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ABSTRACT. The main goal of this paper is to introduce and study
fuzzy multiset regular grammar to show that fuzzy multiset finite automata
and fuzzy multiset regular grammars are equivalent. We also study fuzzy
multiset linear grammars and fuzzy multiset regular grammars in normal
form. Furthermore, we show the equivalence of fuzzy multiset regular
grammars, fuzzy multiset left linear grammars, fuzzy multiset right linear
grammars, fuzzy multiset grammars in normal form.
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1. INTRODUCTION

Finite automata are conceptual machines capable of recognizing whether a string
(i.e., a sequence of characters) belongs to some formal language or not. In addition,
finite automata have found many applications that are discussed in the literature

(e.g., see [0, 14, 15, 26]). Fuzzy finite automata were introduced and studied by
Wee [23] and Santos [16] in the 1960s. These conceptual machines incorporated
vagueness [9] as realized by fuzzy sets [27] in the machinery of finite automata. In

general, fuzzy finite automata have found many applications that include pattern
recognition, the theory of databases, and machine learning systems (cf., [3, 10, 12,

D). In particular, Wee [24] proposed a pattern recognition and nonsupervised
learning scheme in automatic control. Moreover, fuzzy automata have been proposed
as a model of machine learning systems in design and computation.

A multiset (or bag) is a collection of elements in which elements may occurs more
than once. A multiset is a natural generalization of the notion of a set and they
have been described, among others, by Syropoulos [17]. Yager [25] was the first au-
thor who discussed fuzzy multisets. In real life, there are many situations where we
deal with collections of objects in which repeated elements matter. From a practical
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point of view, multisets are very useful structure arising in many areas of mathe-
matics and computer science. Following the advent of multiset theory, the concept
of multiset finite automata has been introduced in [5, 7] and established their con-
nection with membrane computing [4] whereas fuzzy multisets have been used in
different models of fuzzy computation [18]. In recent years, multiset processing has
appeared frequently in various fields of mathematics, computer science, biology and
biochemistry (cf., [1, 2, 11, 13, 20]). Multiset “languages” are not exactly formal
languages since tokens can occur anywhere in the “string.” We use the term multi-
string to describe such generalized strings. A multistring can be best desrcribed by
a “solution” that contains the characters that make it up. The various rules of the
“srammar” are actually multiset processing rules. A multiset automaton is device
that takes as input a solution and alters it. How the machine can pick elements
from the solution is not specified but one can readily provide such a mechanism.
A computation is successful if no rule can be applied any more. In this case, we
can say that the multistring has been accepted. Otherwise, the multistring has not
been accepted. In a sense, a multiset automaton functions just like the substitu-
tion operator of the Perl programming language. In particular, one can view each
“production rule” as an instance of the s/B/A/g operator that globally substitutes B
with A.

Following the trend of generalization, Wang, Yin and Gu [22] introduced fuzzy
multiset finite automata as a generalization of multiset finite automata. Unfor-
tunately, these authors did not make it clear that their automata process fuzzy
“solutions” insted of fuzzy “strings”. At this point it is important to understand
what is a fuzzy solution? The obvious answer is that a fuzzy solution is an ordi-
nary solution with fuzzy molecules (see the relevant discussion in [18] and also [19]).
Tiwari, Gautam and Dubey [21] proved that a fuzzy multiset language is accepted
by a fuzzy multiset finite automaton if and only if it is accepted by a deterministic
fuzzy multiset finite automaton.

In what follows, we introduce and study fuzzy multiset regular automata and the
corresponding fuzzy multiset regular languages. After presenting some preliminary
ideas, we proceed with fuzzy multiset finite automata and show that fuzzy multiset
finite automata are equivalent to fuzzy multiset regular grammars. In addition,
we prove that fuzzy multiset regular grammars, fuzzy multiset left linear grammars,
fuzzy multiset right linear grammars, and fuzzy multiset regular grammars in normal
form are equivalent except for an empty string.

2. PRELIMINARIES

In this section, we recollect some concepts and notations associated with multisets
and multiset finite automata that are required in what follows. The notions related
to multisets and which are used in this paper are fairly standard and can be found in
the literature (cf., [5, 17, 21, 22]). Let us start with a formal definition of multisets.

Definition 2.1. If ¥ is a finite set, then a : ¥ — N characterizes a multiset over
3, where N denotes the set of positive integers including 0. The cardinality of «,
618
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denoted by |«|, is defined by

la] = Z a(z).

TEX

Typically, simple multisets are specified using the standard set notation (e.g.,
{1,1,2,2,3,4,4}).

The set of all multisets over ¥ is denoted by X¥. The null multiset, Oy, € XY, is
the multiset where all elements of ¥ belong zero times to Oy, that is, Ox(z) = 0 for
all x € 3. Note that the null multiset is not the same as the empty multiset! Also,
note that here X% can be identified with NI,

For any two multisets o, 8 € X%, the inclusion operation, C, the addition opera-
tion, W, and the difference operation, ©, are define as follows:

e aCfeVreX:alr) <p(z),
e VzeX: (aWpf)(x)=a(z)+ (),
o Yz e¥: (asf)(x) =max(0,a(x) — B(x)).

It is not hard to see that X% is a commutative monoid with operation & and
identity element the multiset Oy. Furthermore, o C 8 if and only if o C 3, a # 33,
and

A¥B =[] awp,

acA
BeB

for A, B C ¥¥. We also use the notation (y) for a singleton multiset:
0, ify==z
for all z € ¥. For any set A, let A = {(a) | a € A}. Assume that ¥ = {a,b,c}.

Then, the multiset o = {a,a,b, ¢, c} is equivalent to (a) & (a) W (b) W (c) W {c). The
definitions that follow have been introduced in [5].

Definition 2.2. A multiset finite automaton (M F'A) is a 5-tuple M = (Q, %, 6, qo, F),
where

e () and ¥ are nonempty finite sets called the state-set and input-set, respec-
tively,

e §:Q xX¥ 29 is a map called transition map,

e o € Q is called the initial state, and

e 7 C () is called the set of final states.

A configuration of a MFA M is a pair (p, «), where p and « denote current state
and current multiset, respectively. The transition in a multiset finite automaton are
described with the help of configurations. The transition from configuration (p, a)
leads to configuration (g, 3) if there exists a multiset v € X% with v C «, ¢ € §(p, )
and f = a ©, and is denoted by (p,a) — (¢,8). We shall denote by — x*, the
reflexive and transitive closure of this operation.

Definition 2.3. For a given set ¥, a multiset language L is a subset of ¥¥. In
addition, a multiset language L C 3¥ is accepted by a MFA M = (Q, 3,6, qo, F) if

L(M) = {a €2¥: 5(qo,a) N F # ¢},
619
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for all o € 3%

Definition 2.4. A multiset grammar is a structure G = (Vy, Vr, S, P), where Vi
and Vp are finite sets of non-terminal and terminal symbols, with Vy N Vp = &,
S € Vy is the starting symbol, and P C (V¥ @ Vy) x V¥ is a finite set of production
rules, where V = Vn U V.

We have recollected the basic definitions and ideas of the theory of multisets as
well as the notions a multiset automaton and of a multiset language. The next step
is to generalize these ideas in the fuzzy theoretic framework.

3. Fuzzy MULTISET FINITE AUTOMATA

In this section, we study the concepts of fuzzy multiset finite automata and fuzzy
multiset languages. Let us start with the following definitions and results, which are
borrowed from [21, 22].

Definition 3.1. A fuzzy multiset finite automaton (FMFA) is a quintuple M =
(Q,%,9,0,7), where

e () and ¥ are nonempty finite sets called the state-set and input-set, respec-
tively,

e §:Q xX¥xQ —[0,1] is a map called transition map,

e 0:Q — [0,1] is a map called the fuzzy set of initial states, and

e 7:(Q —[0,1] is a map called the fuzzy set of final states.

A configuration of a fuzzy multiset finite automaton M is a pair (p, ), where p
and « denote the current state and the current multiset, respectively. Transitions in
a fuzzy multiset finite automaton are described with the help of configurations. The
transition from configuration (p,«) leads to configuration (g, ) with membership
degree k € [0,1] if there exists a multiset v € X¥ with v C «a, §(p,7,q) = k and

B = a©~. This transition is written as (p, @) LN (g, 0).
The expression ¥, % denotes the reflexive and transitive closure of . This

means that for (p,a), (¢,8) € Q x X%, (p,a) LN x(q, B), if for some n > 0, there
exist (n + 1) states qo,...,¢, and (n 4+ 1) multisets ag,...,a, such that gy = p,

dn = q, g = @, Qp = 67 and (inai) k—7> (qi-‘rla ai+1)7 for all i = Oa n— la where
kK =koNki N Nk,_1. Next, we define

mi((p@) > +(@.8) =\ {mr(p,0) = +(r,a ©9) A par((r,06)

—(q,8)) 17 € Q,y €T andvga},

and

o) stwen) = { & 2=

620
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Example 3.2. Let M = (Q,%,6,0,7) be a FMFA, where Q = {q1,92,43,q4},
Y ={a,b,c}. Also, assume that the fuzzy transition function is defined as follows:

6(qr, (b),q3) = 05
3(q3, (b) W (c),qs) = 0.3
6(qs, (a),q2) = 0.7
3(q1, () W{c),q3) = 0.3
6(qs, (b),qs) = 0.6
5(q2,{a),qq) = 0.2

If o« = (a) W (a) & (b) W (b) ¥ (c) and B = Oy, then, the transition steps, ((g1, ) —
*(qa, 5)) are “expanded” as follows.

£

(1) (a1, (@) (@)W (byw (B (c)) 22 (g3, (a)w{a) e (bYW (c)) 2 (qu, (a)w(a)) 5
(a2, (@) *2 (q4,05),
(2) (a1, (@) ¥ {a) W (B) & (B) W (c)) 22 (g3, (a) W (a) & () 2T+ (go, {a) W (b)) ~2
(a4, (b)) = (g3, 0x).
Thus
(g1, @) = *(ga, B)) = \/{0.5/\0.3/\0.7/\0.2,0.3/\0.7/\0.2/\0.6}

\/{0.2,0.2} =0.2.

Definition 3.3. For a given set X, a fuzzy multiset language is a map L : ¥ —
[0,1]. Let M = (Q, %, 4,0, 7) be a fuzzy multiset finite automaton. Then, the set

L(M) = {a exY

« is accepted by M }

is called the fuzzy multiset language of M. A fuzzy multiset language L : ¥ — [0, 1]
is accepted by a FMFA M = (Q,%,0,0,7) if

L(a) = \/{o(a) Auar(g,0) = (p.05) AT(0) : 0.7 € Q.

for all @ € X%, Furthermore, a fuzzy multiset language L : ¥ — [0,1] is called
regular if there exists a FMFA M such that L = L(M).

We shall denote by L(M) a fuzzy multiset language L, if L is accepted by a FMFA
M.

Example 3.4. Assume that M = (Q,X,4,0,7) is a FMFA. Also assume that Q =

{qlaq27Q3aq47q57q6aq77q8}a Y= {0,, b) C}7 O(ql) = 027 T(Q6) = 037 T(q8) = 067 and
621
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that § is defined as follows:
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(1) (a1, (a) & (a) 8 () W () W () = (g2, (a) W (a) & (b) & (c))

25, (gu, (a))

(g3, {a) W (b) W (¢))

(g7, (a))

(2) (a1, (@) (a) & () & (c) W () = (g2, (a) W (a) W (b) & (c))
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Thus

(6) (a1, (a) W (a) W (b) W {c) W ({c))

(7) (g1, {a) ¥ {a) W (b) W (c) & (c)) =

pnr (@)

o |o |eo
N (W

o |eo
S ]
P e e e T
=)
N
oo Il I o
S

V{o(@) A 0270.200670.27027(gs),

(¢1) NO.2A0.2A0.5A 0.8 A 7(ge),

(g1) NO2A0.9A0.2A0.2 A T(gs),

(g1) NO.3A0.6 A0.2A0.2A0.7AT(gs),

a(q)

o(q1)

o(q1)

o(q1) N0.3AN0.6 A0.3A0.3AT(gs),
o(q1)

o(q1) N0.3A0.6 A0.2A0.8A0.4A7(gs),
a(q)

@1A03A05A08A04A07AT@@}

V{QQAQQA&2A&6AQ2A02A0&

02A02A02A05A0.8AN0.3,
0.2A02A09A0.2A0.2A0.6,
0.2AN03N06A0.3AN0.3AN0.3,
0.2AN03AN06A02A02A0.7A0.6,
0.2AN03AN06A02A08A04A0.3,

02AN03N05A08A04AN0.7A 0.6}

\/{02,02,02,02,02,02,&2}
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Definition 3.5. A language L C X% is called a fuzzy multiset automaton language
if there exists a fuzzy multiset automaton M such that L(M) = L.

Theorem 3.6. If L1 and Lo are fuzzy multiset automata languages over X, then
LiNLy, L1 WLy and LY are fuzzy multiset automata languages over X.

Proof. The proof is identical to the one given by Wang, Yin and Gu [22] but we
include it for reasons of completness. Assume that L; and Ly are two fuzzy multiset
finite automata languages accepted by the FMFAs M7 = (Q1,%, 61,01, 71) and My =
(Q2, X, 02,02, T2), respectively. Let Q1 N Q2 = .

(1) First of all, we construct a FMFA M = (Q, %, 9,0, 7) such that Q = Q1 UQ2
as follows:

_J ole), ifqge@n, _ | n(g), ifqgen,
o(e) = { 0;((1)7 ifge Q; and  7(g) _{ T;(q), if ¢ € Q;

for all x € ¥ and

O1(qi,z,p1), if q,p1 € Q1
5*((11,1’7]91) - 62(q17$ap1)a if q1,P1 EQQ
0, otherwise.

Obviously, for all w € X¥, we have

uar (@) = max {o(q) A par((g:w) = (p,0g)) AT(p)}

= max{o1(9) A par, () = (p, 0s)) ATa(p)}V

qrgeewé{az(Q) A par, ((g;@) = (p,05)) A 7a(p)}

= piar, (W) V par, (W)

Hence L(M) = L(My) U L(M3) = L1 U Ly is a FMFA language.
(2) Now we construct a FMFA M = (Q, X, 4,0, 7) such that Q@ = Q1 N Q>

_J oi(g), ifqeQu, /0, if ¢ € Q1,
"(Q)—{ o,1 ifqu; and T@—{ 2(q), ifqu;

Also, for all z € ¥\ Ox:

O1(qi,z,p1), if qr,p1 € Q1
6*<Q1ax7pl) = 62((]1,:0,})1), if q1,P1 € QQ
0, otherwise

and

51((117027271)7 if q1,P1 S Ql
92(q1,0s,p1), ifqi,p1 € Q2
T1(q1) AT2(p1), ifqr € Qi,p1 € Q2
0, otherwise.

624
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Obviously, for all w € X%, we have

e (@) = max {o() A par (4, @) = (p,0x)) AT(p)}

= max {{o(p) A pm((q,w) = (q1,w1))

w1 Hwo=w
q,91,p1,PEQ

A g ((qrw1) = (p1,w2)) A e ((pr,w2) = (p,0s)) AT(p)}
= max {{o1(p) Apar, ((¢.w) = (q1,01)) A7i(ar)

w1 Wwo=
4,91 €Q1,p1
PEQR2

N oa(p1) A par, ((p1,w2) = (p,0s)) A7(p)}
= max { max {01(q) A par, (g, 01) = (q1,08)) A7a(ar)}

widwa=w "q,q1 €Q1

/\pfgig@{@(ﬂ) A i, ((p1,wa) = (p,0s)) ATa(p)}}

= max {par, (w1) A s, (w2) }.

wi1Wwao

Hence, L(M) = L(My) W L(Msy) = Ly W Lo is a FMFA language.
(3) We construct a FMFA M = (Q,X%,0,0,7) such that Q = @ U {qo} for all
reX? \OEZ

_ Ul(q)a lfqula _ Tl(q)v lfqula
o(g) = { 1, if ¢ € qo and  7(g) =9 | if ¢ € qo

Also, for all w € X¥:

* ) .z, . if g, c 7
0 (q1,x,p1) :{ 1(qr,x,p1), if qi,p1 € Q1

0, otherwise
and
01(q1,0s,p1), ifqi,p1 € Q1,
0"(q1,05,p1) =< 7i(q1) A7e(p1), if qi,p1 € Q1,
0, otherwise.
Now,

(a) if w = 0y, then

uar (0z) = max {o(q) A e (g, 0z) = (p,0x)) AT(p)}
= o(q0) A (90, 05) = (g0, 05)) A7(q0)}
=1
= pry (0s);
625
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(b) if w # Ox, then

() = maxf{o(q) Ap((a,w) = (,0) A7(p)}
= max max max {a(q) A

m>1 wibwaW:--Wwm=w p,q1,92,.-,92(m—1) ,P1E€EQ
*
par((q,w1) = (qr,wa W BHwp)) A A

1iar ((@2(m—1),wm) = (p,05)) A7(p)}

= max max max {o1(g) A
m2>1 wibwaW-Wwm=w p,q1,92,...,92(m-1),P1EQ

o, (g, w) S (qrowa W Ww)) ATi(q1) A oi(ge)

A A MM1<(QZ(m71)aWM) X (p, 02)) AN 7’1(;0)}

= max wlwwzg}%@m:w{pgga{01(Q) A o, (g, w1)

5 (q1,08)) ATi(q)} A max {o1(g2) A par, (g2, w2)
q2,93€Q1

= (g3,08) ATi(gs)} Ao A max  {o1(ga(m-1))
q2(m—1),qm €Q1

Atiag, ((@2(m—1), wm) = (p,05)) AT1(p)}}

= gllg)lq wlwwzg}%ﬁwm:w{ﬂMl (wl) A U, (wg) A A

fuary (wm) }
= pry(w).
Hence, L(M) = LY is a FMFA language.
O

Example 3.7. Assume that M7 = (Q1,%,01,01,71) is a FMFA, where Q1 =

{¢1,92,q3}, X = {a,b,c}, 01 = {(q1,0.5)}, 71 = {(qg, 0.4), (g3, 0.6)}, and 07 is defined
as follows:

61(q1, (a) W (), q2) = 0.4,
51 (qla <C>7 Q3) = 053

and

61(g2, (@) W {c), q3) = 0.3.
Then, we define the language

L(My) = {({a) & (b),0.4), ({a) & (b) & (a) W (c),0.3), ({c),0.5)}.
Assume that My = (Q2,%,02,02,72) is a FMFA, where Q2 = {p1,p2,p3}, & =
{a,b,c}, o2 = {(p1,0.6), (p2,0.4)}, 72 = {(p2,0.4), (p3,0.5)}, and & is defined as
follows:
62(]917 <CL> S <C>,p2> = 067
52(1917 <C>ap3) = 107
626
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and

52(7327 <a’> S <b>7p3) =0.4.
Then, we find the language

L(Ms) = {(02,0.4), ({a)W{c),0.4), ({c),0.5), ({a)W{c)W{a)W(b),0.4), ((a)&J(b),OA)}.
From the proof of the above theorem, we have
(1) M =(Q1UQ2,%,d,0,7), where
o ={(q1,0.5), (p1,0.6), (p2,04) },
7 = {(g2,0.4), (g3,0.6), (p2,0.4), (p3,0.5) },

and the §’s are defined as follows:

51 (ql? <a> Y <b>a q2) = 047
o1 (qlv <C>a q3) = 0.5,
01(q2, (a) W (c),q3) = 0.3,

and
d2(p1, (@) W (c), p2) = 0.6,
d2(p1, (c), p3) = 1.0,
d2(p2, (a) ® (b),p3) = 0.4.
Now,
L(M) = L(M) U L(M>)
= {({a) ¥ (b),0.4), ((a) & (b) & (a) ¥ (¢),0.3), ({¢),0.5),
(05,0.4), ({a) W (c), 0.4), ({c), 0.5),
((a) ¥ (c) W (a) ¥ (b),0.4), ({a) & (b),0.4) }.

(2) M'=(Q1UQ2,%,¢,0’,7"), where o/ = {(q170.5)}, T = {(p2,0.4), (p370.5)},
and ¢’ is defined as follows:

5/(q2702 p2) = )

.6
5
7
8
4
3
3
6
0

\/

\-/

Il
)—‘OOOOOOOO

b
)
)
)
)
)
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and
&'(p2, (a) © (b), p3) = 0.4
Then,
L(M') = L(My) & L(M>)
= {({a) W (b),0.4), ({a) ¥ (a) W (b) W (b),0.4),
({a) W (b) W {(c),0.4), ({a) W (a) W (b) W {c),0.4),
((a) ¥ (a) ¥ (a) & (b) & (b) W (c},0.4), ((a) W (a) ¥ (b) ¥ {c),0.3),
({a) W {a) ¥ (a) ¥ (b) & (b) ¥ (c),0.3), ((a) ¥ (a) W (b) ¥ {c) W (c),0.3),
((a) @ (a) ¥ (a) ¥ (b) ¥ (c) W (c),0.3),
((a) @ (a) ¥ (a) & (a) ¥ (b) ¥ (b) W (c) W (), 0.3),
({c),0.4), ((a) W (b) ¥ {c), 0.4),
((c) ¥ (c),0.5), ({a) ¥ {c) W {c), 0.4),
((a) W {a) W (b) ¥ (c) W (c),0.4)}.
(3) M" = (Q1U{q},%,8",0"”,7") is a FMFA, where ¢ = {(¢1,0.5), (q0, 1)},
7" ={(¢2,0.4), (¢3,0.6), (qo7 )} and 0” is defined as follows:
6" (q2,05,q1) = 0.8,
6"(g3,05,q1) = 0.9,
" (a1, (a) ¥ (b), g2) = 0.4,
8" (q1,{c),q3) = 0.5,
and

0"(q2, (@) ¥ (¢), g3) = 0.3.
Then, we get the following language
L(M") = L(My)®
= {(0g,1), ((a) ¥ (b),0.4),
({a) W (b) W (b) ¥ (c),0.3), ((¢),0.5),...}.

Definition 3.8. An onto function f: ¥ — XY is called a homomorphism if for all
z,y €Y, f(xWy) = f(x)W f(y). This homomorphism can be naturally extended to
f:3¥ = XY, where f(0x) =0y, flaWw) = f(a)W f(w) for a € ¥ and w € X¥.

The following theorem can be proved by induction on the length of b (|b]).

Theorem 3.9. If f : 3 — XY is a homomorphism, then for all a,b,€ X%, f(aWb) =

fla)w f(b).

Theorem 3.10. The class of all fuzzy multiset automaton languages is closed under

homomorphism and inverse homomorphism.
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Proof. Let f: Y — 3Y be a homomorphism and L C %% be a fuzzy multiset finite
automaton language. Also, let M = (Q, X, §, 0, 7) be a fuzzy multiset finite automa-
ton such that L(M) = L. Then, we construct a fuzzy multiset finite automaton
M = (Q,%1,0',0,7), where §' : Q X £1 x Q@ — [0,1] is defined by ¢’'(p,a,q) = 7
if and only if there is an w € ¥¥ such that f(w) = a and &'(p,«, q) = r, where
r € [0,1]. Assume that o € L(M’). Then, {o(p) Ay, ((p, @) = (¢,0x,))AT(q)} # 0,
for some p,q € Q. Also, uy,((p,a) = (¢,0x,)) # 0. Thus there is an w € XY
such that f(w) = « and then {o(p) A ) ((p,w) — (¢,0x)) A7(q)} # 0. Hence,
w € L(M) = L. Therefore, a € f(L).

The converse is similar. Assume that L € XY is a fuzzy multiset finite au-
tomaton language and M = (Q,%1,6,0,7) is a fuzzy multiset finite automaton
such that L(M) = L. Then we construct a fuzzy multiset automaton M’ =
(@Q,%2,8,0,7), where 6’ = Q xX¥ xQ — [0, 1] is defined by par ((p, w) —* (q,05)) =
par((p, f(w)) =* (¢,05,)), for all p,q € Q, w € ¥¥. Then,

w e L(M') < {o(p) A par ((p,w) = (¢,02)) A7(q)} # 0
& {o(p) Apar((p, f(w) = (4:05,)) AT(9)} # 0
< flwye L(M)=L
swe fH(L).
O

Definition 3.11. Suppose that L, Ly C X¥. Then, the quotient of language L
with language Ls is the following language:

Ly/Ly = {w ey | Jv € Ly such that w v € Ll}.

Theorem 3.12. The class of all fuzzy multiset automata languages is closed under
quotient with arbitrary multisets.

Proof. Assume that L, C XY is a fuzzy multiset automaton language and that Ly C
¥ is a multiset. Then, there exists a fuzzy multiset automaton M = (Q, %, 4,0, 7
such that L(M) = L;. We construct a fuzzy multiset finite automaton M’
(Q,%,0,0,7"), where 7/ : Q — [0, 1] is defined by

™'(q) = max{juar ((p.v) = (¢',02)) Ar(a) | #0.
Also, w € L(M’) if and only if there exist p,q € @ such that
{0(p) A i ((psw) = (g,05)) A T’(q)} # 0.

A different way to say the same thing are the following “equations”:
U<p) # 07 ,UM((Z% W) — ((L 02)) 7& 03 and T/(q) 7é 0.
Again, these are equivalent to the following for p,q,¢ € Q
{o) A e ((9,0) > (0,05)) A (9,0) = (0,08)) A 7(d) } £0.

Now, for some v € Ly and since f'(g) # 0

{o@) A ((pw18v) = +(¢',08)) AT(d)} £0,
629
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that is, for some p,q’ € Q and v € Ly if and only if wdWv € L(M) = Ly for some
v € Ly if and only if w € Ly/Ls.
The converse part can be proved in a similar way. O

Theorem 3.13. The class of all fuzzy multiset finite automaton languages is closed
under right quotient by any multiset and reversal of a fuzzy multiset finite language.

Proof. The proof is similar to the proof of the previous theorem. O

4. Fuzzy MULTISET REGULAR GRAMMAR

The concept of regular grammar for both finite state automaton and fuzzy finite
state automaton have been introduced in (see also [3, 6, 12, 26]). In this section,
we introduce the notion of regular grammar and regular grammar in normal form
for fuzzy multiset finite automata and then discuss some properties. The following
definition is borrowed from [22].

Definition 4.1. A fuzzy multiset grammar is a quintuple G = (Vi Vr, S, P), where

(1) Vi is a finite alphabet of nonterminal symbols,

(2) Vr is a finite alphabet of terminal symbols, such that Vy N Vy = &,
(3) V is the total alphabet (V = Vy U V7),

(4) S € Vy is a starting nonterminal symbol,

(5) P is a finite set of fuzzy multiset production rules over V, that is,

P={a= B up(a—p)|aeVeVy, s V¥ up(a—f) €01},
where pp : (V¥ W Vy) x V¥ — [0,1] is called the fuzzy transition function.

For any (o« — 8,r) € P, for convenience, we sometimes abbreviate (o« — 3,7) to
asp.
Definition 4.2. Suppose that G = (Vy,Vr, S, P) is a fuzzy multiset grammar,
BeV¥ and A€ V¥\ {0y}. Then,

(1) B immediately derives from A written as (A = B) if there exist multisets
a, B,z such that A=aWwz, =W and o — 3 € P,

(2) B derives from A (written (A = xB)) if for some n > 0 there exist n + 1
multisets vg, v1, ..., v, such that vg = A, v, = B and v; — vi41 for i =
0,1,...n—1, where r = roAryA- - -Ar,_1 is called the grade of membership of
the derivation of B from A with the derivation chain A =% v; s ... =2

rn—1 Tn—1
Un—2 Un—1 B.

Definition 4.3. A fuzzy multiset grammar G = (Vy, Vi, S, P) is said to be regular,
if each of its fuzzy multiset productions is either of the form (o) = (a) W (B) or
(@) 5 (a), where o, B € Viy, a € Vp, and r € [0, 1].
Definition 4.4. A string w € V' is said to be generated by fuzzy multiset regular
grammar G if

max {S(qo) A pa(go — *w)} # 0.

qQEVN

630



B.K. Sharma et al./Ann. Fuzzy Math. Inform. 12 (2016), No. 5, 617639

Definition 4.5. The set of all string w € V% that are generated by a fuzzy multiset
regular grammar G is called a fuzzy multiset regular language. We shall denote it
by L(G).

The following three theorems have been proved in [22].

Theorem 4.6. For each fuzzy multiset finite automaton M = (Q,%,0,0,T), there
exists a fuzzy multiset reqular grammar G such that L(G) = L(M) \ {0s}.

Theorem 4.7. For a fuzzy multiset reqular grammar G = (Vi, Vr, S, P) there exists
a fuzzy multiset finite automaton M such that L(M) = L(G).

Definition 4.8. A fuzzy multiset G = (Vy, Vr, S, P) is said to be in normal form
if it has either of the following types of fuzzy multiset production rules:

(4) = (a) W (B) or (A) = (Oy),

where A, B € Vi, a € Vp, and r € [0,1]. Every fuzzy multiset regular grammar
can be reduced to a fuzzy multiset grammar in normal form by changing its fuzzy
multiset production A = (a) by two fuzzy multiset productions (A) = (a) W (C),
C $ Vn and <C> L) <OVT>~

Theorem 4.9. For every fuzzy multiset grammar G = (Vy,Vp, S, P) in normal
form, there exists a fuzzy multiset automata M, such that L(M) = L(Q).

Proof. Let Q =V, o0 =S5. Also, for 7 : Q — [0, 1] it holds that 7(¢) = r if and only
if () = Oy, is a fuzzy multiset production in P. In addition, for 6 : Q@ x ¥ x Q —
[0,1], it holds that par((g,a) = (p,a)) if and only if (g) = (a) W (p) € P. Then,
M = (Q,%,6,0,7) is a fuzzy multiset finite automaton. Also, let w € L(G) and
W= a1a20a3...0y,_10,, a; € 3. Then,

max { S(q) A p((,0) = *(ar,05) } #0,

qeVN

that is, there exists gy € Vi such that S(qo) # 0 and par((go,w) — *(qf,0vy)), for
all 7 € [0,1]. Now, (go) — (w), 7 € [0,1] implies that there exist q1,qa,...q, € Vi
and r1,79,...7,—1 € (0,1] such that

(g0) = (a1) W (q1)
25 (a1) W (a2) W (g2)
5 () W (ag) W 8 (an) B (gn)
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Thus for this derivation chain, P must have the following fuzzy multiset productions:
(g0) = (a1) & (q1),
(1) = (a2) ¥ (q2),

<Qn—1> 7’_7,> <an> W <Qn>a
<Qn> ﬂil_) OVT'

Therefore,
3(qo, (@1),q1) =71,
5(‘11, <a2>7QQ) = T2,
6(Qn—1a <an>7 qn) =Tn,
T(qn) = Tn+1-
But then,

{MM((Qmal) — (q1,a2)) A+ A par((n—1,an) = (qn,05)) AT(gn)} #0,

that is, there exist qg, g, € @, such that

{U(qO) A par (g0, w) = (g, 05)) A T(qn)} # 0,
or that

rqneag{U(Q) A par ((q,w) = *(p, 02))} # 0.

Hence w € L(M).
The converse can be proved similarly. O

Corollary 4.10. For every fuzzy multiset grammar G in normal form, there exists
a fuzzy multiset reqular grammar G1 such that

L(G1) = L(G) = {Ovz }-

Definition 4.11. A fuzzy multiset grammar G = (Vy, Vr, S, P) is called a linear
grammar, if it has either of the following fuzzy multiset production rules:

o (A) 5 (W) or

o (4) = (w1) W(B) W (wn),
where A, B € Vy, wi,ws,w € V‘EJT, r € [0,1]. When G contains production rule of
the second case and w; = {0y, }, then G is called a left linear grammar, while if
wa € {0y, }, then it is called right linear grammar.

Definition 4.12. A language L C V7 is fuzzy multiset linear (left linear, right
linear), if there is fuzzy multiset linear (left linear, right linear, respectively) grammar
G such that
L(G)=L.
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It is clear that the class of fuzzy multiset regular languages is a subclasses of the
class of fuzzy linear languages.

Theorem 4.13. A fuzzy left linear grammar and a fuzzy right linear grammar both
generate the same languages.

Proof. Let G = (Vi, Vr, S, P) be a fuzzy left right linear grammar G’ = (Vy, Vr, S, P’)
whose fuzzy multiset production rule set P’ is as follows:

(1) {qo) = (w) in P’ if and only if (go) = (w) in P, S(go) # 0.

(2) {qo) = (w)w(A) in P’ for S(qo) # 0 if and only if (4) 5 (w) in P; S(A) =

(3) (A) 5 (W) and (A) 5 (W) W {go) in P’ if and only if (go) = (A) & (w) i

S(qo) # 0.
(4) (A) 5 (w)w (B) in P’ if and only if (B) & (A) & (w) in P; S(B) = 0.
We prove that L(G') = L(G). Assume that w € L(G), where w = w; ...wy, and

w; € V7. Then,

S~
=
e

max {S(9) A ((g) 5 (w)) | #0,

where r = rg Ary A--- A1y, € [0,1]. Thus there exists ¢o € Vy such that S(gg) # 0
and (¢) & (w); r # 0in G. If {q) = (w) is a fuzzy multiset production rule in

P for some r € [0,1] then {go) = (w) in P’ and w € L(G’), otherwise these exist
Ap,An_1,..., Ay € Vy and 1,73,y € (0,1] such that (go) —= (An)W{wy) ——
Tn—2 r9 1

(An) W {wn—1) W {wp) —— -+ == (a2) W (wa) W {w3) W - W... {(wy,) W {w,) —
(w1) W{wa) W ... W {wp_1) W (w,) = (w). But, corresponding to above derivation
chain, P must have following fuzzy multiset production rules.

<QO> T—n> <An> W <wn>7
<An> M—71> <An—1> W <wn—1>,

(Az) = (A2) W (wo)
and
(Ag) 5 (wy).
Therefore, P’ should have the following fuzzy multiset production rules:
(An) = (wn),

(An—1) 5 (wno1) W (Ay),

(Az) = (w2) W (A3),
and

(qo) = (w1) W (Ag).
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Thus, there is a derivation chain for w in G’ as:

(qo) — (w1) W (As)

Hence

max {S(q) A ((g) 5 ()} #0,

that is, w € L(G").
The other part of the proof is similar. O

Theorem 4.14. Fvery fuzzy multiset right linear language can be generated from a
fuzzy multiset grammar in normal form.

Proof. We first construct a fuzzy multiset regular grammar G1 = (V§,Vp, S, Pr)
such that G ~ G. Next, we construct a fuzzy multiset grammar G’ = (V{,, Vi, S, P')
in normal form from G7 such that G’ ~ G;. There are the two cases which are

examined in what follows.
Case 1. Assume that G = (Viy, Vr, S, P) is a fuzzy multiset right linear grammar.

Then, any fuzzy multiset production (a) = (w) W (B) or (a) = (w) of P with
lw| < 1, is a fuzzy multiset production rule in P;. The fuzzy multiset production
rule (@) 5 (w) W (B) is in P with |w| > 1 and w =a; Was ¥---Wa, 1 Wa, Weadd
in P; a set of fuzzy multiset production rules

(Zn-1) = (an) © (B)

where Z1, Zs, ..., Z,_1 are new variables not in V. Similarly, for the fuzzy multiset
production rules

(@) = (a1) W (ag) W+ - W (am),
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m > 2 and r € [0,1], we add a set of fuzzy multiset production rules

are in Py, where Y1,Ys,...,Y,,_1,Y,, are new variables not in Vy.

Let V}; be the set of all such variables in V that includes all the new variables
introduces in the previous process. Then, P; of the fuzzy multiset grammar G; =
(Vi, Vi, S, P1) contains the following types of fuzzy multiset production rules:

1) (@) = (w) ¥ (B),
(2) (@) = (B),
(3) (@) 5 (Ov,), o, B € Vi, 0y € V2 and w € Vi, 7 € [0, 1].

(&%
(0%

Next, we prove that G ~ G;. Let w € L(G). Then, max{S( YA ({lg) = (w)) 7& 0},
that is, there exists ¢y € Viv such that S(qo) # 0 and ({go) — (w)) # 0. If (o) = (w)
is a fuzzy multiset production rule in P and |w| = 1, then clearly (go) = (w) in
Pi. Now, if w] > 1and w = a3 Was W - W a1 U( n)s @i € Vr, then there
exist q1,42,...,qn—1 € V} such that (go) L> (w) 8 {q1) & (a1) W (a2) W {ga),...,
(qn_1 = ayWagW---Wa, 1W(a,) = w, that is, (o) = (w) in G;. Hence w € L(Gy).
Again, consider w € L(Gy). Then,

max {S(q) A (@) > (@) # 0},

qeVY

that is, there exists gy € V} such that S(go) # 0 and ((go) — (w)) # 0 in G;.
Now, ({go) = {(w)) # 0. Therefore, there exists a derivation chain of w in G as:

(o) = (a1) W (a})

= {w > <> (1)
= (wn) ¥ {br) W (ba) W (B5)
S0 2 (o) Wby ) 8 (bo) W (b)) W (5L,

(
s (wr) W (wa) W (g2)
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Oy I ) W (wa) W W (1) W (1)
2 {wr) W {wa) 8- W (W) B {e1) & (OF)
L2y 2 (w0 W (wa) W W (W) W ()

T (i) ¥ {w2) - (wn) W {Ov)

(1) = (a;) W ()

Tn41

(ol q) == {a;41) ¥ <04;+2>

are in Py, or that there is a derivation chain of w in G as:

s
%
i)& w1 &J<w2>wﬁd<wn>@<%>

)
[G] <w2> (IR <Wn> Wy <OVT>

where 7 = 11 Arg Ao - ATpg1, S =S1AS2 A ASpq1, t =t1 ANta A= Ay,
uw = u; Aug A -+ Aupy1. Thus there exits g9 € Vy such that S(gg) # 0 and
(q0) = (w)) # 0in G. Thus w € L(G), and hence G ~ G.

Case 2. We note that V}; contains the variables in Vi as well as the new variables
introduced in the process of finding G1;. Fuzzy multiset productions like this one

(a) = (B)
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are called fuzzy multiset chain rules. Now, we describe an algorithm to eliminate all
such fuzzy multiset chain rules.

Initially, we construct the set U;(a) = {a}, for @ € V}, and U;41 = U;(a) U {6 |
(B) = (Z) € P; for some Z € Uj(a), r € [0,1]}. Since V} is finite, there exists
an integer K such that Upyj(a) = Uk(a),j = 1,2,.... Next, write U(a) instead
of Up(a) for all o € V. Then, we construct the required fuzzy multiset grammar
G = (V},Vr,S,P’), where

(1) (a) 225 (a)w(B), in P’ if and only if there is a Z € V} such that o € U(Z)
and (Z) & (a) W (B) in Py,

(2) (a) 225 (0y,.) in P’ if and only if there is Z € V such that a € U(Z) and
(Z) = {0, }) in Py

Clearly, the fuzzy multiset grammar G’ = (Vy;, Vr, s, P’) is in the normal form. It
is now obvious that G; ~ G'. O

Corollary 4.15. Fuzzy multiset right linear grammar is equivalent to fuzzy multiset
regular grammar except for {Oy}.

Theorem 4.16. The following are equivalent except for {Ov}.

(1) Fuzzy multiset reqular grammar.

(2) Fuzzy multiset left linear grammar.

(3) FPuzzy multiset right linear grammar.

(4) Fuzzy multiset grammar in normal form.

5. CONCLUSIONS

In this paper, we have introduced and studied fuzzy multiset grammars. In addi-
tion, we proved that fuzzy multiset finite automata, and all other related concepts
are equivalent, in the sense that all generate the same languages. We plan to further
investigate the properties of these automata but we also hope that members of the
scientific community will find useful applications of both fuzzy multiset finite-state
automata and fuzzy multiset grammars.
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