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1. Introduction

In [3, 4, 5, 6], T. K. Dutta and B. K. Biswas introduced and studied some
properties of fuzzy prime, fuzzy semiprime, fuzzy completely prime ideals in semiring
. In [7], Xiang-Yun Xie introduced the concept of extension of fuzzy ideals of
semigroups and in [8], Xie and Yan generalised the concept on ordered semigroups.
The aim of this paper is to introduce the extension of fuzzy ideals of semirings as
Xiang-Yun Xie did in case of semigroups. We also want to see how far the results
of Xiang-Yun Xie in case of semigroups are valid in case of semirings. In this paper
we introduce the concepts of extension of fuzzy ideal, fuzzy 3-weakly completely
prime ideal in semiring and study the relationship between fuzzy weakly completely
prime, fuzzy 3-weakly completely prime by means of the extensions of fuzzy ideals of
semiring. Finally we have shown that if µ is a fuzzy semiprime ideal of a commutative
semiring S then µ is the infimum of all fuzzy weakly completely prime ideal of S
containing µ.
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2. Preliminaries

Definition 2.1. A nonempty set S is said to form a semiring with respect to two
binary compositions, addition(+) and multiplication(.) defined on it, if the following
conditions are satisfied :

(i) (S,+) is a commutative semigroup with zero (‘0’),
(ii) (S, .) is a semigroup,
(iii) for any three elements a, b, c ∈ S, the left distributive law a.(b+c) = a.b+a.c

and the right distributive law (b+ c).a = b.a+ c.a both ,
(iv) s.0 = 0.s = 0, for all s ∈ S.

Definition 2.2 ([2]). A nonempty subset I of a semiring S is called an ideal if
(i) a, b ∈ I implies a+ b ∈ I,
(ii) a ∈ I, s ∈ S implies s.a ∈ I and a.s ∈ I.

Definition 2.3 ([1]). An ideal I of a semiring S is called a k-ideal if b ∈ S, a+b ∈ I
and a ∈ I implies b ∈ I.

Definition 2.4 ([3]). Let µ be a nonempty fuzzy subset of a semiring S ( i.e.
µ(x) 6= 0 for some x ∈ S ). Then µ is called a fuzzy left [ fuzzy right ] ideal of S if

(i) µ(x+ y) ≥ min[µ(x), µ(y)],
(ii) µ(xy) ≥ µ(y) [resp. µ(xy) ≥ µ(x) ], ∀x, y ∈ S.
A fuzzy ideal of a semiring S is a nonempty fuzzy subset of S which is a fuzzy

left ideal as well as a fuzzy right ideal of S.

Definition 2.5 ([4]). A fuzzy left ideal (fuzzy right ideal, fuzzy ideal) of a semiring
S is said to be a fuzzy left k-ideal (resp. fuzzy right k-ideal, fuzzy k-ideal) of S if

µ(x) ≥ min[µ(x+ y), µ(y)], ∀x, y ∈ S.

Definition 2.6 ([4]). Let S be a semiring and µ1, µ2 be two fuzzy ideals of S. Then
composition of µ1 and µ2, denoted by µ1oµ2 and is defined by

µ1oµ2(x) =

{
sup
x=uv

[min[µ1(u), µ2(v)]],

0 if x is not expressible as x = uv for any u, v ∈ S.

Definition 2.7 ([3]). A fuzzy ideal µ of a semiring S is called a fuzzy prime ideal if
µ is not a constant function and for any two fuzzy ideals µ1 and µ2 of S, µ1oµ2 ⊆ µ
implies that either µ1 ⊆ µ or µ2 ⊆ µ.

Definition 2.8 ([5]). A fuzzy ideal µ of a semiring S is said to be a fuzzy semiprime
ideal if µ is not a constant function and for any fuzzy ideal θ of S, θoθ ⊆ µ implies
that θ ⊆ µ.

Throughout this paper Z+
0 denotes the semiring of all nonnegative integers with

respect to the usual addition and multiplication of integers.

3. Extension of fuzzy ideals

Definition 3.1. Let S be a semiring, µ be a fuzzy subset of S and s ∈ S. The fuzzy
subset < s, µ >: S → [0, 1], defined by < s, µ > (x) = µ(sx), is called extension of µ
by s.

Example 3.2. Let S = Z+
0 . We define a fuzzy subset µ of S as follows:
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µ(0) = 1, µ(n) =

{
.5, if n is even,
.3, if n is odd.

Then < 2, µ > (n) =

{
1, if n = 0,
.5, if n 6= 0

is the extension of µ by 2.

Here extension of µ by 2 is also a fuzzy subset of S takes only the values which
takes µ for the integers of multiple of 2.

Proposition 3.3. Let S be a commutative semiring. If µ is a fuzzy ideal of S and
s ∈ S, then the extension of µ by s is a fuzzy ideal of S.

Proof. Obviously < s, µ > is a fuzzy subset of S.
Let x, y ∈ S. Then

< s, µ > (x+ y) = µ(s(x+ y))
= µ(sx+ sy)
≥ min[µ(sx), µ(sy)]
= min[< s, µ > (x), < s, µ > (y)].

.

Thus
< s, µ > (x+ y) ≥ min[< s, µ > (x), < s, µ > (y)].

Also
< s, µ > (xy) = µ(sxy) ≥ µ(sx) =< s, µ > (x)

and
< s, µ > (xy) = µ(sxy) = µ(syx) ≥ µ(sy) =< s, µ > (y).

So < s, µ > is a fuzzy ideal of S. �

The converse of the above proposition may not be true. This follows from the
following example.

Example 3.4. We define a fuzzy subset µ : Z+
0 → [0, 1] as follows:

µ(0) = 1, µ(n) =

{
.5, if 1 ≤ n ≤ 4,
.2, if n > 4.

Then µ is not a fuzzy ideal of Z+
0 , as µ(3 + 4) 6≥ min{µ(3), µ(4)}.

Now < 5, µ > (n) =

{
1, if n = 0,
.2, if n 6= 0.

Clearly, < 5, µ > is a fuzzy ideal of Z+
0 .

Proposition 3.5. Let S be a commutative semiring. If µ is a fuzzy k-ideal of S
and s ∈ S, then the extension of µ by s is a fuzzy k-ideal of S.

Proof. By Proposition 3.3, < s, µ > is a fuzzy ideal of S. Since µ is a fuzzy k-ideal
of S, µ(sx) ≥ min[µ(sx+ sy), µ(sy)] for all x, y ∈ S. Then

< s, µ > (x) ≥ min[< s, µ > (x+ y), < s, µ > (y)]

for all x, y ∈ S.
Thus < s, µ > is a fuzzy k-ideal of S. �

Here also the converse may not be true. This follows from the following example.

Example 3.6. We define a fuzzy subset µ : Z+
0 → [0, 1] of Z+

0 as follows:
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µ(0) = 1, µ(n) =

{
.2, if 1 ≤ n ≤ 7,
.5, if n > 7.

Then clearly, µ is a fuzzy ideal of Z+
0 .

Here µ is not a fuzzy k-ideal of Z+
0 , as µ(3) 6≥ min{µ(3 + 9), µ(9)}.

Now < 8, µ > (n) =

{
1, if n = 0,
.5, if n 6= 0.

By proposition 3.3, < 8, µ > is a fuzzy ideal of Z+
0 .

Let x, y ∈ Z+
0 .

Case-1: If x = 0, then < 8, µ > (x) = 1 ≥ min[< 8, µ > (x+ y), < 8, µ > (y)].
Case-2: If x 6= 0, then < 8, µ > (x+ y) = .5. So

< 8, µ > (x) = .5 = min[< 8, µ > (x+ y), < 8, µ > (y)].

Thus < 8, µ > (x) ≥ min[< 8, µ > (x + y), < 8, µ > (y)], ∀x, y ∈ Z+
0 . Hence the

extension of the fuzzy ideal µ by 8 is a fuzzy k-ideal of Z+
0 .

Definition 3.7. If µ is a fuzzy subset of S, where S is a semiring, we define

suppµ = {s ∈ S : µ(s) > 0}.

Proposition 3.8. Let S be a semiring, µ be a fuzzy ideal of S and s ∈ S. Then
(1) µ ⊆< s, µ >.
(2) < sn, µ >⊆< sn+1, µ > for every natural number n.
(3) If µ(s) > 0, then supp < s, µ >= S.

Proof. (1) Since µ is a fuzzy ideal of S, we have

< s, µ > (x) = µ(sx) ≥ µ(x),∀x ∈ S.

Thus µ ⊆< s, µ >.
(2) For all natural number n and ∀x ∈ S,

< sn+1, µ > (x) = µ(sn+1x) = µ(ssnx) ≥ µ(snx) =< sn, µ > (x).

Then < sn, µ >⊆< sn+1, µ >.
(3) Let x ∈ S. Then < s, µ > (x) = µ(sx) ≥ µ(s) > 0. Thus x ∈ supp < s, µ >.

So supp < s, µ >= S. �

Proposition 3.9 ([3]). If µ is a fuzzy subset of a semiring S then µ is a fuzzy prime
ideal of S if and only if Imµ = {1, α},
where α ∈ [0, 1) and µ0 = {x ∈ S : µ(x) = µ(0)} is a fuzzy prime ideal of S.

Proposition 3.10 ([5]). If µ is a fuzzy semiprime ideal of a commutative semiring
S, then µ(x2) = µ(x) for all x ∈ S.

In the proposition 3.8(2), we have shown that for any fuzzy ideal µ of a semiring
S, < x, µ >⊆< x2, µ >, ∀x ∈ S. In the next proposition, we show that if S is a
commutative semiring and µ is a fuzzy semiprime ideal of S then extensions of fuzzy
ideal µ by x and x2 are equal for all x ∈ S.

Proposition 3.11. If S is a commutative semiring and µ is a fuzzy semiprime ideal
of S, then < x, µ >=< x2, µ >, ∀x ∈ S.

Proof. It is clear that
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< x2, µ > (y) = µ(x2y) = µ(xxy) ≥ µ(xy) =< x, µ > (y), ∀y ∈ S.

Then < x, µ >⊆< x2, µ >. On one hand,
µ(xy) = µ(xy)2, as µ is semiprime

= µ(x2y2), as S is commutative
≥ µ(x2y)

.

Thus < x, µ > (y) ≥< x2, µ > (y), ∀y ∈ S. So < x2, µ >⊆< x, µ >. Hence
< x, µ >=< x2, µ >, ∀x ∈ S. �

Definition 3.12. Let S be a semiring , A be a subset of S and x ∈ S. Define

< x,A >= {s ∈ S : xs ∈ A}.

Proposition 3.13. Let S be a semiring and A be a nonempty subset of S. Then
< s, λA >= λ<s,A> for all s ∈ S.

The proof is trivial and hence we omit it.

Definition 3.14. Let S be a semiring and µ be a fuzzy ideal of S. µ is called a fuzzy
weakly completely prime ideal if µ(x1x2) = max{µ(x1), µ(x2)} for all x1, x2 ∈ S.

Proposition 3.15 ([3]). If µ is a fuzzy completely prime ideal of a semiring S, then
µ0 is a completely prime ideal of S.

Proposition 3.16. Every fuzzy completely prime ideal of a semiring S is fuzzy
weakly completely prime.

Proof. Let S be a semiring and µ be a fuzzy completely prime ideal of S. Then
by Proposition 3.15, µ0 is a fuzzy completely prime ideal of S and Imµ = {1, α},
where α ∈ [0, 1). Let x1, x2 ∈ S.

Case-1: Let µ(x1x2) = 1. Then x1x2 ∈ µ0. Since µ0 is a completely prime ideal
of S, x1 ∈ µ0 or x2 ∈ µ0. Thus µ(x1) = 1 or µ(x2) = 1. So max{µ(x1), µ(x2)} = 1.
Hence µ(x1x2) = max{µ(x1), µ(x2)}.

Case-2: Let µ(x1x2) 6= 1. Then µ(x1x2) = α. Thus µ(x1) = α and µ(x2) = α,
otherwise either µ(x1) = 1 or µ(x2) = 1. This implies that x1x2 ∈ µ0, i.e.,
µ(x1x2) = 1, a contradiction. So max{µ(x1), µ(x2)} = α. Hence µ(x1x2) =
max{µ(x1), µ(x2)}, i.e., µ(x1x2) = max{µ(x1), µ(x2)}, for all x1, x2 ∈ S. Therefore
µ is a fuzzy weakly completely prime ideal of S. �

Converse of the above proposition may not be true. This follows from the following
example.

Example 3.17. Let S = Z+
0 . We define a fuzzy subset µ of S as follows:

µ(0) = 1, µ(n) =

{
.5, if n is even,
.3, if n is odd.

Now µ is a fuzzy ideal of S. Here µ is not a fuzzy prime ideal, as |Imµ| = 3. Then
µ is not a fuzzy completely prime ideal of S. Let x1, x2 ∈ S.

Case-1: Let either x1 = 0 or x2 = 0. Then µ(x1) = 1 or µ(x2) = 1 and x1x2 = 0
which implies that µ(x1x2) = 1. Thus µ(x1x2) = max{µ(x1), µ(x2)}.

Case-2: Let at least one of x1 or x2 is a nonzero even positive integer and x1 6=
0, x2 6= 0. Then x1x2 is even. Thus µ(x1x2) = .5 and µ(x1x2) = max{µ(x1), µ(x2)}.

683



M. L. Das et al. /Ann. Fuzzy Math. Inform. 12 (2016), No. 5, 679–690

Case-3: Let both x1 and x2 are odd. Then x1x2 is odd. Thus µ(x1) = .3,
µ(x2) = .3 and µ(x1x2) = .3. So µ(x1x2) = max{µ(x1), µ(x2)}. Hence µ is a fuzzy
weakly completely prime ideal of S.

Proposition 3.18. Let S be a commutative semiring and µ be a fuzzy weakly com-
pletely prime ideal of S such that Imµ = {1, α}. Then µ is a fuzzy completely prime
ideal of S.

Proof. Suppose x1Sx2 ⊆ µ0, where x1, x2 ∈ S. Then x1sx2 ∈ µ0, ∀s ∈ S. Thus
x2

1x2 ∈ µ0. So µ(x2
1x2) = 1. Since µ is a fuzzy weakly completely prime ideal of

S, µ(x2
1x2) = max{µ(x1), µ(x2)} = 1. Hence either µ(x1) = 1 or µ(x2) = 1, which

implies that x1 ∈ µ0 or x2 ∈ µ0. Therefore µ0 is a prime ideal of S. Therefore by
proposition 3.9, µ is a fuzzy prime ideal of S. Since S is commutative, µ is a fuzzy
completely prime ideal of S. �

Theorem 3.19. Let S be a semiring and µ be a fuzzy weakly completely prime ideal
of S. If x ∈ S is such that µ(x) = inf

y∈S
µ(y), then < x, µ >= µ.

Proof. Clearly inf
y∈S

µ(y) exists in [0, 1]. Let y ∈ S. Then

(3.1) < x, µ > (y) = µ(xy).

Since µ is a fuzzy weakly completely prime ideal of S, µ(xy) = max{µ(x), µ(y)}.
Then

(3.2) either µ(xy) = µ(x) or µ(xy) = µ(y).

Let µ(xy) 6= µ(y). Then by (3.2),

(3.3) µ(xy) = µ(x).

Since µ is a fuzzy ideal of S, by Proposition 3.8, µ ⊆< x, µ >. Thus by (3.3),

µ(y) ≤< x, µ > (y) = µ(xy) = µ(x).

Also since µ(x) = inf
y∈S

µ(y), µ(x) ≤ µ(y). So µ(x) = µ(y) and µ(xy) = µ(y), a

contradiction. Hence µ(xy) = µ(y), i.e., < x, µ > (y) = µ(y), ∀y ∈ S. Therefore
< x, µ >= µ. �

Proposition 3.20. Let S be a semiring and µ be a fuzzy completely prime ideal of
S. If x ∈ S is such that x 6∈ µ0, then < x, µ >= µ.

Proof. Since µ is a fuzzy completely prime ideal of S, µ0 is a completely prime ideal
of S. Suppose Imµ = {1, α}. Let s ∈ S.

case-1: Let s ∈ µ0. Then xs ∈ µ0. Thus < x, µ > (s) = µ(xs) = 1 = µ(s).
case-2: Let s 6∈ µ0. Then xs 6∈ µ0, as µ0 is a completely prime ideal of S.

Thus < x, µ > (s) = µ(xs) = α = µ(s). So < x, µ > (s) = µ(s), ∀s ∈ S. Hence
< x, µ >= µ. �

Proposition 3.21. [3] Let I be a prime ideal of a semiring S. Then the charac-
teristic function λI is a fuzzy prime ideal of S.

Proposition 3.22. Let S be a commutative semiring and I be an ideal of S. If I
is a prime ideal of S then for x ∈ S such that x 6∈ I, < x, λI >= λI .
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Proof. Since I is a prime ideal of S, by Proposition 3.21, λI is a fuzzy prime
ideal of S. Now x 6∈ I, λI(x) = 0. Then x 6∈ (λI)0. Thus by Proposition 3.20,
< x, λI >= λI . �

Proposition 3.23. Let S be a commutative semiring and µ be a fuzzy prime ideal
of S. Then < x, µ > is a fuzzy prime ideal of S for x ∈ S such that x 6∈ µ0.

Proof. Since S is commutative, µ is a fuzzy completely prime ideal of S. Then by
Proposition 3.20, < x, µ >= µ. Thus < x, µ > is a fuzzy prime ideal of S. �

Proposition 3.24. Let S be a semiring and µ be a fuzzy prime ideal of S. If x ∈ µ0,
then < x, µ >= λS.

Proof. Since x ∈ µ0, xs ∈ µ0 for all s ∈ S. Then < x, µ > (s) = µ(xs) = 1 = λS(s),
for all s ∈ S. Thus < x, µ >= λS . �

Theorem 3.25. Let S be a commutative semiring and µ be a fuzzy subset of S such
that < s, µ >= µ for every s ∈ S. Then µ is constant.

Proof. Let x, y ∈ S. Then < x, µ >= µ and < y, µ >= µ. Thus

µ(y) =< x, µ > (y) = µ(xy) = µ(yx) =< y, µ > (x) = µ(x).

So µ is constant. �

Theorem 3.26. Let S be a semiring, µ be a fuzzy ideal of S and Imµ = {1, α}.
Suppose < y, µ >= µ for all those y ∈ S for which µ(y) = α. Then µ is a fuzzy
weakly completely prime ideal of S.

Proof. Let x1, x2 ∈ S. Since µ is a fuzzy ideal of S, we have

(3.4) µ(x1x2) ≥ µ(x1) and µ(x1x2) ≥ µ(x2).

Case-1: Suppose µ(x1x2) = µ(x1). Then by (3.4), µ(x1) ≥ µ(x2). Thus

max{µ(x1), µ(x2)} = µ(x1) = µ(x1x2).

Case-2: Suppose µ(x1x2) 6= µ(x1). Then µ(x1) can not be a maximal element
of µ(S), otherwise µ(x1) = 1 = µ(x1x2), a contradiction. Thus µ(x1) = α and by
hypothesis, < x1, µ >= µ. So < x1, µ > (x2) = µ(x2), i.e., µ(x1x2) = µ(x2). Hence
µ(x2) = µ(x1x2) ≥ µ(x1) and thus µ(x1x2) = max{µ(x1), µ(x2)}. Therefore µ is a
fuzzy weakly completely prime ideal. �

Proposition 3.27. Let S be a commutative semiring and µ be a fuzzy weakly com-
pletely prime ideal of S, then < x, µ > is a fuzzy weakly completely prime ideal of S
for every x ∈ S.

Proof. Since µ is a fuzzy ideal of a commutative semiring S, by Proposition 3.3,
< x, µ > is a fuzzy ideal of S for every x ∈ S. Let y, z ∈ S. Then

< x, µ > (yz) = µ(xyz)
= max{µ(xy), µ(z)}
= max{µ(x), µ(y), µ(z)}
= max{µ(xy), µ(xz)}
= max{< x, µ > (y), < x, µ > (z)}

Thus < x, µ > is a fuzzy weakly completely prime ideal of S. �
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Proposition 3.28. [5] If I(6= S) is a semiprime ideal of a semiring S, then the
characteristic function λI of I is a fuzzy semiprime ideal.

Proposition 3.29. Let S be a commutative semiring and µ be a fuzzy semiprime
ideal of S. Then < x, µ > is a fuzzy semiprime ideal of S for every x ∈ S.

Proof. Let x ∈ S. As µ is a fuzzy ideal of S, by Proposition 3.3, < x, µ > is a fuzzy
ideal of S. Let y ∈ S. Then < x, µ > (y2) = µ(xy2) ≥ µ(xy) =< x, µ > (y).
Again

< x, µ > (y) = µ(xy)
= µ(xy)2, as µ is semiprime
= µ(x2y2), as S is commutative
≥ µ(xy2)
= < x, µ > (y2).

Thus < x, µ > (y2) =< x, µ > (y), ∀y ∈ S. So < x, µ > is a fuzzy semiprime ideal
of S. �

Corollary 3.30. Let S be a commutative semiring, {µi}i∈Λ be a nonempty family
of fuzzy semiprime ideals of S and µ = inf

i∈Λ
µi. Then for any x ∈ S, < x, µ > is a

fuzzy semiprime ideal of S.

Proof. Obviously µ is a fuzzy subset of S. Let x, y ∈ S. Then
µ(x+ y) = inf

i∈Λ
µi(x+ y)

≥ inf
i∈Λ

min{µi(x), µi(y)}
= min{inf

i∈Λ
µi(x), inf

i∈Λ
µi(y)}

= min{µ(x), µ(y)}.
Also,

µ(xy) = inf
i∈Λ

µi(xy)

≥ inf
i∈Λ

µi(x)

= µ(x).
Similarly µ(xy) ≥ µ(y). Thus µ is a fuzzy ideal of S.
Now

µ(y2) = inf
i∈Λ

µi(y
2)

= inf
i∈Λ

µi(y), as each µi is semiprime

= µ(y).
So µ is a fuzzy semiprime ideal of S. Hence by Proposition 3.29, < x, µ > is a fuzzy
semiprime ideal for all x ∈ S. �

Corollary 3.31. Let S be a commutative semiring and {Pi}i∈Λ be a nonempty

family of semiprime ideals of S and P =
⋂
i∈Λ

Pi 6= φ. Then < x, λP > is a fuzzy

semiprime ideal of S for every x ∈ S.

Proof. Obviously P =
⋂
i∈Λ

Pi is a semiprime ideal of S. Then by Proposition 3.28,

λP is a fuzzy semiprime ideal of S. Thus by Proposition 3.29, < x, λP > is a fuzzy
semiprime ideal of S for every x ∈ S. �
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Corollary 3.32. Let S be a commutative semiring and µ be a fuzzy weakly com-
pletely prime ideal of S. If µ is not constant then µ is not a maximal fuzzy weakly
completely ideal of S.

Proof. Since µ is a weakly fuzzy completely prime ideal of S, by Proposition 3.27,
for each x ∈ S, < x, µ > is a fuzzy weakly completely prime ideal of S. Also there
exists x ∈ S such that µ ⊂< x, µ >, otherwise µ =< x, µ >, ∀x ∈ S which implies
that µ is constant (by Theorem 3.25), a contradiction. Then µ is not a maximal
fuzzy weakly completely ideal of S. �

Theorem 3.33. Let S be commutative semiring and µ be a fuzzy semiprime ideal
of S, then
µ = inf{< x, µ >: x ∈ S}.

Proof. By Proposition 3.8, µ ⊆< x, µ >, ∀x ∈ S.
Let µ1 be any fuzzy ideal of S such that µ1 ⊆< x, µ >, ∀x ∈ S. Let y ∈ S. Then

µ1(y) ≤ < y, µ > (y)
= µ(y2)
= µ(y), as µ is semiprime.

Thus µ1 ⊆ µ. So µ = inf{< x, µ >: x ∈ S}. �

4. Fuzzy 3-weakly completely prime ideal

Definition 4.1. Let S be a semiring. A fuzzy ideal µ of S is called fuzzy 3-weakly
completely prime (3-WCP) ideal if for any x1, x2, x3 ∈ S,

µ(x1x2x3) = max{µ(x1x2), µ(x1x3)}
= max{µ(x2x3), µ(x2x1)}
= max{µ(x3x1), µ(x3x2)}.

Example 4.2. Let S = 2Z+
0 . We define a fuzzy subset µ of S as follows:

µ(0) = 1, µ(2) = .3 and µ(2n) = .5, for n ≥ 2.

Obviously µ is a fuzzy ideal of S. Let x1, x2, x3 ∈ S.
Case-1: If at least one of x1, x2 or x3 is 0, then

µ(x1x2x3) = 1 = max{µ(x1x2), µ(x1x3)}
= max{µ(x2x3), µ(x2x1)}
= max{µ(x3x1), µ(x3x2)}.

Case-2: If each of x1, x2 and x3 are nonzero, then each of x1x2x3, x1x2, x1x3,
x2x3, x2x1, x3x1, x3x2 are greater than or equal to 4. Thus

µ(x1x2x3) = .5 = max{µ(x1x2), µ(x1x3)}
= max{µ(x2x3), µ(x2x1)}
= max{µ(x3x1), µ(x3x2)}.

Thus µ is a fuzzy 3-WCP ideal of S.

Proposition 4.3. Let S be a semiring and µ be a fuzzy ideal of S. If µ is a fuzzy
weakly completely prime ideal of S then µ is a fuzzy 3-WCP ideal of S.

Proof. Let x1, x2, x3 ∈ S. Since µ is a fuzzy weakly completely prime ideal of S,
µ(xixj) = µ(xjxi), ∀i, j = 1, 2, 3.
Now
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µ(x1x2x3) = max{µ(x1), µ(x2x3)}
≤ max{µ(x1x2), µ(x2x3)}
≤ max{µ(x1x2x3), µ(x1x2x3)}
= µ(x1x2x3).

Then
µ(x1x2x2) = max{µ(x1x2), µ(x2x3)}

= max{µ(x2x1), µ(x2x3)}.
Also

µ(x1x2x3) = max{µ(x1x2), µ(x3)}
= max{µ(x2x1), µ(x3)}
= µ(x2x1x3)

and
µ(x1x2x3) = max{µ(x1x2), µ(x3)}

≤ max{µ(x1x2), µ(x1x3)}
= max{µ(x2x1), µ(x1x3)}
≤ max{µ(x2x1x3), µ(x2x1x3)}
= µ(x2x1x3)
= µ(x1x2x3).

Thus µ(x1x2x3) = max{µ(x1x2), µ(x1x3)}.
Again

µ(x1x2x3) = max{µ(x1), µ(x2x3)}
≤ max{µ(x3x1), µ(x2x3)}
= max{µ(x1x3), µ(x2x3)}
≤ max{µ(x2x1x3), µ(x1x2x3)}
= max{µ(x1x2x3), µ(x1x2x3)}
= µ(x1x2x3).

So
µ(x1x2x3) = max{µ(x3x1), µ(x2x3)}

= max{µ(x3x1), µ(x3x2)}.
Hence µ is a fuzzy 3-WCP ideal of S. �

Remark 4.4. If a semiring S contains the multiplicative identity then the notions
of fuzzy weakly completely prime ideal and fuzzy 3-WCP ideal coincide.

The converse of the proposition 4.3 is not true in general. This follows from the
following example.

Example 4.5. Let S = 2Z+
0 . We define a fuzzy subset µ of S as follows:

µ(0) = 1, µ(2) = .3 and µ(2n) = .5, for n ≥ 2.

By example 4.2, µ is a fuzzy 3-WCP ideal of S. But µ is not a fuzzy weakly
completely prime ideal of S, as µ(2.2) 6= max{µ(2), µ(2)}.

Theorem 4.6. Let S be a commutative semiring and µ be a fuzzy ideal of S. Then
µ is a fuzzy 3-WCP ideal of S if and only if any extension of µ by x, where x ∈ S
is a fuzzy weakly completely prime ideal of S.

Proof. Suppose µ is fuzzy 3-WCP ideal of S and let x ∈ S. Then
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< x, µ > (x1x2) = µ(xx1x2)
= max{µ(xx1), µ(xx2)}]
= max{< x, µ > (x1), < x, µ > (x2)},∀x1, x2 ∈ S.

Thus < x, µ > is fuzzy weakly completely prime fuzzy ideal of S for every x ∈ S.
Suppose < x, µ > is a fuzzy weakly completely prime ideal of S for every x ∈ S.

Then
µ(x1x2x3) = < x1, µ > (x2x3) = max{< x1, µ > (x2), < x1, µ > (x3)}

= max{µ(x1x2), µ(x1x3)}.
Since S is commutative,

µ(x1x2x3) = max{µ(x2x3), µ(x2x1)}
= max{µ(x3x1), µ(x3x2)}.

Thus µ is a fuzzy 3-WCP ideal of S. �

Corollary 4.7. Let S be a commutative semiring with unity 1 and µ be a fuzzy
3-WCP ideal of S. Then µ is a fuzzy weakly completely prime ideal of S.

Proof. Now < 1, µ > (x) = µ(1x) = µ(x),∀x ∈ S. Then < 1, µ >= µ. Since µ is a
fuzzy 3-WCP, by Theorem 4.6, < 1, µ > is a fuzzy weakly completely prime ideal
of S. Thus

< 1, µ > (xy) = max{< 1, µ > (x), < 1, µ > (y)},
i.e., µ(xy) = max{µ(x), µ(y)},∀x, y ∈ S.

Hence µ is fuzzy weakly completely prime ideal of S. �

Corollary 4.8. Let S be a commutative semiring and µ be a fuzzy ideal of S. If µ
is a fuzzy 3-WCP and fuzzy semiprime ideal of S then µ is the infimum of all fuzzy
weakly completely prime ideal of S containing µ.

Proof. Follows from Theorem 3.33 and Theorem 4.6. �

5. Conclusions

In this paper we study the relationship between fuzzy weakly completely prime,
fuzzy 3-weakly completely prime by means of the extensions of fuzzy ideals of semir-
ing. It can be investigated the other interrelations between the fuzzy ideals and
extension of fuzzy ideals in case of h-fuzzy ideals, irreducible fuzzy ideals, fuzzy
bi-ideals, fuzzy quasi-ideals etc.
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