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1. Introduction

Kubiak [14] and Šostak [19] introduced the fundamental concept of a fuzzy
topological structure, as an extension of both crisp topology and fuzzy topology [4],
in the sense that not only the objects are fuzzified, but also the axiomatics. In
[20, 21], Šostak gave some rules and showed how such an extension can be realized.
Chattopadhyay et al., [6] have redefined the same concept under the name gradation
of openness. A general approach to the study of topological type structures on fuzzy
power sets was developed in [7, 8, 9, 14, 15]. Balasubramanian and Sundaram [2]
gave the concept of generalized fuzzy closed sets in Chang’s fuzzy topology as an
extension of generalized closed sets of Levine [16] in topological spaces.

Jin Han Park and Jin Keun Park [17] introduced weaker form of generalized fuzzy
closed set and generalized fuzzy continuous mappings i.e, regular generalized fuzzy
closed set and generalizations of fuzzy continuous functions. Baby Bhattacharya
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and Jayasree Chakraborty [3] introduced another generalizatioin of fuzzy closed set
i.e, generalized regular fuzzy closed set which is the stronger form of the previous
two generalizations.

In this paper, we define r-fuzzy regular closure (interior) operators and r-generalized
regular fuzzy closed sets in fuzzy topological spaces (fts’s) of Šostak [19]. In section
2 r-fuzzy regular closure and r-fuzzy regular interior operators are introduced in
Šostak’s fts. Section 3 is devoted to r-generalized regular fuzzy closed (open) sets
and their properties. In section 4, we introduce generalized regular fuzzy continuous
functions and generalized regular fuzzy irresolute functions and investigate inter-
relation between them. In section 5 we introduce generalized regular fuzzy contra
continuity in Šostak’s fts’s. Lastly, some separation axioms of r-generalized regular
fuzzy closed sets are introduced and studied in section 6.

2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0, 1] and I0 = (0, 1]. For
α ∈ I, α(x) = α for all x ∈ X. For x ∈ X and t ∈ I0, a fuzzy point xt is defined by

xt(y) =

{
t if y = x

0 if y 6= x.

Let Pt(X) be the family of all fuzzy points in X. A fuzzy point xt ∈ α iff t < α(x).
A fuzzy set α is quasi-coincident with β denoted by αqβ, if there exists x ∈ X such
that α(x) +β(x) > 1. If α is not quasi-coincident with β, we denote αqβ. If A ⊂ X,
we define the characteristic function χA on X by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A.

All other notations and definitions are standard, for all in the fuzzy set theory.

Lemma 2.1 ([10]). Let X be a nonempty set and α, β ∈ IX . Then

(1) αqβ iff there exists xt ∈ α such that xtqβ,
(2) If αqβ, then α ∧ β 6= 0,
(3) αqβ iff α ≤ 1− β,
(4) α ≤ β iff xt ∈ α implies xt ∈ β iff xtqα implies xtqβ implies xtqα,
(5) xtq

∨
i∈Γ βi iff there exists i0 ∈ Γ such that xtqβi0 .

Definition 2.2 ([19]). A function τ : IX → I is called a fuzzy topology on X if it
satisfies the following conditions:

(O1) τ(0) = τ(1) = 1,
(O2) τ(

∨
i∈Γ βi) ≥

∧
i∈Γ τ(βi), for any {βi}i∈Γ ⊂ IX ,

(O3) τ(β1 ∧ β2) ≥ τ(β1) ∧ τ(β2), for any β1, β2 ∈ IX .

The pair (X, τ) is called a fuzzy topological space (for short, fts).
A fuzzy set α is called an r-fuzzy open (r-fo, for short) set, if τ(α) ≥ r. A fuzzy

set α is called an r-fuzzy closed (r-fc, for short) set, if τ(1− α) ≥ r.

Theorem 2.3 ([5]). Let (X, τ) be a fts. Then for each α ∈ IX and r ∈ I0, we define
an operator Cτ : IX×I0 → IX as follows: Cτ (α, r) =

∧
{β ∈ IX : α ≤ β, τ(1−β) ≥

r}. For α, β ∈ IX and r, s ∈ I0, the operator Cτ satisfies the following statements:
720
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(C1) Cτ (0, r) = 0,
(C2) α ≤ Cτ (α, r),
(C3) Cτ (α, r) ∨ Cτ (β, r) = Cτ (α ∨ β, r),
(C4) Cτ (α, r) ≤ Cτ (α, s) if r ≤ s,
(C5) Cτ (Cτ (α, r), r) = Cτ (α, r).

Theorem 2.4 ([5]). Let (X, τ) be a fts. Then for each α ∈ IX and r ∈ I0, we define
an operator Iτ : IX×I0 → IX as follows: Iτ (α, r) =

∨
{β ∈ IX : β ≤ α, τ(β) ≥ r}.

For α, β ∈ IX and r, s ∈ I0, the operator Iτ satisfies the following statements:

(I1) Iτ (1, r) = 1,
(I2) Iτ (α, r) ≤ α,
(I3) Iτ (α, r) ∧ Iτ (β, r) = Iτ (α ∧ β, r),
(I4) Iτ (α, r) ≤ Iτ (α, s), if s ≤ r,
(I5) Iτ (Iτ (α, r), r) = Iτ (α, r),
(I6) Iτ (1− α, r) = 1− Cτ (α, r) and Cτ (1− α, r) = 1− Iτ (α, r).

Definition 2.5 ([18]). Let (X, τ) be a fts, α ∈ IX and r ∈ I0.
(i) A fuzzy set α is called r-fuzzy regular open (for short, r-fro), if α = Iτ (Cτ (α, r), r).
(ii) A fuzzy set α is called r-fuzzy regular closed (for short, r-frc), if α =

Cτ (Iτ (α, r), r).

Definition 2.6. Let (X, τ) be a fts, α, β ∈ IX and r ∈ I0.
(i) A fuzzy set α is called r-generalized fuzzy closed [12] (for short, r-gfc), if

Cτ (α, r) ≤ β, whenever α ≤ β and τ(β) ≥ r.
(ii) A fuzzy set α is called r-generalized fuzzy open [12] (for short, r-gfo), if 1−α

is r-gfc.
(iii) A fuzzy set α is called r-regular generalized fuzzy closed (for short, r-rgfc),

if Cτ (α, r) ≤ β, whenever α ≤ β and β is r-fro.
(iv) A fuzzy set α is called r-regular generalized fuzzy open (for short, r-rgfo), if

1− α is r-rgfc.

Definition 2.7 ([12]). Let (X, τ) and (Y, η) be a fts’s. Let f : (X, τ) → (Y, η)
be a function.

(i) f is called fuzzy continuous (F-continuous), if η(β) ≤ τ(f−1(β)), for each
β ∈ IY .

(ii) f is called fuzzy open (F-open), if τ(α) ≤ η(f(α)), for each α ∈ IX .
(iii) f is called fuzzy closed (F-closed), if τ(1−α) ≤ η(1−f(α)), for each α ∈ IX .

Definition 2.8 ([12]). Let (X, τ) and (Y, η) be a fts’s. Let f : (X, τ) → (Y, η)
be a function.

(i) f is called generalized fuzzy continuous (for short, gf-continuous), if f−1(β) is
r-gfc, for each β ∈ IY , r ∈ I0 with η(1− β) ≥ r.

(ii) f is called generalized fuzzy open (for short, gf-open), if f(α) is r-gfo, for each
α ∈ IX , r ∈ I0 with τ(α) ≥ r.

(iii) f is called generalized fuzzy closed (for short, gf-closed), if f(α) is r-gfc for
each α ∈ IX , r ∈ I0 with τ(1− α) ≥ r.

(iv) f is called generalized fuzzy irresolute (for short, gf-irresolute), if f−1(β) is
r-gfc for each r-gfc set β ∈ IY .
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Definition 2.9 ([1]). Let (X, τ) and (Y, η) be a fts’s. Let f : (X, τ)→ (Y, η) be
a function.

(i) f is called fuzzy contra continuous (FC-continuous), if for each β ∈ IY , we
have τ(1− f−1(β)) ≥ η(β).

(ii) f is called fuzzy contra open (FC-open), if for each α ∈ IX , we have η(1 −
f(α)) ≥ τ(α).

(iii) f is called fuzzy contra closed (FC-closed), if for each α ∈ IX , we have
η(f(α)) ≥ τ(1− α).

Definition 2.10 ([1]). Let f : (X, τ) → (Y, η) be a function and r ∈ I0. Then f
is called:

(i) generalized fuzzy contra continuous(GFC-continuous)(resp. generalized fuzzy
contra irresolute (GFC-irresolute)), if f−1(β) is r-gfc, for each β ∈ IY , η(β) ≥ r
(resp. β ∈ IY is r-gfo),

(ii) generalized fuzzy contra open (GFC-open) (resp. generalized fuzzy contra
irresolute open (GFC-irresolute open)), if f(α) is r-gfc, for each α ∈ IX , τ(α) ≥ r
(resp. α ∈ IX is r-gfo),

(iii) generalized fuzzy contra closed (GFC-closed) (resp. generalized fuzzy contra
irresolute closed (GFC-irresolute closed)), if f(α) is r-gfo, for each α ∈ IX , τ(1 −
α) ≥ r (resp. α ∈ IX is r-gfc).

Definition 2.11 ([11]). A fts (X, τ) is said to be:
(i) r-FR0, if xtqCτ (ys, r) implies ysqCτ (xt, r), for any distinct fuzzy points xt, ys ∈

Pt(X),
(ii) r-FR1, if xtqCτ (ys, r) implies that there exist βi ∈ IX with τ(βi) ≥ r, for

i ∈ {1, 2} such that xt ∈ β1, ys ∈ β2 and β1qβ2, for any distinct fuzzy points
xt, ys ∈ Pt(X),

(iii) r-FR2, if (or r-fuzzy regular) xtqα with τ(1−α) ≥ r implies that there exist
βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2} such that xt ∈ β1, α ≤ β2 and β1qβ2,

(iv) r-FR3, iff(or r-fuzzy normal) α1qα2 with τ(1−αi) ≥ r, for i ∈ {1, 2} implies
that there exist βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2} such that αi ∈ βi and β1qβ2.

Definition 2.12 ([11]). A fts (X, τ) is said to be:
(i) r-FT1, if τ(1− xt) ≥ r, for each xt ∈ Pt(X),
(ii) r-FT2, if xtqys implies that there exist βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2}

such that xt ∈ β1, ys ∈ β2 and β1qβ2,
(iii) r-FT2 1

2
if xtqys implies that there exist βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2}

such that xt ∈ β1, ys ∈ β2 and Cτ (β1, r)qCτ (β2, r),
(iv) r-FT3, if it is r-FR2 and r-FT1,
(v) r-FT4, if it is r-FR3 and r-FT1.

Definition 2.13 ([13]). A fts (X, τ) is said to be:
(i) r-GFR2, if xtqα for each r-gfc α ∈ IX implies that there exist βi ∈ IX with

τ(βi) ≥ r for i ∈ {1, 2} such that xt ∈ β1, α ≤ β2 and β1qβ2,
(ii) r-GFR3, if α1qα2 for each r-gfc sets αi ∈ IX and i ∈ {1, 2} implies that there

exist βi ∈ IX with τ(βi) ≥ r such that αi ≤ βi and β1qβ2.
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3. Fuzzy regular closure operators

Definition 3.1. Let (X, τ) be a fts. Let α, β ∈ IX and r ∈ I0.
(i) The r-fuzzy regular closure of α, denoted by RCτ (α, r), and is defined by

RCτ (α, r) =
∧
{β ∈ IX |β ≥ α, β is r-frc }.

(ii) The r-fuzzy regular interiror of α, denoted by RIτ (α, r), and is defined by
RIτ (α, r) =

∨
{β ∈ IX |β ≤ α, β is r-fro }.

Proposition 3.2. A function RC : IX × I0 → IX is called a fuzzy regular closure
operator if it satisfies the following conditions: for α, β ∈ IX and r, s ∈ I0,

(C1) RC(0, r) = 0,
(C2) α ≤ RC(α, r),
(C3) RC(α, r) ∨RC(β, r) = RC(α ∨ β, r),
(C4) RC(α, r) ≤ RC(α, s) if r ≤ s,
(C5) RC(RC(α, r), r) = RC(α, r).

The fuzzy regular closure operator RC generates a fuzzy topology τRC(α) : IX → I
given by

(C6) τRC(α) =
∨
{r ∈ I| RC(1− α, r) = 1− α}.

Proof. The proof of (C1)-(C5) is straightforward and the proof of (C6) follows from
the Proposition 1.3 in [5]. �

In a similar pattern, a fuzzy regular interior operator was defined.

Proposition 3.3. A mapping RI : IX × I0 → IX is called a fuzzy regular interior
operator if, for α, β ∈ IX and r, s ∈ I0, it satisfies the following conditions:

(I1) RI(1, r) = 1,
(I2) α ≥ RI(α, r),
(I3) RI(α, r) ∧RI(β, r) = RI(α ∧ β, r),
(I4) RI(α, r) ≥ RI(α, s) if r ≤ s,
(I5) RI(RI(α, r), r) = RI(α, r),
(I6) RI(1− α, r) = 1−RC(α, r) and RC(1− α, r) = 1−RI(α, r).

The fuzzy regular interior operator RI generates a fuzzy topology τRI(α) : IX → I
given by

(I7) τRI(α) =
∨
{r ∈ I| RI(α, r) = α}.

Proof. Follows from the Proposition 3.2. �

Definition 3.4. Let f : (X, τ)→ (Y, σ) be a function and r ∈ I0. Then f is called
fuzzy regular continuous (for short, FR-continuous) if f−1(α) is r-frc set in X for
each α ∈ IY with σ(1− α) ≥ r.

4. R-generalized regular fuzzy closed sets

Definition 4.1. Let (X, τ) be a fts. Let α, β ∈ IX and r ∈ I0.
(i) A fuzzy set α is called r-generalized regular fuzzy closed (for short, r-grfc) set,

if RCτ (α, r) ≤ β, whenever α ≤ β and τ(β) ≥ r.
(ii) A fuzzy set α is called r-generalized regular fuzzy open (for short, r-grfo) set,

if 1− α is r-grfc.
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Theorem 4.2. Let (X, τ) be a fts.

(1) If α1 and α2 are r-grfc sets, then α1 ∨ α2 is a r-grfc set.
(2) If α is r-grfc set and α ≤ β ≤ RCτ (α, r), then β is a r-grfc set.
(3) If α is r-frc set, then α is a r-grfc set.

Proof. (1) Let α1 and α2 be r-grfc sets, and α1 ∨ α2 ≤ β such that τ(β) ≥ r.
For i ∈ {1, 2}, αi ≤ β such that τ(β) ≥ r, we have RCτ (αi, r) ≤ β. It implies
RCτ (α1 ∨ α2, r) = RCτ (α1, r) ∨RCτ (α2, r) ≤ β. Hence α1 ∨ α2 is a r-grfc.

(2) For β ≤ γ such that τ(γ) ≥ r, since α is r-grfc set and α ≤ β, α ≤ γ implies
RCτ (α, r) ≤ γ. Also, β ≤ RCτ (α, r) implies RCτ (β, r) ≤ RCτ (RCτ (α, r), r) =
RCτ (α, r) ≤ γ. Hence β is r-grfc.

(3) It is easily proved from RCτ (α, r) = α. �

Remark 4.3. The intersection of any two r-grfc set need not be r-grfc from the
following example.

Example 4.4. Let X = {a, b, c} be a set and α, β, γ ∈ IX are defined as
follows: α(a) = 0.8, α(b) = 0.4, α(c) = 0.7; β(a) = 0.6, β(b) = 0.5, β(c) = 0.8;
γ(a) = 0.6, γ(b) = 0.4, γ(c) = 0.7. We define a fuzzy topology τ : IX → I as
follows.

τ(α) =


1 if α = 0 or 1,
1
2 if α = γ,

0 otherwise.

For r = 1/3, α and β are r-grfc set. But α ∧ β = γ is not r-grfc because γ ≤ γ,
τ(γ) ≥ r, RCτ (γ, r)(= 1) � γ. Clearly β is r-grfc set but not r-frc set, so the
converse of Theorem 4.2(3) is not true.

Remark 4.5. Every r-grfc set is r-gfc (resp.r-rgfc) set. But not conversely.

Example 4.6. Let X = {a, b, c} be a set and γ ∈ IX be defined as γ(a) =
0.5, γ(b) = 0.7, γ(c) = 0.9. We define a fuzzy topology τ : IX → I as follows.

τ(α) =


1 if α = 0 or 1,
1
2 if α = γ,

0 otherwise.

For r = 1/3, 1− γ is r-gfc set, where 1− γ ≤ γ, τ(γ) ≥ r, Cτ (1− γ, r)(= 1− γ) ≤ γ.
But 1− γ is not r-grfc because 1− γ ≤ γ, τ(γ) ≥ r, RCτ (1− γ, r)(= 1) � γ.

Example 4.7. In Example 4.4, γ is r-rgfc set but not r-grfc set.

The following theorem is easily proved from Theorems 2.4 and 4.2.

Theorem 4.8. Let (X, τ) be a fts. Let α, β ∈ IX and r ∈ I0.
(1) α is r-grfo iff β ≤ RIτ (α, r), whenever β ≤ α and τ(1− β) ≥ r.
(2) The intersection of any two r-grfo sets is a r-grfo set.
(3) If RIτ (α, r) ≤ β ≤ α and α is r-grfo, then β is r-grfo.
(4) If α is r-fro set and r ∈ I0, then α is a r-grfo set.

Theorem 4.9. Let (X, τ) be a fts. For each r ∈ I0, α ∈ IX , we define an operator
GRCτ : IX × I0 → IX as follows:

724



A. Vadivel et al. /Ann. Fuzzy Math. Inform. 12 (2016), No. 5, 719–738

GRCτ (α, r) =
∧
{β ∈ IX | α ≤ β, β is r-grfc }.

For α, β ∈ IX and r ∈ I0, it holds the following properties.

(1) GRCτ (0, r) = 0.
(2) α ≤ GRCτ (α, r).
(3) GRCτ (α, r) ∨GRCτ (β, r) = GRCτ (α ∨ β, r).
(4) GRCτ (GRCτ (α, r), r) = GRCτ (α, r).
(5) If α is r-grfc, then GRCτ (α, r) = α.
(6) GRCτ (α, r) ≤ RCτ (α, r).
(7) RCτ (GRCτ (α, r), r) = GRCτ (RCτ (α, r), r) = RCτ (α, r).

Proof. (1), (2) and (5) are easily proved from the definition of GRCτ .
(3) Since α, β ≤ α ∨ β, we have

GRCτ (α, r) ∨GRCτ (β, r) = GRCτ (α ∨ β, r).

Suppose GRCτ (α, r) ∨ GRCτ (β, r) � GRCτ (α ∨ β, r). There exists x ∈ X and
t ∈ (0, 1) such that

GRCτ (α, r)(x) ∨GRCτ (β, r)(x) < t < GRCτ (α ∨ β, r)(x).(4.1)

Since GRCτ (α, r)(x) < t and GRCτ (β, r)(x) < t, there exist r-grfc sets α1, β1 with
α ≤ α1 and β ≤ β1 such that α1(x) < t, β1(x) < t. Since α∨β ≤ α1∨β1 and α1∨β1

is r-grfc, from Theorem 4.2(1), we have GRCτ (α∨ β, r)(x) ≤ (α1 ∨ β1)(x) < t. It is
a contrdiction for (4.1).

(4) From (2), we only show GRCτ (α, r) ≥ GRCτ (GRCτ (α, r), r). Suppose
GRCτ (α, r) � GRCτ (GRCτ (α, r), r). There exists x ∈ X and t ∈ (0, 1) such that

GRCτ (α, r)(x) < t < GRCτ (GRCτ (α, r), r)(x).(4.2)

Since GRCτ (α, r)(x) < t, there exist r-grfc set α1 with α ≤ α1 such that

GRCτ (α, r)(x) ≤ α1(x) < t.

Since α ≤ α1, we have GRCτ (α, r) ≤ α1. Again GRCτ (GRCτ (α, r), r) ≤ α1.
Then GRCτ (GRCτ (α, r), r)(x) ≤ α1(x) < t. It is contradiction for (4.2).
Thus GRCτ (α, r) ≥ GRCτ (GRCτ (α, r), r).

(6) Since RCτ (α, r) is r-grfc, it is easily proved.
(7) Trivially, GRCτ (RCτ (α, r), r) = RCτ (α, r). We only show that

RCτ (GRCτ (α, r), r) = RCτ (α, r).

Since α ≤ GRCτ (α, r), RCτ (GRCτ (α, r), r) ≥ RCτ (α, r). Suppose

RCτ (GRCτ (α, r), r) � RCτ (α, r).

Then there exists x ∈ X and t ∈ (0, 1) such that

RCτ (GRCτ (α, r), r)(x) > t > RCτ (α, r)(x).

Since RCτ (α, r)(x) < t, by the definition of RCτ , there exists γ ∈ IX with α ≤ γ
and τ(1− γ) ≥ r such that

RCτ (GRCτ (α, r), r)(x) > t > γ(x) ≥ RCτ (α, r)(x).
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On the other hand, since γ = RCτ (γ, r) is r-grfc, α ≤ γ implies

GRCτ (α, r) ≤ GRCτ (γ, r) = GRCτ (RCτ (γ, r), r) = RCτ (γ, r) = γ.

Thus RCτ (GRCτ (α, r), r) ≤ γ. It is a contradiction.
So RCτ (GRCτ (α, r), r) ≤ RCτ (α, r). �

Theorem 4.10. Let (X, τ) be a fts. For each r ∈ I0, α ∈ IX , we define an operator
GRIτ : IX × I0 → IX as follows:

GRIτ (α, r) =
∨
{β ∈ IX | β ≤ α, β is r-grfo }.

Then GRIτ (1− α, r) = 1−GRCτ (α, r).

Proof. For each α ∈ IX and r ∈ I0, we have

GRIτ (1− α, r) =
∨
{β ∈ IX | β ≤ 1− α, β is r-grfo }.

= 1−
∧
{1− β ∈ IX | 1− β ≥ α, 1− β is r-grfc }.

= 1−GRCτ (α, r). �

Example 4.11. In Example 4.4, For r = 1/3, α and β are r-grfc sets, that is
GRCτ (γ, r) = γ, but γ is not r-grfc set. Then, the converse of Theorem 4.9(5) is
not true.

From the discussion, we get the following relations.

r-frc

r-grfc r-gfc r-rgfc

Diagram - I

r-fc

5. Generalized regular fuzzy continuous mappings

Definition 5.1. Let (X, τ) and (Y, η) be a fts’s. Let f : (X, τ) → (Y, η) be a
function.

(i) f is called generalized regular fuzzy continuous (for short, grf-continuous), if
f−1(β) is r-grfc, for each β ∈ IY , r ∈ I0 with η(1− β) ≥ r.

(ii) f is called generalized regular fuzzy open (for short, grf-open), if f(α) is r-grfo,
for each α ∈ IX , r ∈ I0 with τ(α) ≥ r.

(iii) f is called generalized regular fuzzy closed (for short, grf-closed), if f(α) is
r-grfc, for each α ∈ IX , r ∈ I0 with τ(1− α) ≥ r.

726



A. Vadivel et al. /Ann. Fuzzy Math. Inform. 12 (2016), No. 5, 719–738

Definition 5.2. Let (X, τ) and (Y, η) be a fts’s. A function f : (X, τ) → (Y, η)
is called generalized regular fuzzy irresolute (for short, grf-irresolute), if f−1(β) is
r-grfc for each r-grfc set β ∈ IY .

Remark 5.3. (1) Every grf-continuous function is gf-continuous (resp. rgf-continuous).
(2) A function f : (X, τ)→ (Y, η) is grf-continuous iff f−1(β) is r-grfo, for each

β ∈ IY , r ∈ I0 with η(β) ≥ r.
(3) A function f : (X, τ) → (Y, η) is grf-irresolute iff f−1(β) is r-grfo for each

r-grfo set β ∈ IY .

Example 5.4. Let X = Y = {a, b, c} be a sets and γ ∈ IX be defined as
γ(a) = 0.5, γ(b) = 0.7, γ(c) = 0.9. We define a fuzzy topology τ : IX → I as
follows:

τ(α) =


1 if α = 0 or 1,
1
2 if α = γ,

0 otherwise.

For r = 1/3, τ(1 − (1 − γ)) ≥ r, 1 − γ is r-gfc set, where 1 − γ ≤ γ, τ(γ) ≥ r,
Cτ (1 − γ, r)(= 1 − γ) ≤ γ. But 1 − γ is not r-grfc because 1 − γ ≤ γ, τ(γ) ≥ r,
RCτ (1 − γ, r)(= 1) � γ. Thus an identity function f : (X, τ) → (Y, τ) is gf-
continuous but not grf-continuous.

Example 5.5. Let X = {a, b, c} and Y = {p, q, r} be a sets and α ∈ IX , β ∈ IY
be defined as α(a) = 0.6, α(b) = 0.4, α(c) = 0.7; β(p) = 0.4, β(q) = 0.6, β(r) = 0.3.
We define a fuzzy topology τ, η : IX → I as follows.

τ(α) =


1 if α = 0 or 1,
1
2 if α = α,

0 otherwise,

η(α) =


1 if α = 0 or 1,
1
2 if α = β,

0 otherwise.

For η(1 − α) ≥ r with r = 1/3, α is r-rgfc set on (X, τ), because α ≤ 1 and 1
is r-fro, Cτ (α, r)(= 1) ≤ 1. But α is not r-grfc set because α ≤ α, τ(α) ≥ r,
RCτ (α, r)(= 1) � α. Thus an identity function f : (X, τ)→ (Y, η) is rgf-continuous
but not grf-continuous.

Theorem 5.6. Let f : (X, τ) → (Y, η) be grf-continuous. Then following state-
ments hold.

(1) f(GRCτ (α, r)) ≤ RCη(f(α), r), for each α ∈ IX and r ∈ I0.
(2) GRCτ (f−1(β), r) ≤ f−1(RCη(β, r)), for each β ∈ IY and r ∈ I0.
(3) f−1(RIη(β, r)) ≤ GRIτ (f−1(β), r), for each β ∈ IY and r ∈ I0.

Proof. (1) Since RCη(RCη(f(α), r), r) = RCη(f(α), r) and τRCη = η from Theorems

2.3 and 2.4, we have η(1 − RCη(f(α), r)) ≥ η(1 − Cτ (f(α), r)) ≥ r. Since f is grf-
continuous, f−1(RCη(f(α), r)) is r-grfc. Since

α ≤ f−1(f(α), r)) ≤ f−1(RCη(f(α), r)),

we have

GRCτ (α, r) ≤ f−1(RCη(f(α), r)).
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Hence f(GRCτ (α, r)) ≤ f(f−1(RCη(f(α), r))) ≤ RCη(f(α), r).
(2) For all β ∈ IY , r ∈ I0, let α = f−1(β). Then by (1),

f(GRCτ (f−1(β), r)) ≤ RCη(f(f−1(β)), r) ≤ RCη(β, r).

Thus GRCτ (f−1(β), r) ≤ f−1(RCη(β, r)).
(3) It is easily proved from (2), and Proposition 3.3 and Theorem 4.10. �

Theorem 5.7. Let f : (X, τ)→ (Y, η) be grf-closed. Then we have GRCη(f(α), r) ≤
f(RCτ (α, r)), for each α ∈ IX and r ∈ I0.

Proof. For all α ∈ IX , r ∈ I0, since τ(1−RCτ (α, r)) ≥ r, f(RCτ (α, r)) is r-grfc.
Then GRCη(f(α), r) ≤ f(RCτ (α, r)). �

The following Theorem is similarly proved as Theorems 5.6 and 5.7.

Theorem 5.8. Let f : (X, τ)→ (Y, η) be grf-open. Then the following statements
hold.

(1) f(RIτ (α, r)) ≤ GRIη(f(α), r), for each α ∈ IX and r ∈ I0.
(2) RIτ (f−1(β), r) ≤ f−1(GRIη(β, r)), for each β ∈ IY and r ∈ I0.

Theorem 5.9. Let (X, τ) and (Y, η) be fts’s. Let f : (X, τ) → (Y, η) be grf-
irresolute. Then the following statements hold.

(1) f : (X, τ)→ (Y, η) is grf-continuous.
(2) f(GRCτ (α, r)) ≤ GRCη(f(α), r), for each α ∈ IX .
(3) GRCτ (f−1(β), r) ≤ f−1(GRCη(β, r)), for each β ∈ IY .

Proof. (1) Let β be r-frc set. Since every r-frc set is r-fc, η(1−β) ≥ r. By Theorem
4.2(3), β is r-grfc. Since f is grf-irresolute, f−1(β) is r-grfc.

(2) Suppose there exist α ∈ IX and r ∈ I0 such that

f(GRCτ (α, r)) � GRCη(f(α), r).

Then there exist y ∈ Y and t ∈ I0 such that

f(GRCτ (α, r))(y) > t > GRCη(f(α), r)(y).

If f−1({y}) = 0, it is a contradiction since f(GRCτ (α, r)) = 0. If f−1({y}) 6= 0,
there exists x ∈ f−1({y}) such that

f(GRCτ (α, r))(y) ≥ GRCτ (α, r)(x) > t > GRCη(f(α), r)(f(x)).

Since GRCη(f(α), r)(f(x)) < t, by the Definition of GRCη, there exists r-grfc β ∈
IY and f(α) ≤ β such that

GRCη(f(α), r)(f(x)) ≤ β(f(x)) < t.

Since f is grf-irresolute, for r-grfc β ∈ IY , f−1(β) is r-grfc and α ≤ f−1(β). Thus

GRCτ (α, r)(x) ≤ f−1(β)(x) = β(f(x)) < t.

It is a contradiction. Hence f(GRCτ (α, r)) ≤ GRCη(f(α), r), for all α ∈ IX and
r ∈ I0.

(3) It is similarly proved as Theorem 5.6(2). �
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Example 5.10. (1) The converse of Theorem 5.6(1) is not true. In Example 5.5,
The identity function f : (X, τ)→ (Y, η) is not grf-continuous. By a similar method
as in Example 4.11, we can obtain GRCτ (α, r) = α, for each α ∈ IX and r ∈ I0.
Furthermore, RCη : IX × I0 → IX as follows.

RCη(α, r) =


0 if α = 0,
1
2 if α = β,

1 otherwise.

Hence f(GRCτ (α, r)) ≤ RCη(f(α), r), for each α ∈ IX and r ∈ I0.
(2) The converse of Theorem 5.9(2) is not true. Since α is a r-grfc in (Y, η) but

not r-grfc set on (X, τ). Thus an identity function f : (X, τ) → (Y, η) is not a grf-
irresolute map. By a similar method as in Example 4.11, GRCτ (α, r) = GRCη(α, r),
for each α ∈ IX and r ∈ I0.

Definition 5.11. A fts (X, τ) is called FRT1/2, if for each r-grfc β ∈ IX and r ∈ I0
is r-frc.

Theorem 5.12. A fts (X, τ) is called FRT1/2 iff GRCτ (α, r) = RCτ (α, r) for each

α ∈ IX and r ∈ I0.

Proof. Let (X, τ) be FRT1/2. Then by definition of GRCτ and RCτ , we have

GRCτ (α, r) = RCτ (α, r) for each α ∈ IX and r ∈ I0.
Conversely, suppose (X, τ) is not FRT1/2. Then there exist r-grfc β ∈ IX and

r ∈ I0 such that τ(1 − β) < r. Thus GRCτ (β, r) = β but RCτ (β, r) 6= β. So
GRCτ (β, r) 6= RCτ (β, r). �

The following Theorems are easily proved.

Theorem 5.13. Let (X, τ) and (Y, η) be fts’s. Let f : (X, τ) → (Y, η) be a
function.

(1) If (X, τ) is FRT1/2, then f is grf-continuous iff f is FR-continuous.
(2) If (Y, η) is FRT1/2, then f is grf-continuous iff f is grf-irresolute.
(3) If (X, τ) and (Y, η) is FRT1/2, then f is FR-continuous iff f is grf-continuous

iff f is grf-irresolute.

Theorem 5.14. Let f : (X, τ)→ (Y, η) and g : (Y, η)→ (Z, σ) be grf-continuous
and (Y, η) is FRT1/2. Then g ◦ f : (X, τ)→ (Z, σ) is grf-continuous.

Theorem 5.15. Let f : (X, τ)→ (Y, η) be grf-irresolute and g : (Y, η)→ (Z, σ)
be grf-continuous. Then g ◦ f : (X, τ)→ (Z, σ) is grf-continuous.

Remark 5.16. The composition map of grf-continuous maps need not be grf-
continuous.

Example 5.17. Let X = {a, b, c}, Y = {p, q, r}, and Z = {x, y, z} be a sets
and α ∈ IX , β ∈ IY , γ ∈ IZ be defined as α(a) = 0.5, α(b) = 0.7, α(c) = 0.4;
β(p) = 0.5, β(q) = 0.5, β(r) = 0.5; γ(x) = 0.5, γ(y) = 0.3, γ(z) = 0.6. We define a
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fuzzy topology τ, η, σ : IX → I as follows.

τ(α) =


1 if α = 0 or 1
1
2 if α = α

0 otherwise,

η(α) =


1 if α = 0 or 1
1
2 if α = β

0 otherwise,

σ(α) =


1 if α = 0 or 1
1
2 if α = γ

0 otherwise.

Then the identity function f : (X, τ) → (Y, η) and g : (Y, η) → (Z, σ) is grf-
continuous. But g ◦ f : (X, τ)→ (Z, σ) is not grf-continuous.

Example 5.18. The converse of Theorem 5.9(1) is not true. Let X = {a, b, c},
Y = {p, q, r} be a sets and α ∈ IX , β, γ ∈ IY be defined as α(a) = 0.4, α(b) =
0.5, α(c) = 0.7; β(p) = 0.4, β(q) = 0.5, β(r) = 0.6; γ(p) = 0.4, γ(q) = 0.5, γ(r) =
0.7. We define a fuzzy topology τ, η : IX → I as follows.

τ(α) =


1 if α = 0 or 1
1
2 if α = α

0 otherwise,

η(α) =


1 if α = 0 or 1
1
2 if α = β

0 otherwise

For r = 1/3, η(1−(1−β)) ≥ r, 1−β is grfc set in (X, τ). Then the identity function
f : (X, τ) → (Y, η) is grf-continuous but not grf-irresolute, since the fuzzy set γ is
r-grfc set in (Y, η) but not r-grfc set in (X, τ).

From the discussion we get the following relations:

generalized regular

fuzzy continuity

generalized fuzzy

continuity

regular generalized

fuzzy continuity

Diagram - II

fuzzy continuity

6. Generalized regular fuzzy contra continuous functions

Definition 6.1. Let f : (X, τ)→ (Y, σ) be a function and r ∈ I0. Then f is called
fuzzy regular contra continuous (for short, FRC-continuous), if f−1(α) is r-frc set
in X, for each α ∈ IY with σ(α) ≥ r.

Definition 6.2. Let f : (X, τ)→ (Y, σ) be a function and r ∈ I0. Then f is called:
(i) generalized regular fuzzy contra continuous (resp. generalized regular fuzzy

contra irresolute), if f−1(β) is r-grfc, for each β ∈ IY , σ(β) ≥ r (resp. β ∈ IY is
r-grfo),

(ii) generalized regular fuzzy contra open (resp. generalized regular fuzzy contra
irresolute open), if f(α) is r-grfc, for each α ∈ IX , τ(α) ≥ r (resp. α ∈ IX is r-grfo),
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(iii) generalized regular fuzzy contra closed (resp. generalized regular fuzzy contra
irresolute closed), if f(α) is r-grfo, for each α ∈ IX , τ(1− α) ≥ r (resp. α ∈ IX is
r-grfc).

GRFC-continuous, GRFC-irresolute, GRFC-open, GRFC-irresolute open, GRFC-
closed, GRFC-irresolute closed are abbreviated to generalized regular fuzzy contra
continuous, generalized regular fuzzy contra irresolute, generalized regular fuzzy con-
tra open, generalized regular fuzzy contra irresolute open, generalized regular fuzzy
contra closed, generalized regular fuzzy contra irresolute closed.

From the above definition and Example 2.10 in [1] it is clear that the following
implication is true but the reverse implication is not true.

GFC-continuity

GFC-irresolute

GRFC-continuity

Diagram -III

FC-continuity

Example 6.3. Let X = {a, b, c}, Y = {p, q, r} be a sets and α ∈ IX , β ∈ IY be
defined as α(a) = 0.6, α(b) = 0.7, α(c) = 0.5; β(p) = 0.4, β(q) = 0.3, β(r) = 0.5.
We define a fuzzy topology τ, σ : IX → I as follows.

τ(α) =


1 if α = 0 or 1
1
2 if α = α

0 otherwise,

σ(α) =


1 if α = 0 or 1
1
2 if α = β

0 otherwise.

Then the identity function f : (X, τ) → (Y, σ) is GFC-continuous but not GRFC-
continuous.

Example 6.4. Let X = {a, b, c}, Y = {p, q, r} be a sets and α ∈ IX , β ∈ IY be
defined as α(a) = 0.5, α(b) = 0.7, α(c) = 0.9; β(p) = 0.5, β(q) = 0.3, β(r) = 0.1.
We define a fuzzy topology τ, σ : IX → I as follows.

τ(α) =


1 if α = 0 or 1
1
2 if α = α

0 otherwise,

σ(α) =


1 if α = 0 or 1
1
2 if α = β

0 otherwise.

Then the identity function f : (X, τ) → (Y, σ) is GFC-irresolute but not GRFC-
continuous.

Theorem 6.5. A mapping f : (X, τ)→ (Y, σ) is GRFC-continuous (resp. GRFC-
irresolute) iff f−1(β) is r-grfo for each β ∈ IY , σ(1−β) ≥ r (resp. β ∈ IY is r-grfc)
and r ∈ I0.
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Theorem 6.6. Let f : (X, τ)→ (Y, σ) be bijective GRFC-continuous mapping and
r ∈ I0. Then following statements hold.

(1) f(GRCτ (α, r)) ≥ RIσ(f(α), r), for each α ∈ IX .
(2) GRCτ (f−1(β), r) ≥ f−1(RIσ(β, r)), for each β ∈ IY .
(3) f−1(RCσ(β, r)) ≥ GRIτ (f−1(β), r), for each β ∈ IY .

Proof. (1) For each α ∈ IX , σ(RIσ(f(α), r)) ≥ r. Since f is GRFC-continuous,
f−1(RIσ(f(α), r)) is r-grfc set of X. Since f(α) ≥ RIσ(f(α), r), f−1(f(α)) ≥
f−1(RIσ(f(α), r)). Since α = f−1(f(α)),

GRCτ (α, r) ≥ f−1(RIσ(f(α), r)) (by f is injective).

Since f is surjective, f(GRCτ (α, r)) ≥ RIσ(f(α), r).
(2) For all β ∈ IY and r ∈ I0, put α = f−1(β). From (1), we have

f(GRCτ (f−1(β), r)) ≥ RIσ(f(f−1(β)), r).

Since f is surjective, β = f(f−1(β)). Thus f(GRCτ (f−1(β), r)) ≥ RIσ(β, r). Since
f is injective,

GRCτ (f−1(β), r) = f−1(f(GRCτ (f−1(β), r))) ≥ f−1(RIσ(β, r)).

(3) It is easily proved from RCτ (1− α, r) = 1−RIτ (α, r) and GRCτ (1− α, r) =
1−GRIτ (α, r). �

Theorem 6.7. Let f : (X, τ)→ (Y, σ) be GRFC-open mapping and r ∈ I0. Then
following statements hold.

(1) f(RIτ (α, r)) ≤ GRCσ(f(α), r), for each α ∈ IX .
(2) RIτ (f−1(β), r) ≤ f−1(GRCσ(β, r)), for each β ∈ IY .
(3) GRCσ(f(α), r) ≤ f(GRCτ (α, r)), for each α ∈ IX , τ(α) ≥ r.

Proof. (1) For each α ∈ IX and r ∈ I0, since RIτ (α, r) ≤ α, f(RIτ (α, r)) ≤ f(α).
Since f is GRFC-open, f(RIτ (α, r)) is r-grfc. Then f(RIτ (α, r)) ≤ GRCσ(f(α), r).

(2) For each β ∈ IY and r ∈ I0, put α = f−1(β). From (1),

f(RIτ (f−1(β), r) ≤ GRCσ(f(f−1(β)), r) ≤ GRCσ(β, r).

Then RIτ (f−1(β), r) ≤ f−1(GRCσ(β, r)).
(3) Since f is GRFC-open,

GRCσ(f(α), r)) = f(α) ≤ f(GRCτ (α, r))

for each α ∈ IX , τ(α) ≥ r and r ∈ I0. �

Theorem 6.8. Let f : (X, τ) → (Y, σ) be GRFC-closed mapping, α ∈ IX and
r ∈ I0. Then following statements hold.

(1) f(RCτ (α, r)) ≥ GRIσ(f(α), r).
(2) GRIσ(f(α), r) ≥ f(GRIτ (α, r)), for each α ∈ IX , τ(1− α) ≥ r.

Proof. (1) For each α ∈ IX and r ∈ I0, since α ≤ RCτ (α, r), f(α) ≤ f(RCτ (α, r)).
Since τ(1 − RCτ (α, r)) ≥ r, f(RCτ (α, r)) is r-grfo set of Y . Then f(RCτ (α, r)) ≥
GRIσ(f(α), r).

(2) Since f is GRFC-closed,
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GRIσ(f(α), r) = f(α) ≥ f(GRIτ (α, r))

for each α ∈ IX , τ(1− α) ≥ r and r ∈ I0. �

Theorem 6.9. Let f : (X, τ)→ (Y, σ) be a bijective mapping. f is GRFC-closed
(resp. GRFC-irresolute closed) iff f is is GRFC-open (resp. GRFC-irresolute open).

Remark 6.10. The composition of two GRFC-continuous (resp. GRFC-open and
GRFC-closed) mappings need not be GRFC-continuous (resp. GRFC-open and
GRFC-closed) as shown by the following example.

Example 6.11. Let X = {a, b, c}, Y = {p, q, r}, and Z = {x, y, z} be a sets
and α ∈ IX , β ∈ IY , γ ∈ IZ be defined as α(a) = 0.5, α(b) = 0.7, α(c) = 0.4;
β(p) = 0.5, β(q) = 0.5, β(r) = 0.5; γ(x) = 0.5, γ(y) = 0.7, γ(z) = 0.4. We define a
fuzzy topology τ, σ, η : IX → I as follows:

τ(α) =


1 if α = 0 or 1
1
2 if α = α

0 otherwise,

σ(α) =


1 if α = 0 or 1
1
2 if α = β

0 otherwise,

η(α) =


1 if α = 0 or 1
1
2 if α = γ

0 otherwise.

Then the identity function f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) is GRFC-
continuous. But g ◦ f : (X, τ)→ (Z, η) is not GRFC-continuous.

Theorem 6.12. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be mappings.
Then g ◦ f is:

(1) GRFC-continuous, if g is F -continuous (resp. GRFC-continuous) and f is
GRFC-continuous (resp. grf-irresolute),

(2) GRFC-open, if f is F -open (resp. GRFC-open) and g is GRFC-open (resp.
grf-irresolute closed),

(3) GRFC-closed, if f is F -closed (resp. GRFC-closed) and g is GRFC-closed
(resp. grf-irresolute open),

(4) GRFC-irresolute, if g is grf-irresolute (resp. GRFC-irresolute) and f is
GRFC-irresolute (resp. grf-irresolute),

(5) GRFC-irresolute open, if f is grf-irresolute open (resp. GRFC-irresolute
open) and g is GRFC-irresolute open (resp. grf-irresolute closed),

(6) GRFC-irresolute closed, if f is grf-irresolute closed (resp. GRFC-irresolute
closed) and g is GRFC-irresolute closed (resp. grf-irresolute open).

Theorem 6.13. Let f : (X, τ) → (Y, σ) be a mapping and r ∈ I0. The following
statements hold.

(1) If (X, τ) is FRT1/2, then the concepts of FRC-continuity and GRFC-
continuity are equivalent.

(2) If (Y, σ) is FRT1/2, then the concepts of GRFC-continuity and GRFC-
irresolute are equivalent.

(3) If (X, τ) and (Y, σ) is FRT1/2, then the concepts of FRC-continuity, GRFC-
continuity and GRFC-irresolute are equivalent.

Theorem 6.14. Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be GRFC-
continuous and (Y, σ) is FRT1/2. Then g◦f : (X, τ)→ (Z, η) is GRF -continuous.
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7. Applications of r-generalized regular fuzzy closed sets

Definition 7.1. A fts (X, τ) is said to be:
(i) r-GRF-regular, if for each r-grfc α ∈ IX , xtqα implies that there exist βi ∈ IX

with τ(βi) ≥ r, for i ∈ {1, 2} such that xt ∈ β1, α ≤ β2 and β1qβ2,
(ii) r-GRF-normal, if for each r-grfc sets αi ∈ IX , for i ∈ {1, 2}, α1qα2 implies

that there exist βi ∈ IX with τ(βi) ≥ r such that αi ≤ βi and β1qβ2.

Theorem 7.2. Let (X, τ) be a fts and r ∈ I0. Then the following statements are
equivalent:

(1) (X, τ) is r-GRF-regular,
(2) if xt ∈ α, for each r-grfo α ∈ IX , there exists β ∈ IX with τ(β) ≥ r such that

xt ∈ β ≤ RCτ (β, r) ≤ α.
(3) if xtqα, for each r-grfc α ∈ IX , there exists βi ∈ IX with τ(βi) ≥ r, for

i ∈ {1, 2} such that xt ∈ β1, α ≤ β2 and RCτ (β1, r)qRCτ (β2, r).

Proof. (1)⇒(2) Let xt ∈ α for each r-grfo α. Then xtq(1 − α) for r-grfc (1 − α).
Since (X, τ) is r-GRF-regular, there exist β, γ ∈ IX with τ(β) ≥ r, τ(γ) ≥ r such
that xt ∈ β, 1 − α ≤ γ and βqγ. It implies xt ∈ β ≤ 1 − γ ≤ α. Since τ(γ) ≥ r,
xt ∈ β ≤ RCτ (β, r) ≤ α.

(2)⇒(3) Let xtqα for each r-grfc. Then xt ∈ 1 − α for r-grfo 1 − α. By (2),
there exists β ∈ IX with τ(β) ≥ r such that xt ∈ β ≤ RCτ (β, r) ≤ 1 − α. Since
τ(β) ≥ r, β is r-grfo and xt ∈ β. Again, by (2), there exists β1 ∈ IX with τ(β1) ≥ r
such that xt ∈ β1 ≤ RCτ (β1, r) ≤ β ≤ RCτ (β, r) ≤ 1 − α. It implies α ≤ (1 −
RCτ (β, r) = RIτ (1 − β, r)) ≤ 1 − β. Put β2 = RIτ (1 − β, r). Then τ(β2) ≥ r. So,
RCτ (β2, r) ≤ 1− β ≤ 1−RCτ (β1, r), that is, RCτ (β1, r)qRCτ (β2, r).

(3)⇒(1) It is trivial. �

Theorem 7.3. Let (X, τ) be fts and r ∈ I0. Then the following statements are
equivalent:

(1) (X, τ) is r-GRF-normal,
(2) if γ ≤ α, for each r-grfc set γ ∈ IX and r-grfo set α ∈ IX , there exists β ∈ IX

with τ(β) ≥ r such that γ ≤ β ≤ RCτ (β, r) ≤ α,
(3) If α1qα2, for each r-grfc sets αi ∈ IX , for i ∈ {1, 2}, there exists βi ∈ IX

with τ(βi) ≥ r such that αi ≤ βi and RCτ (β1, r)qRCτ (β2, r).

Proof. It is similarly proved as in Theorem 7.2. �

Theorem 7.4. Let (X, τ) be a fts. Then the following statements hold.
(1) Every r-GRF-regular (r-GRF-normal) space is r-GFR2 (r-GFR3).
(2) Every r-GRF-regular (r-GRF-normal) space is r-FR2 (r-FR3).
(3) A fts (X, τ) is r-GRF-regular (r-GRF-normal) space iff it is r-GFR2 (r-

GFR3) and FRT1/2.
(4) A fts (X, τ) is r-GRF-regular (r-GRF-normal) space iff it is r-FR2 (r-FR3)

and FRT1/2.

Proof. (1) For xtqα with r-grfc set α ∈ IX , α is r-gfc. Since (X, τ) is r-GRF -regular,
there exist βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2} such that xt ∈ β1, α ≤ β2 and
β1qβ2. Then (X, τ) is r-GFR2.
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(2) For xtqα with r-frc set α ∈ IX , α is r-grfc. Since (X, τ) is r-GRF-regular,
there exist βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2} such that xt ∈ β1, α ≤ β2 and
β1qβ2. Then (X, τ) is r-FR2.

(3) (⇒) Let (X, τ) be r-GRF-regular. By (1). We only show that (X, τ) is
FRT1/2. If α ∈ {0, 1}, then α is r-grfc and τ(α) = 1. Let α /∈ {0, 1} be r-grfc.

Then for xt ∈ 1 − α with r-grfc α, by Theorem 7.2(2), there exists βxt ∈ IX with
τ(βxt) ≥ r such that xt ∈ βxt ≤ RCτ (βxt , r) ≤ 1− α. Thus

1− α =
∨
xt∈1−α{βxt | RCτ (βxt , r) ≤ 1− α, τ(βxt) ≥ r}.

So τ(1− α) ≥ r. Hence (X, τ) is FRT1/2.
(⇐) It is easily proved.
(4) (⇒) It is easily proved from (2) and (3).
(⇐) It is easily proved. �

Theorem 7.5. Let (X, τ) be a fts. Then following statements hold.

(1) If (X, τ) is r-GRF-regular, then it is r-FR0.
(2) If (X, τ) is r-GRF-regular, then it is r-FT2 1

2
.

(3) If (X, τ) is r-GRF-regular, then it is r-FT3.
(4) If (X, τ) is r-GRF-normal and r-FR0, then it is r-GRF-regular.
(5) If (X, τ) is r-GRF-normal and r-FR0, then it is r-FT4.

Proof. (1) Let xtqRCτ (ys, r), for any distinct fuzzy points xt, ys ∈ Pt(X). Since
RCτ (ys, r) is r-grfc and (X, τ) is r-GRF-regular, there exist βi ∈ IX with τ(βi) ≥ r,
for i ∈ {1, 2} such that xt ∈ β1, ys ∈ RCτ (ys, r) ≤ β2 and β1qβ2. It implies
xt ∈ β1 ≤ 1 − β2 ≤ 1 − RCτ (ys, r) ≤ 1 − ys. Then, RCτ (xt, r) ≤ 1 − ys, that is,
ysqRCτ (xt, r). Thus (X, τ) is r-FR0.

(2) Let xtqys, for any distinct fuzzy points xt, ys ∈ Pt(X). Since (X, τ) is r-GRF-
regular, by (1) and since every r-frc set is r-grfc set, ys is r-grfc. Then by Theorem
7.2(3), there exist βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2} such that xt ∈ β1, ys ∈ β2

and RCτ (β1, r)qRCτ (β2, r). Thus (X, τ) is r-FT2 1
2
.

(3) Let (X, τ) is r-GRF-regular. By (2) and Theorem 7.4(2), (X, τ) is r-FT2 1
2

and FR2. Since r-FT2 1
2

implies r-FT1, (X, τ) is r-FT3.

(4) Let xtqα for each r-grfc α. Since (X, τ) is r-FR0, xt is r-grfc. Since (X, τ) is
r-GRF-normal, there exist βi ∈ IX with τ(βi) ≥ r, for i ∈ {1, 2} such that xt ∈ β1,
α ∈ β2 and β1qβ2. Then (X, τ) is r-GRF-regular.

(5) Let (X, τ) be r-GRF-normal and r-FR0. Since r-GRF-regular implies r-FT2 1
2

implies r-FT1, by (4), (X, τ) is r-FT1. Then by Theorem 7.4(2), (X, τ) is r-FT4. �

Theorem 7.6. If f : (X, τ1)→ (Y, τ2) be F -continuous, GRF -irresolute closed and
injective map and (Y, τ2) is r-GRF-regular (resp. r-GRF-normal), then (X, τ1) is
r-GRF-regular (resp. r-GRF-normal).

Proof. Let xtqα for each r-grfc set α ∈ IX . Since f is GRF -irresolute closed, f(α) is
r-grfc. Since f is injective, xtqα implies f(xt)qf(α). Since (Y, τ2) is r-GRF-regular,
there exists βi ∈ IX with τ2(βi) ≥ r and i ∈ {1, 2} such that f(xt) ∈ β1, f(α) ≤ β2

and β1qβ2. Since f is F -continuous, xt ∈ f−1(β1), α ≤ f−1(β2) with τ2(f−1(βi)) ≥
735
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r and i ∈ {1, 2} and f−1(β1)qf−1(β2). Then (X, τ1) is r-GRF-regular. Other case
is similarly proved. �

Theorem 7.7. If f : (X, τ1) → (Y, τ2) be GRF -irresolute, F -open, F -closed and
surjective map and (X, τ1) is r-GRF-regular (resp. r-GRF-normal), then (Y, τ2) is
r-GRF-regular (resp. r-GRF-normal).

Proof. Let ys ∈ β for each r-grfo β ∈ IY . Since f is GRF -irresolute and surjective,
then there exists x ∈ f−1({y}) such that xs ∈ f−1(β) with r-grfo set f−1(β). Since
(X, τ1) is r-GRF-regular, by Theorem 7.2(2), there exists γ ∈ IX with τ1(γ) ≥ r
such that xs ∈ γ ≤ RCτ1(γ, r) ≤ f−1(β). It implies ys ∈ f(γ) ≤ f(RCτ1(γ, r)) ≤ β.
Since f is F -open and F -closed, τ2(f(γ)) ≥ r and τ2(1− f(RCτ1(γ, r))) ≥ r. Then
ys ∈ f(γ) ≤ RCτ2(f(γ), r) ≤ RCτ2(f(RCτ1(γ, r)), r) ≤ β. Thus (Y, τ2) is r-GRF-
regular. Other case is similarly proved. �

Example 7.8. Let X = {a, b, c} be a set. We define a fuzzy topology τ : IX → I
as follows:

τ(α) =


1 if α ∈ {0, 1},
1
3 if α = χ{a,b},
1
2 if α = c1,

0 otherwise.

We can obtain a fuzzy closure operator Cτ : IX × I0 → IX as follows:

Cτ (α, r) =


0 if α = 0, r ∈ I0,
χ{a,b} if 0 6= α ≤ χ{a,b}, 0 < r ≤ 1/2,

c1 if 0 6= α ≤ c1, 0 < r ≤ 1/3,

1 otherwise.

(1) For 0 < r ≤ 1/3, Since χ{a,b}qc1 with τ(χ{a,b}) ≥ r and τ(c1) ≥ r, (X, τ)
is r-FR3. Also, for 0 < r ≤ 1/3, Since xtq(Cτ (cs, r) = c1), for x ∈ {a, b} iff
csq(Cτ (xt, r) = χ{a,b}), (X, τ) is r-FR0.

(2) For 0 < r ≤ 1/3, since (X, τ) is r-FR3 and r-FR0 from (1), (X, τ) is r-FR2.
(3) For 0 < r ≤ 1/3, χ{a,b} and b0.5 ∨ c1 are r-grfc sets. Let χ{a,b}qb0.5 ∨ c1. For

each α, β ∈ {χ{a,b}, 1} with χ{a,b} ∈ α and b0.5 ∨ c1 ∈ β, we give αqβ. Then (X, τ)
is neither r-GRF-normal nor r-GRF-regular. Thus by (1), (2) and (3), the converse
of Theorem 7.4(2) is not true. Also, by (1), (2) and (3), the converse of Theorem
7.5(1) is not true.

Example 7.9. LetX = {a, b, c} and β, γ ∈ IX defined as follows: β(a) = 0.5, β(b) =
0.5, β(c) = 0.5; γ(a) = 0.5, γ(b) = 0.6, γ(c) = 0.6. Define fuzzy topology τ = IX → I

as follows: τ(α) =


1 if α ∈ {0, 1},
1
3 if α = γ,
1
2 if α = β,

0 otherwise.

For 0 < r ≤ 1/3, (X, τ) is GFR3. Also, for 0 < r ≤ 1/3, β and 1− β are r-grfc sets.
Let βq(1 − β). Since β ≤ β and 1 − β ≤ γ with τ(β) ≥ r and τ(γ) ≥ r, we give
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βqγ. Hence (X, τ) is not r-GRF-normal. Then, the converse of Theorem 7.4(1) is
not true.

8. Conclusions

Šostak’s fuzzy topology has been recently of major interest among fuzzy topolo-
gies. In section 2, we have introduced r-generalized regular fuzzy closed (open) sets
in fuzzy topological spaces of Šostak’s and studied some of its fuzzy set theoritic
properties. In sections 3 and 4, we have also introduced generalized regular fuzzy
continuous (irresolute) functions and generalized regular fuzzy contra continuity in
Šostak’s fuzzy topological spaces. Further, we have examined interrelationship of
r-generalized regular fuzzy closed sets and other r-generalizations of closed sets in
Šostak’s topological spaces.
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