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1. Introduction

The concept of soft set was introduced by Molodtsov [8] as a new mathematical
tool for dealing with uncertainties. Then, soft set theory was studied in detail by
Maji et al.[7]. Also, some algebraic operations on soft sets were obtained by Ali et.
al.[1]. Shabir and Naz [13] introduced the soft topological spaces and investigated
their fundamental properties. Zorlutuna et. al. [15] also studied on soft topological
spaces. In addition, the notions of soft real set and soft real number were defined
and their properties were given in [2].

Fixed point theory plays an important role and has many applications in math-
ematics. Many researchers obtained fixed point theorems for various mappings in
different metric spaces. G-metric spaces [10] which are a generalization of metric
spaces is one such space. Also, a lot of fixed point theorems were obtained in this
structure [6, 9, 11, 12]. In addition, the concept of soft mapping and its fixed points
were introduced by Wardowski [14]. Besides, the notion of soft metric spaces and
Banach fixed point theorem were given in these spaces [3].

Guler et. al. [5] introduced the concept of soft G-metric space according to a soft
element and obtained some of its properties. Then, they defined soft G-convergence
and soft G-continuity. Moreover, they proved existence and uniqueness of fixed
points in soft G-metric spaces.
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In this paper, the notion of soft G-complete space is introduced and some prop-
erties of such spaces are investigated. Then, three general fixed point theorems for
mappings satisfying sufficient conditions are proved on soft G-metric spaces.

2. Preliminaries

Throughout this paper, X will be a nonempty initial universal set and E will be
a nonempty parameter set. Let P(X) denote the power set of X.

Definition 2.1 ([8]). A pair (F,E), where F is a mapping from E to P(X), is called
a soft set over X.

Definition 2.2 ([7]). Let (F1, E) and (F2, E) be two soft sets over a common
universe X. Then, (F1, E) is said to be a soft subset of (F2, E), if F1(λ) ⊆ F2(λ), for

all λ ∈ E. This is denoted by (F1, E)⊆̃(F2, E).
(F1, E) is said to be soft equal to (F2, E), if F1(λ) = F2(λ), for all λ ∈ E.

This is denoted by (F1, E) = (F2, E).

Definition 2.3 ([1]). The complement of a soft set (F,E) is defined as (F,E)c =
(F c, E), where F c : E → P(X) is a mapping given by F c(λ) = X\F (λ), for all
λ ∈ E.

Definition 2.4 ([7]). Let (F,E) be a soft set over X.
(i) (F,E) is said to be a null soft set, if F (λ) = ∅, for all λ ∈ E.

This is denoted by ∅̃.
(ii) (F,E) is said to be an absolute soft set, if F (λ) = X, for all λ ∈ E.

This is denoted by X̃.

Clearly, we have (X̃)c = ∅̃ and (∅̃)c = X̃.

Definition 2.5 ([13]). The difference (H,E) of two soft sets (F1, E) and (F2, E)
over X, denoted by (F1, E)\(F2, E), is defined as H(λ) = F1(λ)\F2(λ), for all λ ∈ E.

Definition 2.6 ([7]). The union (H,E) of two soft sets (F,E) and (G,E) over a
common universe X, denoted by (F,E)∪̃(G,E) is defined as H(λ) = F (λ) ∪ G(λ),
for all λ ∈ E.

The following definition of intersection of two soft sets is given as that of the
bi-intersection in [4].

Definition 2.7 ([4]). The intersection (H,E) of two soft sets (F,E) and (G,E) over
a common universe X, denoted by (F,E)∩̃(G,E), is defined as H(λ) = F (λ)∩G(λ),
for all λ ∈ E.

Definition 2.8 ([2]). A function ε : E → X is said to be a soft element of X. A
soft element ε of X is said to belong to a soft set (F,E) of X, denoted by ε∈̂(F,E),
if ε(e) ∈ F (e) for each e ∈ E.

In that case, ε is also said to be a soft element of the soft set (F,E). Thus, every
singleton soft set (a soft set (F,E) for which F (e) is a singleton set for each e ∈ E)
can be identified with a soft element by simply identifying the singleton set with the
element that contains each e ∈ E.
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Definition 2.9 ([2]). Let R be the set of real numbers, B(R) be the collection of
all nonempty bounded subsets of R and E be a set of parameters. Then a mapping
F : E → B(R) is called a soft real set.
It is denoted by (F,E) and R(E) denotes the set of all soft real sets.

Also, R(E)∗ denotes the set of all non-negative soft real sets ((F,E) is said to
be a non-negative soft real set, if F (λ) is a subset of the set of non-negative real
numbers for each λ ∈ E).

In particular, if (F,E) is a singleton soft set, then it is called a soft real number,
by identifying (F,E) with the corresponding soft element.
R(E) denotes the set of all soft real numbers. Also, R(E)∗ denotes the set of all
non-negative soft real numbers.

Definition 2.10 ([2]). Let (F,E), (G,E) ∈ R(E).
(i) (F,E) = (G,E), if F (λ) = G(λ), for each λ ∈ E.
(ii) (F +G)(λ) = {a+ b : a ∈ F (λ), b ∈ G(λ)}, for each λ ∈ E.
(iii)(F −G)(λ) = {a− b : a ∈ F (λ), b ∈ G(λ)}, for each λ ∈ E.
(iv) (F.G)(λ) = {a.b : a ∈ F (λ), b ∈ G(λ)}, for each λ ∈ E.
(v)(F/G)(λ) = {a/b : a ∈ F (λ), b ∈ G(λ)\{0}}, provided 0 /∈ G(λ), for each

λ ∈ E.

In this paper, as demonstrated in [3], S(X̃) denotes the set of soft sets (F,E)
over X for which F (λ) 6= ∅ for all λ ∈ E and SE((F,E)) denotes the collection of

all soft elements of (F,E) for any soft set (F,E) ∈ S(X̃).

Also, x̃, ỹ, z̃ denote soft elements of a soft set and r̃, s̃, t̃ denote soft real numbers,
whereas r, s, t denote a particular type of soft real numbers such that r(λ) = r, for
all λ ∈ E.

Definition 2.11 ([3]). For two soft real numbers r̃, s̃,

(i) r̃≤̃s̃, if r̃(λ) ≤ s̃(λ), for all λ ∈ E,

(ii) r̃≥̃s̃, if r̃(λ) ≥ s̃(λ), for all λ ∈ E,
(iii) r̃<̃s̃, if r̃(λ) < s̃(λ), for all λ ∈ E,
(iv) r̃>̃s̃, if r̃(λ) > s̃(λ), for all λ ∈ E.

Definition 2.12 ([3]). A mapping d : SE(X̃) × SE(X̃) → R(E)∗ is said to be a

soft metric on X̃ if d satisfies the following conditions:

(M1) d(x̃, ỹ)≥̃0, for all x̃, ỹ∈̂X̃,
(M2) d(x̃, ỹ) = 0 if and only if x̃ = ỹ,

(M3) d(x̃, ỹ) = d(ỹ, x̃), for all x̃, ỹ∈̂X̃,

(M4) d(x̃, z̃)≤̃d(x̃, ỹ) + d(ỹ, z̃), for all x̃, ỹ, z̃∈̂X̃.

The soft set X̃ with a soft metric d on X̃ is said to be a soft metric space and is

denoted by (X̃, d).

Definition 2.13 ([3]). Let (x̃n) be a sequence of soft elements in (X̃, d).

The sequences (x̃n) is said to be convergent in (X̃, d), if there is a soft element

x̃∈̂X̃ such that d(x̃n, x̃)→ 0 as n→∞.

A sequence (x̃n) of soft elements in (X̃, d) is said to be Cauchy sequences in X̃,

if for every ε̃≥̃0, there is a natural number m such that d(x̃i, x̃j) ≤̃ε̃, whenever i, j≥
m.
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Definition 2.14 ([3]). A soft metric space (X̃, d) is said to be complete if every

Cauchy sequence in X̃ converges to some soft element of X̃.

Definition 2.15 ([5]). Let X be a nonempty set and E be the nonempty set of

parameters. A mapping G̃ : SE(X̃)×SE(X̃)×SE(X̃)→ R(E)∗ is said to be a soft

generalized metric or soft G-metric on X̃, if G̃ satisfies the following conditions:

(G̃1) G̃(x̃, ỹ, z̃) = 0, if x̃ = ỹ = z̃,

(G̃2) 0<̃G̃(x̃, x̃, ỹ), for all x̃, ỹ ∈ SE(X̃) with x̃ 6= ỹ,

(G̃3) G̃(x̃, x̃, ỹ)≤̃G̃(x̃, ỹ, z̃), for all x̃, ỹ, z̃ ∈ SE(X̃) with ỹ 6= z̃,

(G̃4) G̃(x̃, ỹ, z̃) = G̃(x̃, z̃, ỹ) = G̃(ỹ, z̃, x̃) = ...,

(G̃5) G̃(x̃, ỹ, z̃)≤̃G̃(x̃, ã, ã) + G̃(ã, ỹ, z̃), for all x̃, ỹ, z̃, ã ∈ SE(X̃).

The soft set X̃ with a soft G-metric G̃ on X̃ is said to be a soft G-metric space

and is denoted by (X̃, G̃, E).

Proposition 2.16 ([5]). For any soft metric d on X̃, we can construct a soft G-

metric by the following mappings G̃s and G̃m:

(1) G̃s(d)(x̃, ỹ, z̃) = 1
3 (d(x̃, ỹ) + d(ỹ, z̃) + d(x̃, z̃)),

(2) G̃m(d)(x̃, ỹ, z̃) = max{d(x̃, ỹ), d(ỹ, z̃), d(x̃, z̃)}.

Proposition 2.17 ([5]). For any soft G-metric G̃ on X̃, we can construct a soft

metric dG̃ on X̃ defined by

dG̃(x̃, ỹ) = G̃(x̃, ỹ, ỹ) + G̃(x̃, x̃, ỹ).

Definition 2.18 ([5]). Let (X̃, G̃, E) be a soft G-metric space and (x̃n) be a sequence

of soft elements in X̃. The sequence (x̃n) is said to be soft G-convergent at x̃ in X̃,

if for every ε̃≥̃0, chosen arbitrarily, there exists a natural number N=N(ε̃) such that

0≤̃ G̃(x̃n, x̃n, x̃) <̃ε̃, whenever n≥ N, i.e., n≥ N ⇒ (x̃n) ∈ BG̃(x̃, ε̃).
We denote this by x̃n → x̃ as n→∞ or by limn→∞(x̃n) = x̃.

Proposition 2.19 ([5]). Let (X̃, G̃, E) be a soft G-metric space, for a sequence (x̃n)

in X̃ and soft element x̃, then the followings are equivalent:
(1) (x̃n) is soft G-convergent to x̃,
(2) dG̃(x̃n, x̃) → 0 as n→∞,

(3) G̃(x̃n, x̃n, x̃) → 0 as n→∞,

(4) G̃(x̃n, x̃, x̃) → 0 as n→∞,

(5) G̃(x̃n, x̃m, x̃) → 0 as n, m→∞.

Definition 2.20 ([5]). Let (X̃, G̃, E), (X̃ ′, G̃′, E′) be two soft G-metric spaces. Then

a function f: X̃ → X̃ ′ defined by f(ã) = f̃(a) is soft G-continuous at a soft element

ã ∈ SE(X̃) if and only if for every ε̃>̃0, there exists δ̃≥̃0 such that x̃, ỹ∈̃X̃ and

G̃(ã, x̃, ỹ)<̃δ̃ implies that G̃′(f̃(a), f̃(x), f̃(y))<̃ε̃.
A function f is soft G-continuous if and only if it is soft G-continuous at all

ã ∈ SE(X̃).

Proposition 2.21 ([5]). Let (X̃, G̃, E), (X̃ ′, G̃′, E′) be two soft G-metric spaces.

Then a function f: X̃ → X̃ ′ is soft G-continuous at a soft element ã ∈ SE(X̃) if
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and only if it is soft G-sequentially continuous at a soft element ã ∈ SE(X̃), i.e.,

whenever (x̃n) is soft G-convergent to ã, (f̃(xn)) is soft G′-convergent to f̃(a).

Definition 2.22 ([5]). Let (X̃, G̃, E) be a soft G-metric space. Let T : (X̃, G̃, E)→
(X̃, G̃, E) be a mapping. If there exists a soft element x̃0 ∈ SE(X̃) such that T(x̃0)
= x̃0, then x̃0 is called a fixed point of T.

Definition 2.23 ([5]). Let (X̃, G̃, E) be a soft G-metric space. Let T : (X̃, G̃, E)→
(X̃, G̃, E) be a mapping. For every x0 ∈ SE(X̃), we can write the sequence of soft
elements by applying T on x̃0; x̃1=T (x̃0) , x̃2=T (x̃1) = T 2(x̃0),...,x̃n=T (x̃n−1) =
Tn(x̃0). We say that the sequence has been constructed by iteration method.

Theorem 2.24 ([5]). Let (X̃, G̃, E) be a soft G-metric space. Let T : (X̃, G̃, E)→
(X̃, G̃, E) be a mapping such that T satisfies the followings:

(i) G̃(T x̃, T ỹ, T z̃) ≤̃ aG̃(x̃, T x̃, T x̃) + bG̃(ỹ, T ỹ, T ỹ) + cG̃(z̃, T z̃, T z̃) for all x̃, ỹ,

z̃ ∈SE(X̃) where 0 <̃ a + b + c <̃ 1,

(ii) T is soft G-continuous at a soft element ũ ∈ SE(X̃),

(iii) There is x̃ ∈ SE(X̃); Tn(x̃) has a subsequence Tni(x̃) soft G-converges to ũ.
Then ũ is a unique fixed point. (i.e T ũ =ũ).

3. Soft G-completeness

Definition 3.1. Let (X̃, G̃, E) be a soft G-metric space and (x̃n) be a sequence of

soft elements in X̃.
The sequence (x̃n) is said to be soft G-Cauchy, if for every ε̃≥̃0, chosen arbitrarily,

there exists a natural number k such that G̃(x̃n, x̃m, x̃l) <̃ε̃, whenever n, m, l ≥ k.

A soft G-metric space (X̃, G̃, E) is said to be soft G-complete, if every soft G-

Cauchy sequence in (X̃, G̃, E) is soft G-convergent in (X̃, G̃, E).

Proposition 3.2. Let (X̃, G̃, E) be a soft G-metric space and (x̃n) be a sequence of

soft elements in X̃. Then the followings are equivalent:
(1) the sequence (x̃n) is soft G-Cauchy,

(2) for every ε̃≥̃0, there exists a natural number k such that G̃(x̃n, x̃m, x̃m) <̃ε̃ for
any n,m ≥ k,

(3) (x̃n) is a Cauchy sequence in the soft metric space (X̃, dG̃, E).

Proof. (1) ⇒ (2): It is obvious by axiom (G̃3).
(2) ⇔ (3): It is clear by the definition of dG̃.

(2) ⇒ (1): If we set ã = x̃m, then it is obvious by axiom (G̃5). �

Corollary 3.3. Every soft G-convergent sequence in any soft G-metric space (X̃, G̃, E)
is soft G-Cauchy.

Proposition 3.4. A soft G-metric space (X̃, G̃, E) is soft G-complete if and only
if (X, dG̃, E) is complete soft metric space.

Proof. It follows from Propositions 3.2 and 2.17. �
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Theorem 3.5. Let (X̃, G̃, E) be a soft G-complete space and T : (X̃, G̃, E) →
(X̃, G̃, E) be a mapping that satisfies the following condition for all x̃, ỹ, z̃ ∈SE(X̃),

G̃(T x̃, T ỹ, T z̃) ≤̃ aG̃(x̃, T x̃, T x̃) + bG̃(ỹ, T ỹ, T ỹ) + cG̃(z̃, T z̃, T z̃) + dG̃(x̃, ỹ, z̃) (3.1)

where 0≤̃a+ b+ c+ d<̃1.
Then T has a unique fixed point, say ũ, and T is soft G-continuous at ũ.

Proof. Let x̃0 ∈ SE(X̃) be an arbitrary soft element and define the sequence
(x̃n)n∈N by x̃n = Tn(x̃0). From (3.1), we get

G̃(x̃n, x̃n+1, x̃n+1)≤̃aG̃(x̃n−1, x̃n, x̃n) + bG̃(x̃n, x̃n+1, x̃n+1) + cG̃(x̃n, x̃n+1, x̃n+1)

+ dG̃(x̃n−1, x̃n, x̃n). (3.2)

Then

G̃(x̃n, x̃n+1, x̃n+1)≤̃(a+ d)G̃(x̃n−1, x̃n, x̃n) + (b+ c)G̃(x̃n, x̃n+1, x̃n+1). (3.3)

Thus we have

G̃(x̃n, x̃n+1, x̃n+1)≤̃ (a+ d)

1− (b+ c)
G̃(x̃n−1, x̃n, x̃n). (3.4)

Let k = (a+d)

1−(b+c)
. Since 0≤̃a+ b+ c+ d<̃1, 0≤̃k<̃1. So we get

G̃(x̃n, x̃n+1, x̃n+1)≤̃kG̃(x̃n−1, x̃n, x̃n). (3.5)

Hence we have the following inequalities :

G̃(x̃n−1, x̃n, x̃n)≤̃kG̃(x̃n−2, x̃n−1, x̃n−1),

G̃(x̃n−2, x̃n−1, x̃n−1)≤̃kG̃(x̃n−3, x̃n−2, x̃n−2), (3.6)
.
.
.

Combining (3.5) and (3.6), we obtain

G̃(x̃n, x̃n+1, x̃n+1)≤̃(k)nG̃(x̃0, x̃1, x̃1). (3.7)

For all m,n ∈ N such that n < m, we have

G̃(x̃n, x̃m, x̃m)≤̃G̃(x̃n, x̃n+1, x̃n+1) + G̃(x̃n+1, x̃n+1, x̃n+2) + ...+ G̃(x̃m−1, x̃m, x̃m)

≤̃((k)n + (k)n+1 + ...+ (k)m−1)G̃(x̃0, x̃1, x̃1) (3.8)

≤̃ (k)n

1− k
G̃(x̃0, x̃1, x̃1),

by (G̃5) and (3.7).

Thus G̃(x̃n, x̃m, x̃m)→ 0 as m,n→∞. So (x̃n) is a soft G-Cauchy sequence. Since

(X̃, G̃, E) is soft G-complete, there exists ũ ∈ SE(X̃) such that (x̃n) soft G-converges
to ũ.
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Assume that T (ũ) 6= ũ, i.e., T (ũ(λ0)) 6= ũ(λ0) for some λ0 ∈ E. Then by (3.1),
we have

G̃(x̃n, T ũ, T ũ)≤̃aG̃(x̃n−1, x̃n, x̃n) + bG̃(ũ, T ũ, T ũ) + cG̃(ũ, T ũ, T ũ)

+ dG̃(x̃n−1, ũ, ũ). (3.9)

Thus

G̃(x̃n, T ũ, T ũ)≤̃aG̃(x̃n−1, x̃n, x̃n) + (b+ c)G̃(ũ, T ũ, T ũ) + dG̃(x̃n−1, ũ, ũ). (3.10)

By taking the limit as n→∞, we get

G̃(ũ, T ũ, T ũ)≤̃(b+ c)G̃(ũ, T ũ, T ũ), (3.11)

since (x̃n)→ ũ. This is a contradiction. Hence T ũ = ũ.
Let us prove uniqueness. Suppose there exists a soft element ṽ such that ũ 6= ṽ

and T ṽ = ṽ. Then by (3.1), we get

G̃(ũ, ṽ, ṽ) = G̃(T ũ, T ṽ, T ṽ)≤̃aG̃(ũ, T ũ, T ũ)

+ (b+ c)G̃(ṽ, T ṽ, T ṽ) + dG̃(ũ, ṽ, ṽ)

= dG̃(ũ, ṽ, ṽ). (3.12)

Thus we find that ũ = ṽ.
Let us prove that T is soft G-continuous at ũ. Let (ỹn) be a sequence of soft

elements in X̃ such that (ỹn)→ ũ. Then by (3.1), we have

G̃(ũ, T ỹn, T ỹn)≤̃aG̃(ũ, T ũ, T ũ) + (b+ c)G̃(ỹn, T ỹn, T ỹn) + dG̃(ũ, ỹn, ỹn)

= (b+ c)G̃(ỹn, T ỹn, T ỹn) + dG̃(ũ, ỹn, ỹn). (3.13)

Also, by (G̃5), we have

G̃(ỹn, T ỹn, T ỹn)≤̃G̃(ỹn, ũ, ũ) + G̃(ũ, T ỹn, T ỹn). (3.14)

Then, we combine (3.13) and (3.14), to get

G̃(ũ, T ỹn, T ỹn)≤̃(b+ c)G̃(ỹn, ũ, ũ) + (b+ c)G̃(ũ, T ỹn, T ỹn) + dG̃(ũ, ỹn, ỹn).

Thus

G̃(ũ, T ỹn, T ỹn)≤̃ (b+ c)

1− (b+ c)
G̃(ỹn, ũ, ũ) +

d

1− (b+ c)
G̃(ũ, ỹn, ỹn). (3.15)

By taking the limit as n → ∞, we obtain G̃(ũ, T ỹn, T ỹn) → 0, since (ỹn) → ũ. So
T (ỹn) → ũ = T ũ, from Proposition 2.19. Hence T is soft G-continuous at ũ, by
Proposition 2.21. �

Corollary 3.6. Let (X̃, G̃, E) be a soft G-complete space and let T : (X̃, G̃, E) →
(X̃, G̃, E) be a mapping that satisfies the following condition for all x̃, ỹ, z̃ ∈SE(X̃),

G̃(T x̃, T ỹ, T z̃) ≤̃ aG̃(x̃, T x̃, T x̃)+bG̃(ỹ, T ỹ, T ỹ)+cG̃(z̃, T z̃, T z̃) (3.16)

where 0≤̃a + b + c<̃1. Then T has a unique fixed point, say ũ, and T is soft G-
continuous at ũ.

Proof. If we take d = 0 in Theorem 3.5, it is obvious. �
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The following example shows that (ii) and (iii) in Theorem 2.24 do not guarantee
the soft G-completeness of soft G-metric space.

Example 3.7. Consider the soft G-metric space (X̃, G̃m(d), E) where X̃(λ) = (0, 1]

in the real line and d̃(x̃, ỹ)(λ) = |x̃(λ)− ỹ(λ)| for each λ ∈ E and x̃, ỹ ∈ SE(X̃). Let

T (x̃) = x̃/4. Although the sequence (x̃n) of soft elements in X̃ where x̃n(λ) = 1/n
for each n ∈ N and for each λ ∈ E is a soft G- Cauchy, it is not soft G-convergent.

Then (X̃, G̃m(d), E) is not soft G-complete space. But the conditions (ii) and (iii)
in Theorem 2.24 are satisfied.

Theorem 3.8. Let (X̃, G̃, E) be a soft G-metric space and let M̃⊂̃ X̃ which meets

the condition ” there exists a sequence (x̃n) in M̃ such that (x̃n) → x̃ for every x̃

∈SE(X̃)”. Let T : (X̃, G̃, E)→ (X̃, G̃, E) be a mapping that satisfies the following:

(i) G̃(T x̃, T ỹ, T z̃) ≤̃ a(G̃(x̃, T x̃, T x̃) + G̃(ỹ, T ỹ, T ỹ) + G̃(z̃, T z̃, T z̃)) for all x̃, ỹ,

z̃ ∈SE(M̃) and 0 <̃ a <̃ 1
6 ,

(ii) T is a soft G-continuous mapping,

(iii) There is x̃ ∈ SE(X̃) such that Tn(x̃) soft G-converges to ũ, for each n ∈ N.
Then ũ is a unique fixed point. (i.e T ũ =ũ).

Proof. It is enough to show that condition (i) in Theorem 2.24 holds for any x̃, ỹ, z̃

∈SE(X̃).

Case 1: For x̃, ỹ, z̃ ∈ SE(X̃\M), let (x̃n), (ỹn) and (z̃n) be sequences in M̃ such

that (x̃n)→ x̃, (ỹn)→ ỹ and (z̃n)→ z̃. Then by axiom (G̃5), we have

G̃(T x̃, T ỹ, T z̃)≤̃G̃(T x̃, T ỹ, T ỹ) + G̃(T ỹ, T ỹ, T z̃)
and
G̃(T z̃, T ỹ, T ỹ)≤̃G̃(T z̃, T z̃n, T z̃n) + G̃(T z̃n, T ỹn, T ỹn) + G̃(T ỹn, T ỹ, T ỹ). (3.17)

By (i), we obtain

G̃(T z̃n, T ỹn, T ỹn)≤̃a{G̃(z̃n, T z̃n, T z̃n) + 2G̃(ỹn, T ỹn, T ỹn)}. (3.18)

Again by axiom (G̃5), we have

G̃(z̃n, T z̃n, T z̃n)≤̃G̃(z̃n, z̃, z̃) + G̃(z̃, T z̃, T z̃) + G̃(T z̃, T z̃n, T z̃n) (3.19)
and
G̃(ỹn, T ỹn, T ỹn)≤̃G̃(ỹn, ỹ, ỹ)+ G̃(ỹ, T ỹ, T ỹ)+ G̃(T ỹ, T ỹn, T ỹn). (3.20)

Thus, from (3.18), (3.19) and (3.20), we get

G̃(T z̃, T ỹ, T ỹ)≤̃G̃(T z̃, T z̃n, T z̃n) + G̃(T ỹn, T ỹ, T ỹ)

+ aG̃(z̃n, z̃, z̃) + aG̃(T z̃, T z̃n, T z̃n) + 2aG̃(ỹn, ỹ, ỹ)

+ 2aG̃(T ỹ, T ỹn, T ỹn) + aG̃(z̃, T z̃, T z̃) + 2aG̃(ỹ, T ỹ, T ỹ)

≤̃(1 + a)G̃(T z̃, T z̃n, T z̃n) + G̃(T ỹn, T ỹ, T ỹ)

+ aG̃(z̃n, z̃, z̃) + 2aG̃(ỹn, ỹ, ỹ) + 2aG̃(T ỹ, T ỹn, T ỹn)

+ aG̃(z̃, T z̃, T z̃) + 2aG̃(ỹ, T ỹ, T ỹ).
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So

G̃(T z̃, T ỹ, T ỹ)≤̃(1 + a)G̃(T z̃, T z̃n, T z̃n) + G̃(T ỹn, T ỹ, T ỹ)

+ aG̃(z̃n, z̃, z̃) + 2aG̃(ỹn, ỹ, ỹ) + 2aG̃(T ỹ, T ỹn, T ỹn)

+ aG̃(z̃, T z̃, T z̃) + 2aG̃(ỹ, T ỹ, T ỹ). (3.21)

Similarly, we obtain

G̃(T x̃, T ỹ, T ỹ)≤̃(1 + a)G̃(T x̃, T x̃n, T x̃n) + G̃(ỹn, T ỹ, T ỹ)

+ aG̃(x̃n, x̃, x̃) + 2aG̃(ỹn, ỹ, ỹ) + 2aG̃(T ỹ, T ỹn, T ỹn)

+ aG̃(x̃, T x̃, T x̃) + 2aG̃(ỹ, T ỹ, T ỹ). (3.22)

Hence, from (3.21) and (3.22), we get

G̃(T x̃, T ỹ, T z̃)≤̃G̃(T x̃, T ỹ, T ỹ) + G̃(T z̃, T ỹ, T ỹ)

≤̃{(1 + a)G̃(T x̃, T x̃n, T x̃n) + G̃(ỹn, T ỹ, T ỹ)

+ aG̃(x̃n, x̃, x̃) + 2aG̃(ỹn, ỹ, ỹ) + 2aG̃(T ỹ, T ỹn, T ỹn)

+ aG̃(x̃, T x̃, T x̃) + 2aG̃(ỹ, T ỹ, T ỹ)}

+ {(1 + a)G̃(T z̃, T z̃n, T z̃n) + G̃(T ỹn, T ỹ, T ỹ)

+ aG̃(z̃n, z̃, z̃) + 2aG̃(ỹn, ỹ, ỹ) + 2aG̃(T ỹ, T ỹn, T ỹn)

+ aG̃(z̃, T z̃, T z̃) + 2aG̃(ỹ, T ỹ, T ỹ)}.

Taking the limit as n →∞, we obtain

G̃(T x̃, T ỹ, T z̃)≤̃a{G̃(x̃, T x̃, T x̃) + 4G̃(ỹ, T ỹ, T ỹ) + G̃(z̃, T z̃, T z̃)},
since T is soft G-continuous.

Case 2: For x̃, ỹ ∈ SE(M̃), z̃ ∈ SE(X̃\M), let (z̃n) be a sequence in M̃ such

that (z̃n)→ z̃. Then by axiom (G̃5), we have

G̃(T x̃, T ỹ, T z̃)≤̃G̃(T x̃, T ỹ, T ỹ) + G̃(T z̃, T ỹ, T ỹ).
By (i), we obtain

G̃(T x̃, T ỹ, T ỹ)≤̃a{G̃(x̃, T x̃, T x̃)+2G̃(ỹ, T ỹ, T ỹ)}. (3.23)

Again by axiom (G̃5), we have

G̃(T z̃, T ỹ, T ỹ)≤̃G̃(T z̃, T z̃n, T z̃n)+G̃(T z̃n, T ỹ, T ỹ). (3.24)

By (i) and (G̃5), we get

G̃(T z̃n, T ỹ, T ỹ)≤̃a{G̃(z̃n, T z̃n, T z̃n)+2G̃(ỹ, T ỹ, T ỹ)} (3.25)
and

G̃(z̃n, T z̃n, T z̃n)≤̃G̃(z̃n, z̃, z̃)+G̃(z̃, T z̃, T z̃)+G̃(T z̃, T z̃n, T z̃n). (3.26)
By inequalities (3.23), (3.24), (3.25) and (3.26), we obtain

G̃(T x̃, T ỹ, T z̃)≤̃aG̃(x̃, T x̃, T x̃) + 2aG̃(ỹ, T ỹ, T ỹ) + aG̃(z̃n, z̃, z̃) + aG̃(z̃, T z̃, T z̃)

+ aG̃(T z̃, T z̃n, T z̃n) + G̃(T z̃, T z̃n, T z̃n) + 2aG̃(ỹ, T ỹ, T ỹ).

Now letting n → ∞ in the previous inequality, we get

G̃(T x̃, T ỹ, T z̃)≤̃a{G̃(x̃, T x̃, T x̃) + 4G̃(ỹ, T ỹ, T ỹ) + G̃(z̃, T z̃, T z̃)}.
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Case 3: For ỹ ∈ SE(M̃), x̃, z̃ ∈ SE(X̃\M), let (x̃n) and (z̃n) be sequences in M̃

such that (x̃n)→ x̃ and (z̃n)→ z̃. Then by axiom (G̃5), we have

G̃(T x̃, T ỹ, T z̃)≤̃G̃(T x̃, T ỹ, T ỹ)+G̃(T z̃, T ỹ, T ỹ) (3.27)
and

G̃(T x̃, T ỹ, T ỹ)≤̃G̃(T x̃, T x̃n, T x̃n)+G̃(T x̃n, T ỹ, T ỹ). (3.28)
Also

G̃(T x̃n, T ỹ, T ỹ)≤̃a{G̃(x̃n, T x̃n, T x̃n)+2G̃(ỹ, T ỹ, T ỹ)} (3.29)
and

G̃(x̃n, T x̃n, T x̃n)≤̃G̃(x̃n, x̃, x̃)+G̃(x̃, T x̃, T x̃)+G̃(T x̃, T x̃n, T x̃n). (3.30)
Thus by (3.29) and (3.30), we obtain

G̃(T x̃n, T ỹ, T ỹ)≤̃aG̃(x̃n, x̃, x̃) + aG̃(x̃, T x̃, T x̃)

+ aG̃(T x̃, T x̃n, T x̃n) + 2aG̃(ỹ, T ỹ, T ỹ). (3.31)

So from (3.27) and (3.31), we have

G̃(T x̃, T ỹ, T ỹ)≤̃aG̃(x̃n, x̃, x̃) + aG̃(x̃, T x̃, T x̃)

+ (1 + a)G̃(T x̃, T x̃n, T x̃n) + 2aG̃(ỹ, T ỹ, T ỹ). (3.32)

Similarly, we obtain

G̃(T z̃, T ỹ, T ỹ)≤̃aG̃(z̃n, z̃, z̃) + aG̃(z̃, T z̃, T z̃)

+ (1 + a)G̃(T z̃, T z̃n, T z̃n) + 2aG̃(ỹ, T ỹ, T ỹ). (3.33)

Hence from (3.32) and (3.33), we have

G̃(T x̃, T ỹ, T z̃)≤̃G̃(T x̃, T ỹ, T ỹ) + G̃(T z̃, T ỹ, T ỹ)

≤̃aG̃(x̃n, x̃, x̃) + aG̃(x̃, T x̃, T x̃)

+ (1 + a)G̃(T x̃, T x̃n, T x̃n) + 2aG̃(ỹ, T ỹ, T ỹ)

+ aG̃(z̃n, z̃, z̃) + aG̃(z̃, T z̃, T z̃)

+ (1 + a)G̃(T z̃, T z̃n, T z̃n) + 2aG̃(ỹ, T ỹ, T ỹ).

Now letting n → ∞ in the previous inequality, we get

G̃(T x̃, T ỹ, T z̃)≤̃a{G̃(x̃, T x̃, T x̃) + 4G̃(ỹ, T ỹ, T ỹ) + G̃(z̃, T z̃, T z̃)},
since T is soft G-continuous. Then, in all case, we have for any x̃, ỹ, z̃ ∈ SE(X̃),

G̃(T x̃, T ỹ, T z̃)≤̃aG̃(x̃, T x̃, T x̃) + bG̃(ỹ, T ỹ, T ỹ) + cG̃(z̃, T z̃, T z̃),

where c= a, b=4a, and 0<̃a + b + c <̃1, since 0<̃a <̃ 1
6 . Thus, T has a unique fixed

point by Theorem 2.24. �
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