j) > 0$ , for any  $w_3 \in \Sigma^*$ . Then by (2) and (3) of Lemma 4.1, we have that

(4.6) 
$$vu \in \Sigma^* G(q_i) \subseteq G(q_i) \text{ and } vu \in G(q_j)u \subseteq G(q_l),$$

where  $f_M(q_i, u, q_l) > 0$ . From (4.6),  $vu \in G(q_i) \cap G(q_l)$ . Thus,

$$(4.7) (q_i, q_l) \in v_M.$$

Also, from (4.6), since  $vu \in G(q_l)$ ,  $f_M(q_l, w_4 vu, q_l) > 0$ , for some  $w_4 \in \Sigma^*$ . Now,

(4.8) 
$$f_M(q_j, w_3 v u, q_l) > 0$$

Then

$$f_M(q_j, uw_4v, q_j) = Min_{q_l \in Q} \{ f_M(q_j, u, q_l), f_M(q_l, w_4v, q_j) \} > 0$$

Thus

(4.9) 
$$f_M(q_l, w_4 v, q_j) > 0.$$

So, from (4.8) and (4.9),

 $(4.10) (q_l, q_j) \in \tau_M.$ 

Hence, from (4.7) and (4.10), we have  $(q_i, q_j) \in v_M \circ \tau_M$ .

### 5. Conclusion

The main aim this paper is to find the least directing congruence on a fuzzy automaton and a generalized directable fuzzy automaton. We introduce directing congruence, trapping congruence, trap-directing congruence of a fuzzy automaton and a necessary and sufficient condition for congruence relation of a fuzzy automaton to be directing. Finally, we provide an algorithm to find the least directing congruence on a fuzzy automaton and a generalized directable fuzzy automaton.

#### References

- Y. Cao, G. Chen and E. Kerre, Bisimulations for fuzzy-transition systems, IEEE Transactions on Fuzzy Systems 19 (2011) 540–552.
- [2] Y. Cao and Y. Ezawa, Nondeterministic fuzzy automata, Inform. Sci. 191 (2012) 86–97.
- [3] M. Doostfatemeh and S. C. Kremer, New directions in fuzzy automata, International Journal of Approximate Reasoning 38 (2005) 175–214.
- [4] S. Garhwal and R. Jiwari, Parallel Fuzzy Regular Expression and its Conversion to Epsilon-Free Fuzzy Automaton, The Computer Journal 15 (9) (2016) 1383–1391.
- [5] B. Imreh and M. Steinby, Some remarks on directable automata, Acta Cybernetica 12 (1995) 23-35.
- [6] M. Ito and J. Duske, On cofinal and definite automata, Acta Cybernetica 6 (1983) 181–189.
- [7] A. Kandel and S. C. Lee, Fuzzy switching and automata theory applications, Edward Arnold Publishers Ltd. London 1979.
- [8] V. Karthikeyan and M. Rajasekar, Relation in fuzzy automata, Advances in Fuzzy Mathematics 6 (1) (2011) 121–126.
- [9] V. Karthikeyan and M. Rajasekar, Local necks of fuzzy automata, Advances in Theoretical and Applied Mathematics 7 (2) (2012) 393–402.
- [10] V. Karthikeyan and M. Rajasekar,  $\mu\text{-}$  Necks of fuzzy automata, J. Math. Comput. Sci. 2 (3) (2012) 393–402.

- [11] V. Karthikeyan and M. Rajasekar, γ- Synchronized fuzzy automata and their applications, Ann. Fuzzy Math. Inform. 10 (2) 2015 331–342.
- [12] V. Karthikeyan and M. Rajasekar, Directable fuzzy automata, International Journal of Computer Applications 125 (8) (2015) 1–4.
- [13] V. Karthikeyan and M. Rajasekar, Generalized directable fuzzy automata, International Journal of Computer Applications 135 (10) (2015) 1–5.
- [14] R. Kumar and A. Kumar, Metamorphosis of fuzzy regular expressions to fuzzy automata using the follow automata (2014), preprint arXiv:1411.2865.
- [15] J. N. Mordeson and D. S. Malik, Fuzzy automata and languages-theory and applications, Chapman & Hall/ CRC Press 2002.
- [16] Z. Popovic., S. Bogdanovic., T. Petkovic and M. Ciric, Generalized Directable Automata, Words, Languages and Combinatories.III. Proceedings of the Third International Colloquium in Kyoto, Japan, (M.Ito and T. Imaka, eds.), World Scientific (2003) 378–395.
- [17] E. S. Santos, General Formulation Sequential Machines, Information and Control 12 (1968) 5–10.
- [18] W. G. Wee, On Generalizations of Adaptive Algorithm and Application Of The Fuzzy Sets Concept to Pattern Classification, Ph.D Thesis Purude University 1967.
- [19] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965) 338–353.
- [20] H. J. Zimmermann, Fuzzy Set Theory and its Applications, International Series in Management Science/ Operation Research, Kluwer- Nijhoff, Boston, MA 1985.

### V. KARTHIKEYAN (vkarthikau@gmail.com)

Department of Mathematics, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, India - 608002

M. RAJASEKAR (mdivraj19620gmail.com)

Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, India - 608002