Annals of Fuzzy Mathematics and Informatics Volume 12, No. 6, (December 2016), pp. 757–766

ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version)

http://www.afmi.or.kr

Max-max operation on intuitionistic fuzzy matrix

RIYAZ AHMAD PADDER, P. MURUGADAS

Received 17 March 2016; Revised 6 April 2016; Accepted 17 May 2016

ABSTRACT. In this paper convergences of powers of a transitive intuitionistic fuzzy matrix is considered and some conditions for convergence are explored using the max-min operation on intuitionistic fuzzy matrices. In addition to that max-max operation on intuitionistic fuzzy matrices will be introduced to study the conditions for convergence of intuitionistic fuzzy matrices.

2010 AMS Classification: 03E72, 15B15

Keywords: Intuitionistic fuzzy sets, Intuitionistic fuzzy matrix, Intuitionistic fuzzy transitive, Intuitionistic fuzzy implication operator.

Corresponding Author: P. Murugadas (bodi_muruga@yahoo.com)

1. Introduction

The degree of membership was the only basic component of fuzzy sets introduced by Zadeh [40]. Atanassov [3, 4, 5, 6, 7, 8] generalized the concept of fuzzy sets into Intuitionistic Fuzzy Sets (IFS) by giving a degree of membership and non-membership. He showed, the sum of the degree of membership and non-membership should not exceed one. Duan [13] also showed that the powers of an Intuitionistic Fuzzy Matrices (IFMs) have a vital role for studying the transitive closure of the intuitionistic fuzzy relation. Yager [39] defined an Intuitionistic Fuzzy Matrix (IFM) A, as $A = [\langle a_{ij_{\mu}}, a_{ij_{\nu}} \rangle]$. Where $(a_{ij_{\mu}})$ and $(a_{ij_{\nu}})$ denote the membership and non-membership value respectively.

In 1977, Thomoson [38] studied the behavior of powers of fuzzy matrices using max-min operation. Buckley [12], Ran and Liu [34] and Gregory et al. [14] after applying max-min operation on fuzzy matrix found only two results, either the fuzzy matrix convergences to idempotent matrices or oscillates to finite period. More over, Thomoson [38] provided sufficient conditions for convergence of fuzzy matrix. Since then using this max-min operation many results have been obtained by many researchers in fuzzy matrix. Hashimoto [15] studied the convergence of power of a fuzzy transitive matrix. Further, the max-min operation has been extended to IFM by Pal

et al. [19]. Bhowmik and pal [9] studied the convergence of the max-min powers of an IFM. Pradhan and pal [31] studied mean powers of convergence of IFMs. Lur et al. [21] studied the powers of convergence of IFMs. Pal [30] studied about intuitionistic fuzzy determinant. The several author's [20, 37, 10, 11, 1, 32, 2, 23, 24, 33] worked on intuitionistic fuzzy matrices and obtained various interesting results. Meenakshi and Gandhimathi [22] studied the intuitionistic fuzzy linear relation equations, Murugadas and Lalitha [25] applied Bi-implication operator to obtain the Sub-inverse and g-inverse of an IFM. Murugadas [26] and Sriram and Murugadas [35] examined IFM theory for obtaining the g- inverse. Pal et al. [19] studied the intuitionistic fuzzy linear transformation. Sriram and Murugadas [36] introduced the implication operator \rightarrow to IFM and studied several properties like sub-inverse, semi-inverse as well as necessary and sufficient condition for the existence of g-inverse using the implication operator. Hashimoto [16, 17, 18] applied implication operators in the fuzzy matrix and studied some interesting properties like traces of fuzzy relation, sub-inverse and reduction of retrieval models. Murugadas and Lalitha [27, 28, 29] used hook implication operator \leftarrow for IFS as well as IFM.

In this paper we introduce max-max operation directly to IFMs which is more relevant than max-min operation. For example, consider two IFMs A and B such that,

$$A = \begin{pmatrix} \langle 0.2, 0.7 \rangle & \langle 0.4, 0.5 \rangle \\ \langle 0.4, 0.5 \rangle & \langle 0.1, 0.8 \rangle \end{pmatrix} \quad \text{and } B = \begin{pmatrix} \langle 0.1, 0.8 \rangle & \langle 0.4, 0.5 \rangle \\ \langle 0.3, 0.6 \rangle & \langle 0.5, 0.4 \rangle \end{pmatrix}.$$

Then

$$\text{max-min } AB = \begin{pmatrix} \langle 0.3, 0.6 \rangle & \langle 0.4, 0.5 \rangle \\ \langle 0.1, 0.8 \rangle & \langle 0.4, 0.5 \rangle \end{pmatrix}$$

and

$$\text{max-max } AB = \begin{pmatrix} \langle 0.4, 0.5 \rangle & \langle 0.5, 0.4 \rangle \\ \langle 0.4, 0.5 \rangle & \langle 0.5, 0.4 \rangle \end{pmatrix}.$$

Thus max-max $AB \ge \max$ -min AB. In any retrieval model, if we get maximum membership values, that gives more accurate result. As max-max operation gives maximum membership values than max-min operation, the max-max operation is more relevant than max-min operation.

2. Preliminaries

Atanassov introduced operations

$$\langle x, x' \rangle \lor \langle y, y' \rangle = \langle max\{x, y\}, min\{x', y'\} \rangle$$

and

$$\langle x, x' \rangle \land \langle y, y' \rangle = \langle \min\{x, y\}, \max\{x', y'\} \rangle.$$

For any two comparable elements $\langle x, x' \rangle$, $\langle y, y' \rangle \in IFS$, the operation $\langle x, x' \rangle \leftarrow \langle y, y' \rangle$ is defined as

$$\langle x, x' \rangle \leftarrow \langle y, y' \rangle = \begin{cases} \langle x, x' \rangle & \text{if } \langle x, x' \rangle > \langle y, y' \rangle, \\ \langle 0, 1 \rangle & \text{if } \langle x, x' \rangle \leq \langle y, y' \rangle. \end{cases}$$

For $n \times n$ intuitionistic fuzzy matrices $R = [\langle r_{ij}, r'_{ij} \rangle]$ and $P = [\langle p_{ij}, p'_{ij} \rangle]$ with their elements having values in the unit interval [0, 1], the following notations are

well known:

$$R \wedge P = (\langle r_{ij} \wedge p_{ij}, r'_{ij} \vee p'_{ij} \rangle),$$

$$R \vee P = (\langle r_{ij} \vee p_{ij}, r'_{ij} \wedge p'_{ij} \rangle).$$

 $R \wedge P = (\langle r_{ij} \wedge p_{ij}, r'_{ij} \vee p'_{ij} \rangle),$ $R \vee P = (\langle r_{ij} \vee p_{ij}, r'_{ij} \wedge p'_{ij} \rangle).$ Here $R \vee P$, $R \wedge P$ are equivalent to R + P, $R \odot P$ the component wise addition and component wise multiplication of R, P respectively.

$$R \times P = [(r_{i1}, r'_{i1} \wedge p_{1j}, p'_{1j}) \vee (r_{i2}, r'_{i2} \wedge p_{2j}, p'_{2j}) \vee \ldots \vee (r_{in}, r'_{in} \wedge p_{nj}, p'_{nj})],$$

$$R \stackrel{c}{\leftarrow} P = [\langle r_{ij}, r'_{ij} \rangle \stackrel{c}{\leftarrow} \langle p_{ij}, p'_{ij} \rangle],$$

here $\stackrel{c}{\leftarrow}$ represents component wise comparison of R, P using \frown .

 $R^0 = I = [\delta_{ij}, \delta'_{ij}] \ (\langle \delta_{ij}, \delta'_{ij} \rangle \text{ where } \langle \delta_{ij}, \delta'_{ij} \rangle = \langle 1, 0 \rangle \text{ if } i = j \text{ and } \langle \delta_{ij}, \delta'_{ij} \rangle = \langle 0, 1 \rangle$ if $i \neq j$.), $R^{k+1} = R^k \times R$, k = 0, 1, 2, ...

$$R^{k+1} = R^k \times R, k = 0, 1, 2, \dots$$

 $R \leq P \ (P \geq R)$ if and only if $\langle r_{ij}, r'_{ij} \rangle \leq \langle p_{ij}, p'_{ij} \rangle$ for all i, j. If $R \geq I_n$, then R is reflexive IFM where I_n the $n \times n$ identity IFM. $R = (\langle r_{ij}, r'_{ij} \rangle)$ is weakly reflexive IFM if and only if $\langle r_{ii}, r'_{ii} \rangle \geq \langle r_{ij}, r'_{ij} \rangle$ for all i, j = 1, 2, ...n.

Throughout we deal with intuitionistic fuzzy matrices. A matrix R is transitive if $R^2 \leq R$. This matrix represents a intuitionistic fuzzy transitive relation. The above definition of transitivity is equivalent to what is called max-min transitivity. That is, matrix $R = [\langle r_{ij}, r'_{ij} \rangle]$ is transitive if and only if $min(\langle r_{ik}, r'_{ik} \rangle, \langle r_{kj}, r'_{kj} \rangle) \leq \langle r_{ij}, r'_{ij} \rangle$, for all k. This definition is most basic and seems to be convenient when intuitionistic fuzzy matrices are generalized to certain matrices over other algebras.

Thomoson [38] already considered convergences of powers of a fuzzy matrix. Hashimoto [15] examined convergence of powers of a transitive matrix i.e, a matrix R, such that $R \ge R^2$. If R is transitive, then we have $R \ge R^2 \ge R^3 \ge \dots$ In the sequence of powers of a matrix R, if $R^k = R^{k+1}$ for some positive integers k, then we say R is convergent.

3. Main results

Some interesting properties of transitive intuitionistic fuzzy matrices will be shown and some conditions for convergence under the max-min operation will be given. These results are useful when we consider various systems with intuitionistic fuzzy transitivity. Further, we define max-max operation on IFM and exhibit some interesting results. In the following, let $R = [\langle r_{ij}, r'_{ij} \rangle], P = [\langle p_{ij}, p'_{ij} \rangle],$ be IFM of order $n \times n$, and the entries in R and P are comparable.

Definition 3.1. For IFMs R and P define, the max-max product of R and P as

$$R \circ P = (\langle \bigvee_{k=1}^{n} (r_{ik} \vee p_{kj}), \bigwedge_{k=1}^{n} (r'_{ik} \wedge p'_{kj}) \rangle).$$

Let $R \circ P$ denote the max-max product of the IFMs R and P.

Clearly $R \circ P$ is also an IFM, \circ is associative and \circ is distributive over addition (+). Also the set of all IFM under + and \circ form a semi-ring.

Theorem 3.2. If R is an $n \times n$ transitive matrix, then

$$(R \stackrel{c}{\leftarrow} (R \times P))^n = (R \stackrel{c}{\leftarrow} (R \times P))^{n+1}$$
 for any $n \times n$ IFM P .

Proof. Let
$$S = (\langle s_{ij}, s'_{ij} \rangle) = R \stackrel{c}{\leftarrow} (R \times P)$$
, that is,

$$\langle s_{ij}, s'_{ij} \rangle = \langle r_{ij}, r'_{ij} \rangle \xleftarrow{c} \langle \bigvee_{k=1}^{n} (r_{ik} \wedge p_{kj}), \bigwedge_{k=1}^{n} (r'_{ik} \vee p'_{kj}) \rangle.$$

(1) Assume that there exist indices $l_1, l_2, \ldots, l_{n-1}$ such that

$$\langle s_{il_1}, s'_{il_1} \rangle \wedge \langle s_{l_1l_2}, s'_{l_1l_2} \rangle \wedge \ldots \wedge \langle s_{l_{n-1}j}, s'_{l_{n-1}j} \rangle = \langle g, g' \rangle > \langle 0, 1 \rangle.$$

Let $l_0 = i$ and $l_n = j$. Then $l_a = l_b$ for some a and b(a < b). We define $\langle h, h' \rangle$ by

$$\langle h, h' \rangle = \langle r_{l_{m-1}l_m}, r'_{l_{m-1}l_m} \rangle$$

$$= \langle r_{l_al_{a+1}}, r'_{l_al_{a+1}} \rangle \wedge \langle r_{l_{a+1}l_{a+2}}, r'_{l_{a+1}l_{a+2}} \rangle \wedge \dots \wedge \langle r_{l_{b-1}l_b}, r'_{l_{b-1}l_b} \rangle,$$

where $a < m \le b$.

Then
$$\langle h, h' \rangle = \langle r_{l_{m-1}l_m}, r'_{l_{m-1}l_m} \rangle > \langle \bigvee_{k=1}^n (r_{l_mk} \wedge p_{kl_m}), \bigwedge_{k=1}^n (r'_{l_mk} \vee p'_{kl_m}) \rangle.$$

If
$$\langle r_{l_m l_m}, r'_{l_m l_m} \rangle \leq \langle \bigvee_{k=1}^n (r_{l_m k} \wedge p_{k l_m}), \bigwedge_{k=1}^n (r'_{l_m k} \vee p'_{k l_m}) \rangle$$
, then

$$\langle h, h' \rangle \leq \langle r_{l_m l_m}, r'_{l_m l_m} \rangle \leq \langle r_{l_m k_1} \wedge p_{k_1 l_m}, r'_{l_m k_1} \vee p'_{k_1 l_m} \rangle$$

$$= \langle r_{l_a l_{a+1}}, r'_{l_a l_{a+1}} \rangle \wedge \langle r_{l_{a+1} l_{a+2}}, r'_{l_{a+1} l_{a+2}} \rangle \wedge \dots \wedge \langle r_{l_{b-1} l_b}, r'_{l_{b-1} l_b} \rangle,$$

for some k_1 . Since $\langle r_{l_{m-1}l_m}, r'_{l_{m-1}l_m} \rangle = \langle h, h' \rangle$, we have

$$\langle r_{l_{m-1}k_1}, r'_{l_{m-1}k_1} \rangle \geq \langle r_{l_{m-1}l_m}, r'_{l_{m-1}l_m} \rangle \wedge \langle r_{l_mk_1}, r'_{l_mk_1} \rangle = \langle h, h' \rangle.$$

Thus,

$$\langle \bigvee_{k=1}^{n} (r_{l_{m-1}k} \wedge p_{kl_m}), \bigwedge_{k=1}^{n} (r'_{l_{m-1}k} \vee p'_{kl_m}) \rangle \geq \langle r_{l_{m-1}k_1}, r'_{l_{m-1}k_1} \rangle \wedge \langle p_{k_1l_m}, p'_{k_1l_m} \rangle$$
$$\geq \langle h, h' \rangle,$$

which is contradiction. So,

$$\langle r_{l_m l_m}, r'_{l_m l_m} \rangle > \langle \bigvee_{k=1}^n (r_{l_m k} \wedge p_{k l_m}), \bigwedge_{k=1}^n (r'_{l_m k} \vee p'_{k l_m}) \rangle.$$

Hence $\langle s_{l_m l_m}, s'_{l_m l_m} \rangle \geq \langle h, h' \rangle \geq \langle g, g' \rangle$. Therefore $\langle s_{ij}^{(n+1)}, s'_{ij}^{(n+1)} \rangle \geq \langle g, g' \rangle$. (2) Assume that there exist indices l_1, l_2, \ldots, l_n such that

$$\langle s_{il_1}, s'_{il_1} \rangle \wedge \langle s_{l_1l_2}, s'_{l_1l_2} \rangle \wedge \ldots \wedge \langle s_{l_nj}, s'_{l_{nj}} \rangle = \langle g, g' \rangle > \langle 0, 1 \rangle.$$

Let $l_0 = i$ and $l_{n+1} = j$.

(a) Assume $l_a = l_b = l_c$, where a < b < c. Then we have

$$\langle s_{l_m l_m}, s'_{l_m l_m} \rangle \geq \langle g, g' \rangle, \ a < m \leq b \text{ for some } l_m.$$

Thus,

$$\langle s_{il_m}^{(m)}, s_{il_m}^{\prime (m)} \rangle \wedge \langle s_{l_m l_m}^{(c-b-c)}, s_{l_m l_m}^{\prime (c-b-c)} \rangle \wedge \langle s_{l_m l_b}^{(b-m)}, s_{l_m l_b}^{\prime (b-m)} \rangle \wedge \langle s_{l_c j}^{(n+1-c)}, s_{l_c j}^{\prime (n+1-c)} \rangle \langle g, g' \rangle.$$

- So $\langle s_{ij}^n, s_{ij}'^n \rangle \ge \langle g, g' \rangle$. (b) Assume $l_a = l_b$ and $l_c = l_d$.
 - (i) if a < b < c < d, then

$$\langle s_{l_m l_m}, s'_{l_m l_m} \rangle \geq \langle g, g' \rangle$$
, $a < m \leq b$, for some l_m .

Thus,

$$\langle s_{il_m}^m, s_{il_m}'^m \rangle \wedge \langle s_{l_m l_m}^{(d-c-1)}, s_{l_m l_m}'^{(d-c-1)} \rangle \wedge \langle s_{l_m l_c}^{(c-m)}, s_{l_m l_c}'^{(c-m)} \rangle \wedge \langle s_{l_d j}^{(n+1-d)}, s_{l_d j}'^{(n+1-d)} \rangle$$

$$\geq \langle g, g' \rangle \geq \langle g, g' \rangle.$$

So
$$\langle s_{ij}^n, s_{ij}^{\prime n} \rangle \geq \langle g, g^{\prime} \rangle$$

So $\langle s_{ij}^n, s_{ij}'^n \rangle \ge \langle g, g' \rangle$. (ii) If a < c < b < d, then

$$\langle s_{l_m l_m}, s'_{l_m l_m} \rangle \geq \langle h, h' \rangle \geq \langle g, g' \rangle, \ a < m \leq b, \text{ for some } l_m,$$

where

$$\langle h, h' \rangle = \langle r_{l_{m-1}l_m}, r'_{l_{m-1}l_m} \rangle = \langle r_{l_a l_{a+1}}, r'_{l_a l_{a+1}} \rangle \wedge \ldots \wedge \langle r_{l_{b-1}l_b}, r'_{l_{b-1}l_b} \rangle.$$

Since it is clear that $\langle s_{ij}^n, s_{ij}^{\prime n} \rangle \geq \langle g, g' \rangle$ for $m \leq c$, suppose that m > c. If

$$\langle r_{l_a l_m}, r'_{l_a l_m} \rangle \leq \langle \bigvee_{k=1}^n (r_{l_a k} \wedge p_{k l_m}), \bigwedge_{k=1}^n (r'_{l_a k} \vee p'_{k l_m}) \rangle,$$

then

$$\langle g, g' \rangle \le \langle h, h' \rangle \le \langle r_{l_a l_m}, r'_{l_a l_m} \rangle \le \langle r_{l_n k_1}, r'_{l_n k_1} \rangle \wedge \langle p_{k_1 l_m}, p'_{k_1 l_m} \rangle,$$

for some k_1 . Thus,

$$\langle r_{l_{m-1}k_1}, r'_{l_{m-1}k_1} \rangle \geq \langle r_{l_{m-1}l_m}, r'_{l_{m-1}l_m} \rangle \wedge \langle r_{l_ml_a}, r'_{l_ml_a} \rangle \langle r_{l_ak_1}, r'_{l_ak_1} \rangle = \langle h, h' \rangle.$$

We have,

$$\langle \bigvee_{k=1}^{n} (r_{l_{m-1}k} \wedge p_{kl_m}), \bigwedge_{k=1}^{n} (r'_{l_{m-1}k} \vee p'_{kl_m}) \rangle \geq \langle r_{l_{m-1}k_1}, r'_{l_{m-1}k_1} \rangle \wedge \langle p_{k_1l_m}, p'_{k_1l_m} \rangle$$
$$\geq \langle h, h' \rangle,$$

which contradicts the fact that $\langle h, h' \rangle = \langle s_{l_{m-1}l_m}, s'_{l_{m-1}l_m} \rangle > 0$.

So $\langle s_{l_m l_m}, s'_{l_m l_m} \rangle \geq \langle g, g' \rangle$. Hence

$$\langle s_{il_a}^{(a)}, s_{il_a}^{\prime(a)} \rangle \wedge \langle s_{l_a l_m}, s_{l_a l_m}^{\prime} \rangle \wedge \langle s_{l_m l_m}^{(m-a-2)}, s_{l_m l_m}^{\prime(m-a-2)} \rangle \wedge \langle s_{l_m j}^{(n+1-m)}, s_{l_m j}^{\prime(n+1-m)} \rangle$$

$$\geq \langle g, g^{\prime} \rangle.$$

(iii) If a < c < d < b, then

$$\langle s_{l_m l_m}, s'_{l_m l_m} \rangle \ge \langle g, g' \rangle$$
, $a < m \le b$, for some l_m .

It is clear that $\langle s_{ij}^{(n)}, s_{ij}^{\prime(n)} \rangle \geq \langle g, g' \rangle$ for $m \leq c$ or $d \leq m$. Suppose that $c \leq m \leq d$. By the same argument as in (ii), we have $\langle s_{l_a l_m}, s'_{l_a l_m} \rangle \geq \langle g, g' \rangle$. Then

$$\langle s_{il_a}^{(a)}, s_{il_a}^{\prime(a)} \rangle \wedge \langle s_{l_a l_m}, s_{l_a l_m}^{\prime} \rangle \wedge \langle s_{l_m l_m}^{(m-a-2)}, s_{l_m l_m}^{\prime(m-a-2)} \rangle \wedge \langle s_{l_m j}^{(n+1-m)}, s_{l_m j}^{\prime(n+1-m)} \rangle$$

$$\geq \langle g, g^{\prime} \rangle.$$

Example 3.3. Let
$$R = \begin{pmatrix} \langle 0.7, 0.2 \rangle & \langle 0.4, 0.3 \rangle & \langle 0.5, 0.4 \rangle \\ \langle 0, 0.6 \rangle & \langle 0.2, 0.5 \rangle & \langle 0.3, 0.2 \rangle \\ \langle 0, 0.6 \rangle & \langle 0, 0.5 \rangle & \langle 0, 0.6 \rangle \end{pmatrix} \text{ and } P = \begin{pmatrix} \langle 0.4, 0.3 \rangle & \langle 0.3, 0.4 \rangle & \langle 0.6, 0.3 \rangle \\ \langle 0.5, 0.2 \rangle & \langle 0.3, 0.6 \rangle & \langle 0, 0.6 \rangle \\ \langle 0, 0.3 \rangle & \langle 0.2, 0.5 \rangle & \langle 0.2, 0.5 \rangle \\ \langle 0, 0.3 \rangle & \langle 0.2, 0.5 \rangle & \langle 0.2, 0.7 \rangle \\ \langle 0, 0.5 \rangle & \langle 0.2, 0.5 \rangle & \langle 0.2, 0.7 \rangle \\ \langle 0, 0.5 \rangle & \langle 0, 0.5 \rangle & \langle 0.2, 0.5 \rangle \\ \langle 0, 0.6 \rangle & \langle 0.2, 0.5 \rangle & \langle 0.2, 0.5 \rangle \\ \langle 0, 0.6 \rangle & \langle 0.2, 0.5 \rangle & \langle 0.2, 0.5 \rangle \\ \langle 0, 0.6 \rangle & \langle 0, 0.5 \rangle & \langle 0, 0.6 \rangle \end{pmatrix} \leq R \text{ (R is transitive)},$$

$$S = R \xleftarrow{c} (R \times P) = \begin{pmatrix} \langle 0.7, 0.2 \rangle & \langle 0.4, 0.3 \rangle & \langle 0.3, 0.2 \rangle \\ \langle 0, 1 \rangle & \langle 0, 1 \rangle & \langle 0, 1 \rangle \\ \langle 0, 1 \rangle & \langle 0, 1 \rangle & \langle 0, 1 \rangle \end{pmatrix},$$

$$S^2 = S \times S = \begin{pmatrix} \langle 0.7, 0.2 \rangle & \langle 0.4, 0.3 \rangle & \langle 0.3, 0.2 \rangle \\ \langle 0, 1 \rangle & \langle 0, 1 \rangle & \langle 0, 1 \rangle \\ \langle 0, 1 \rangle & \langle 0, 1 \rangle & \langle 0, 1 \rangle \end{pmatrix}.$$

Then

$$S^{3} = S^{2} \times S = \begin{pmatrix} \langle 0.7, 0.2 \rangle & \langle 0.4, 0.3 \rangle & \langle 0.3, 0.2 \rangle \\ \langle 0, 1 \rangle & \langle 0, 1 \rangle & \langle 0, 1 \rangle \\ \langle 0, 1 \rangle & \langle 0, 1 \rangle & \langle 0, 1 \rangle \end{pmatrix} = S^{2}.$$

Thus we have $S^3 =$

From Theorem 3.2, we get the following two results.

Corollary 3.4. If R is an $n \times n$ transitive matrix, then

$$(R \stackrel{c}{\leftarrow} (P \times R))^n = (R \stackrel{c}{\leftarrow} (P \times R))^{n+1},$$

for any $n \times n$ matrix P.

Corollary 3.5. If R is an $n \times n$ transitive matrix, then $R^n = R^{n+1}$.

We now consider conditions under which an $n \times n$ transitive matrix R fulfills the relationship $R^{n-1} = R^n$, where $n \ge 2$.

Theorem 3.6. Let R be an $n \times n$ transitive matrix. If

$$R \wedge I \leq P \leq R$$
,

and the max-max product $R \circ R^T \leq (\langle r_{ij}, r'_{ij} \rangle)$ for some j, then $P^{n-1} = P^n$.

Proof. (1) First we know that $P^{n-1} \leq P^n$. Suppose that

$$\langle p_{ij}^{(n-1)}, p_{ij}^{\prime(n-1)} \rangle = \langle c, c' \rangle \ge \langle 0, 1 \rangle.$$

Then there exist indices $k_1, k_2, ..., k_{n-2}$ such that

$$\langle p_{ik_1}, p'_{ik_1} \rangle \wedge \langle p_{k_1k_2}, p'_{k_1k_2} \rangle \wedge \cdots \wedge \langle p_{k_{n-2}j}, p'_{k_{n-2}j} \rangle = \langle c, c' \rangle.$$

Thus

$$\langle r_{ik_1}, r'_{ik_1} \rangle \wedge \langle r_{k_1k_2}, r'_{k_1k_2} \rangle \wedge \cdots \wedge \langle r_{k_{n-2}j}, r'_{k_{n-2}j} \rangle \ge \langle c, c' \rangle.$$

$$762$$

Let $k_0 = i$ and $k_{n-1} = j$.

(a) If $k_a=k_b$ for some a and b(a< b), then $\langle p_{k_ak_a}^{(b-a)}, p_{k_ak_a}^{\prime(b-a)} \rangle \geq \langle c,c' \rangle$. Thus

$$\langle r_{k_ak_a}^{(b-a)}, r_{k_ak_a}^{\prime(b-a)} \rangle \ge \langle c, c' \rangle, \quad \langle r_{k_ak_a}, r_{k_ak_a}' \rangle \ge \langle c, c' \rangle, \quad \langle p_{k_ak_a}, p_{k_ak_a}' \rangle \ge \langle c, c' \rangle.$$

So

$$\langle p_{ik_1}, p'_{ik_1} \rangle \wedge \langle p_{k_1k_2}, p'_{k_1k_2} \rangle \wedge \cdots \wedge \langle p_{k_{a-1}k_a}, p'_{k_{a-1}k_a} \rangle \wedge \langle p_{k_ak_a}, p'_{k_ak_a} \rangle$$

$$\wedge \langle p_{k_ak_{a+1}}, p'_{k_ak_{a+1}} \rangle \wedge \cdots \wedge \langle p_{k_{n-2}j}, p'_{k_{n-2}j} \rangle$$

$$\geq \langle c, c' \rangle.$$

Hence $\langle p_{ij}^{(n)}, p_{ij}'^{(n)} \rangle \ge \langle c, c' \rangle$. (b) Suppose that $k_a \ne k_b$ for all $a \ne b$. By hypothesis,

$$\langle \bigvee_{k=1}^{n} (r_{lk_m} \vee r_{k_m l}), \bigwedge_{k=1}^{n} (r'_{lk_m} \wedge r'_{k_m l}) \rangle \leq \langle r_{k_m k_m}, r'_{k_m k_m} \rangle$$
 for some m .

Then

$$\langle r_{k_m k_m}, r'_{k_m k_m} \rangle \ge \langle c, c' \rangle, \quad \langle p_{k_m k_m}, p'_{k_m k_m} \rangle \ge \langle c, c' \rangle.$$

Thus

$$\langle p_{ik_j}, p'_{ik_j} \rangle \wedge \langle p_{k_1k_2}, p'_{k_1k_2} \rangle \wedge \cdots \wedge \langle p_{k_{m-1}k_m}, p'_{k_{m-1}k_m} \rangle \wedge \langle p_{k_mk_m}, p'_{k_mk_a} \rangle \wedge \langle p_{k_mk_{m+1}}, p'_{k_mk_{m+1}} \rangle \wedge \cdots \wedge \langle p_{k_{n-2}j}, p'_{k_{n-2}j} \rangle \\ \geq \langle c, c' \rangle.$$

So $\langle p_{ij}^{(n)}, p_{ij}^{\prime(n)} \rangle \ge \langle c, c' \rangle$. (2) Next we show that $P^n \le P^{n-1}$.

Let $\langle p_{ij}^{(n)}, p_{ij}^{\prime(n)} \rangle = \langle c, c' \rangle \geq \langle 0, 1 \rangle$. Then there exists indices $k_1, k_2, ..., k_{n-1}$ such that

$$\langle p_{ik_1}, p'_{ik_1} \rangle \wedge \langle p_{k_1k_2}, p'_{k_1k_2} \rangle \wedge \cdots \wedge \langle p_{k_{n-1}j}, p'_{k_{n-1}j} \rangle = \langle c, c' \rangle.$$

Let $k_0 = i$ and $k_n = j$. Then $k_a = K_b$ for some a and b(a < b). Thus

$$\langle p_{k_a k_a}^{(b-a)}, p_{k_a k_a}^{\prime (b-a)} \rangle \ge \langle c, c' \rangle.$$

So

$$\langle r_{k_ak_a}^{(b-a)}, r_{k_ak_a}'^{(b-a)} \rangle \geq \langle c, c' \rangle, \quad \langle r_{k_ak_a}, r_{k_ak_a}' \rangle \geq \langle c, c' \rangle, \quad \langle p_{k_ak_a}, p_{k_ak_a}' \rangle \geq \langle c, c' \rangle.$$

Hence

$$\langle p_{ik_1}, p'_{ik_1} \rangle \wedge \langle p_{k_1k_2}, p'_{k_1k_2} \rangle \wedge \cdots \wedge \langle p_{k_{a-1}k_a}, p'_{k_{a-1}k_a} \rangle \wedge \langle p_{k_ak_a}^{(b-a-1)}, p'_{k_ak_a} \rangle \wedge \langle p_{k_bk_{b+1}}, p'_{k_bk_{b+1}} \rangle \wedge \cdots \wedge \langle p_{k_{n-1}j}, p'_{k_{n-1}j} \rangle \\ \geq \langle c, c' \rangle.$$

Therefore
$$\langle p_{ij}^{(n-1)}, p_{ij}'^{(n-1)} \rangle \ge \langle c, c' \rangle$$
.

Example 3.7. Let

$$R = \begin{pmatrix} \langle 0, 0.3 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.7, 0 \rangle \\ \langle 0, 0.5 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.5, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.3, 0.4 \rangle & \langle 0.5, 0.2 \rangle \end{pmatrix},$$

$$R^{2} = \begin{pmatrix} \langle 0, 0.3 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.5, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.5, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.4, 0.3 \rangle & \langle 0.5, 0.2 \rangle \end{pmatrix} \leq R(\text{ R is transitive}),$$

$$R^{3} = \begin{pmatrix} \langle 0, 0.3 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.5, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.5, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.4, 0.3 \rangle & \langle 0.5, 0.2 \rangle \end{pmatrix} = R^{2},$$

$$P = \begin{pmatrix} \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.3, 0.3 \rangle \\ \langle 0, 0.5 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.2, 0.3 \rangle & \langle 0.4, 0.2 \rangle \end{pmatrix},$$

$$P^{2} = \begin{pmatrix} \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \end{pmatrix}$$

$$P^{3} = \begin{pmatrix} \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \\ \langle 0, 0.4 \rangle & \langle 0.6, 0.1 \rangle & \langle 0.4, 0.2 \rangle \end{pmatrix} = P^{2}.$$

Theorem 3.8. If R is an $n \times n$ transitive matrix, $R \wedge I \leq P \leq R$ and $P \circ P^T \leq (\langle p_{jj}, p'_{jj} \rangle)$ for some j, then $P^{n-1} = P^n$.

As a special case of theorem 3.6 or theorem 3.8 we obtain the following corollary when R is a transitive IFM.

Corollary 3.9. If R is an $n \times n$ transitive intuitionistic fuzzy matrix and $R \circ R^T \le (\langle r_{jj}, r'_{jj} \rangle)$ for some j, then $R^{n-1} = R^n$.

4. Conclusions

In this paper max-max operation on intuitionistic fuzzy matrices has been introduced. The conditions for convergence of intuitionistic fuzzy matrices are examined under the max-max operation.

References

- A. K. Adak, M. Bhowmik and M. Pal, Application of generalized intuitionistic fuzzy matrix in multi-criteria decision making problem, Journal of Mathematical and Computational Science 1 (1) (2011) 19–31.
- [2] A. K. Adak, M. Bhowmik and M. Pal, Some properties of generalized intuitionistic fuzzy nilpotent matrices and its some properties, International Journal of Fuzzy Information and Engineering 4 (2012) 371–387.
- [3] K. Atanassov, Intuitionistic Fuzzy Sets, VII ITKR's Session june (1983).
- [4] K. Atanassov, Intuitionistic Fuzzy Sets, Theory and Applications, Physica Verlag 1999.
- [5] K. Atanassov, Intuitionistic Fuzzy Implications and Modus Ponens, Notes on Intuitionistic Fuzzy Sets 11 (2005) 1–5.
- [6] K. Atanassov, On Some Types of Fuzzy Negations, Notes on Intuitionistic Fuzzy Sets 11 (4) (2005) 170–172.
- [7] K Atanassov, A New Intuitionistic Fuzzy Implication from a Modal Type, Advance Studies in Contemporary Mathematics 12 (1) (2006) 117–122.

- [8] K. Atanassov and G Gargov, Elements of Intuitionistic Fuzzy Logic. Part I, Fuzzy Sets and Systems 95 (1998) 39–52.
- [9] M. Bhowmik and M. Pal, Some results on intuitionistic fuzzy matrices and intuitionistic circulant fuzzy matrices, International journal of mathematical science 7 (1-2) (2008) 177-192.
- [10] M. Bhowmik and M. Pal, Generalized intuitionistic fuzzy matrices, For East Journal of Mathematical Science 29 (3) (2008) 533–554.
- [11] M. Bhowmik and M. Pal, Intuitionistic neutrosophic sets, Journal of Information and Computing Sciences, 4 (2) (2009) 142–152.
- [12] J. J. Buckley, Note on convergence of powers of a fuzzy matrix, Fuzzy sets and systems 121 (2001) 363–364.
- [13] J. S. Duan, The transitive closure, convergence of powers and adjoint of generalized fuzzy matrices, Fuzzy sets and systems 145 (2004) 301–311.
- [14] D. A. Gregory, S.Kirkland and N.J Pullman, Power convergent Boolean matrices, Linear algebra and its applications 179 (1993) 105–117.
- [15] H. Hashimoto, Convergence of powers of a fuzzy transitive matrix, Fuzzy sets and systems, 9 (1983) 153-160.
- [16] H. Hashimoto, Traces of Fuzzy Relations Under DualOperations, Journal of Advanced Computational Intelligence and Intelligent Informatics 9 (5) (2005) 563–569.
- [17] H. Hashimoto, Sub-inverses of Fuzzy Matrices, Fuzzy Sets and Systems 12 (1984) 155-168.
- [18] H. Hashimoto, Reduction of Retrieval Models, Inform. sci. 27 (1982) 133-140.
- [19] S. K. Khan, M. Pal and A. K. Shyamal, Intuitionistic Fuzzy Matrices, Notes on Intuitionistic Fuzzy Sets 8 (2) (2002) 51–62.
- [20] H. Y. Lee and N. G. Jeong. Canonical Form of a Transitive Intuitionistic Fuzzy Matrices, Honam Math. J. 27 (4) (2005) 543–550.
- [21] Y. Y. Lur, Y. K.Wu and S. M. Guu, Convergence of maxarithmetic mean power of a fuzzy matrix, Fuzzy sets and system 158 (2007) 2516–2522.
- [22] A. R. Meenakshi and T. Gandhimathi, Intuitionistic Fuzzy Relational Equations, Advances in Fuzzy Mathematics 5 (3) (2010) 239–244.
- [23] S. Mondal and M. Pal, Similarity relations, invertibility and eigenvalues of intuitionistic fuzzy matrix, International Journal of Fuzzy Information and Engineering 4 (2013) 431–443
- [24] S. Mondal and M. Pal, Intuitionistic fuzzy incline matrix and determinant, Ann. Fuzzy Math. Inform. 8 (1) (2014) 19–32.
- [25] P. Murugadas and K. Lalitha, Sub-inverse and g-inverse of an Intuitionistic Fuzzy Matrix Using Bi-implication Operator, Int. Journal of Computer Application 89 (1) (2014) 1–5.
- [26] P. Murugadas, Contribution to a study on Generalized Fuzzy Matrices, Ph.D Thesis Department of Mathematics, Annamalai University 2011.
- [27] P. Murugadas and K. Laitha, Bi-implication Operator on Intuitionistic Fuzzy Set, Journal of advances in Mathematics 6 (2) (2014) 961–969.
- [28] P. Murugadas and K. Lalitha, Dual implication Operator in Intuitionistic Fuzzy Matrices, Int. Conference on Mathematical Modelling and its Applications-Dec 22-24 (2012), Organized by Department of Mathematics, Annamalai University.
- [29] P. Murugadas and K. Lalitha, Implication Operator on Intuitionistic Fuzzy Tautological Matrix, Int. Journal of Fuzzy Mathematical Archive 5 (2) (2014) 79–87.
- [30] M. Pal, Intuitionistic fuzzy determinant, V.U.J. Physical Sciences, 7 (2001) 65-73.
- [31] R. Pradhan and M. Pal, Convergence of maxarithmetic mean-minarithmetic mean powers of intuitionistic fuzzy matrices, Intern. J. Fuzzy Mathematical Archive 2 (2013) 58–69.
- [32] R. Pradhan and M. Pal, Intuitionistic fuzzy linear transformations, Annals of pure and applied Mathematics 1 (1) (2012) 57–68.
- [33] R. Pradhan and M. Pal, The generalized inverse of Atanassov's intuitionistic fuzzy matrices, International Journal of Computational Intelligence Systems 7 (6) (2014) 1083–1095.
- [34] Z. T Ran and D. F. Liu, On the oscillating power sequence of a fuzzy matrix, Fuzzy sets and systems 93 (1998) 75–85.
- [35] S. Sriram and P. Murugadas, On Semi-ring of Intuitionistic Fuzzy Matrices, Applied Mathematical Science 4 (23) (2010) 1099–1105.

- [36] S. Sriram and P. Murugadas, Sub-inverses of Intuitionistic Fuzzy Matrices, Acta Ciencia Indica Mathematics Vol.XXXVII (1) (2011) 41–56.
- [37] A. K. Shyamal and M. Pal, Distance between intuitionistic fuzzy matrices, V.U.J. Physical Sciences 8 (2002) 81–91
- [38] M. G Thomason, Convergence of powers of a fuzzy matrix, J. Math. Anal. Appl. 57 (1977) 476–480.
- [39] Z. Xu and R. R. Yager, Some geometric operators based on Intuitionistic Fuzzy Sets, Int. Journal of General Systems 35 (2006) 417–433.
- [40] L. A. Zadeh , Fuzzy Sets, Journal of Information and Control. 8 (3) (1965) 338–353.

RIYAZ AHMAD PADDER 1 (padderriyaz01@gmail.com)

Ph. D Scholar, Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608002, India

P. MURUGADAS 2 (bodi_muruga@yahoo.com)

Assistant Professor, Department of Mathematics, Annamalai University, Annamalainagar, Tamil Nadu-608002, India