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Abstract. In [11], Shen et al. introduced and studied a notion of
interval-valued fuzzy metric space as a natural generalization of fuzzy met-
ric spaces due to George and Veeramani[3]. In this note we show that each

interval-valued fuzzy metric space (X,M, ∗) induces in a natural way two
fuzzy metrics spaces (X,M−, ∗−) and (X,M+, ∗+) and that the topol-

ogy generated by the interval-valued fuzzy metric M coincides with the
topology generated by M−, and hence the study of the space (X,M, ∗) re-
duces to the study of the fuzzy metric space (X,M−, ∗−), so that Shen, Li
and Wang’s results follow directly from well-known results in fuzzy metric
spaces.
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1. Introduction and preliminaries

The concept of interval-valued fuzzy set was introduced by Zadeh in 1975 [12].
An interval-valued fuzzy set is characterized by an interval-valued membership func-
tion, and it is taken as a generalization of fuzzy sets. Some recent results on interval-
valued fuzzy sets can be found in [9] and [13].

Throughout this paper the letters N, I and [I] will denote the set of all positive
integers, the closed unit interval, i.e I = [0, 1], and all interval numbers on I, i.e
[I] = {a = [a−, a+] : 0 ≤ a− ≤ a+ ≤ 1}, respectively. If a− = a+, then the interval
number a degenerates into an ordinary real number on I. Conversely, every a ∈ I
induces the interval number [a, a] that we will denote as a if no confusion arises, so
that we will write (I] = [I]− {0} and (I) = [I]− {0, 1}.
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Given a, b ∈ [I] we will say that a ≤ b if a− ≤ b− and a+ ≤ b+, a = b if a− = b−

and a+ = b+ and a < b if a ≤ b and a 6= b. It is obvious that ([I],≤) is a partial
ordered set.

For every a, b ∈ [I] the following operations were introduced in [11]:
(i) a ∧ b = [a− ∧ b−, a+ ∧ b+].
(ii) a ∨ b = [a− ∨ b−, a+ ∨ b+].
(iii) ac = 1− a = [1− a+, 1− a−].
In general (see [8]), given a = [a−, a+] and b = [b−, b+] we have b − a =

[b− − a+, b+ − a−] and b+ a = [b− + a−, b+ + a+].

Recall [10] that a t-norm is a binary operation ∗ : I × I → I that satisfies the
following conditions:

(i) ∗ is associative and commutative,
(ii) a ∗ 1 = a for every a ∈ I,
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for a, b, c, d ∈ I.

If, in addition, ∗ is continuous, then ∗ is called a continuous t-norm.

Paradigmatic examples of continuous t-norms are the minimum, denoted by ∧,
the usual product, denoted by · and the Lukasiewicz t-norm, denoted by ∗L, where
a ∗L b = max{a + b − 1, 0}. They satisfy the following well-known inequalities:
a ∗L b ≤ a · b ≤ a ∧ b. In fact, a ∗ b ≤ a ∧ b for each t-norm ∗.

Our basic reference for continuous t-norms is [6].

Shen et al. extended in [11] the concept of t-norm to interval-valued fuzzy sets
and defined the notion of interval-valued t-norm ( IV-t-norm for short) as follows:

Definition 1.1 ([11]). An IV-t-norm is a binary operation ∗ : [I] × [I] → [I] that
satisfies the following conditions :

(i) ∗ is associative and commutative,
(ii) a ∗ 1 = a and a ∗ I = [0, a+] for every a = [a−, a+] ∈ [I],
(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for a, b, c, d ∈ [I].

If, in addition, ∗ is continuous, then ∗ is called a continuous IV-t-norm.

Definition 1.2 ([11]). A sequence {an}n∈N = {[a−n , a+n ]}n∈N of interval numbers
converges to a = [a−, a+] if limn→∞ a−n = a− and limn→∞ a+n = a+. In this case,
we write limn→∞ an = a (or {an} → a).

In [11, Definition 4] the authors define an IV-t-norm ∗ as continuous if it is
continuous in its first component, i.e., if for each b ∈ [I] and limn→∞ an = a, then
limn→∞(an ∗ b) = (limn→∞ an ∗ b) = a ∗ b, where {an}n∈N ⊆ [I], a ⊆ [I]. As in
the case of continuous t-norms (see [6, Proposition 1.19]), the following proposition
shows that the continuity of IV-t-norms is equivalent to its continuity in the first
component. As usually we say that ∗ : [I] × [I] → [I] is continuous if for all
convergent sequences {xn}n∈N, {yn}n∈N ∈ [I] we have limn→∞ xn ∗ limn→∞ yn =
limn→∞ xn ∗ yn .
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Proposition 1.3. An IV-t-norm ∗ is continuous if and only if it is continuous in
its first component.

Proof. If ∗ is continuous, then it is obviously continuous in its firs component.
Conversely, if ∗ is continuous in its first component, due to the commutativity of ∗,

then it is continuous in each component. Now fix (x0, y0) ∈ [I]× [I], ε = [ε, ε], ε > 0
and let {xn}n∈N and {yn}n∈N be sequences in [I] converging to x0 and y0 respectively.
From this, we construct the monotone sequences {an} → x0, {bn} → x0, {cn} → y0,
{dn} → y0 such that for all n ∈ N an ≤ xn ≤ bn and cn ≤ y0 ≤ dn. As ∗ is
continuous in its second component and by its monocyte ((iii), Definition 1.1), there
exists an N ∈ N such that for all n ≥ N ,

x0 ∗ y0 − ε < x0 ∗ cN ≤ x0 ∗ yn ≤ x0 ∗ dN < x0 ∗ y0 + ε.

Since ∗ is continuous in its first component, there exists M ∈ N such that for all
m ≥M and n ≥ N , taking into account de monocyte of ∗we get:

x0 ∗ cN − ε < aM ∗ cN ≤ xm ∗ yn ≤ bM ∗ dN < x0 ∗ dN + ε.

Let K = max(M,N). Then for all k ≥ K we have:

x0 ∗ y0 − 2ε < xk ∗ yk < x0 ∗ y0 + 2ε.

Thus limn→∞ xn ∗ limn→∞ yn = limn→∞ xn ∗ yn = x0 ∗ y0 and ∗ is continuous. �

Some examples of IV-t-norms are:
(1) a∧b = [a−, a+]∧[b−, b+] = [a− ∧ b−, a+ ∧ b+].
(2) a · b = [a−, a+]·[b−, b+] = [a− · b−, a+ · b+].

Proposition 1.4. Every IV−t-norm ∗ acts componentwise.

Proof. Let ∗ be an IV-t-norm and a, b ∈ [I]. The second component of a ∗ b coincides
with the second component of a ∗ b∗I∗I, where

[a−, a+]∗[b−, b+]∗[0, 1]∗[0, 1] = [a−, a+]∗[0, 1]∗[b−, b+]∗[0, 1]

= [0, a+]∗[0, b+]

which does not depend on a− or b−.
On the other hand, taking into account that every IV-t-norm is distributive over

∨, we have:

[a−, a+]∗[b−, b+] = [a−, a+]∗([b−, b−] ∨ [0, b+])

= [a−, a+]∗[b−, b−] ∨ [a−, a+]∗[0, b+]

= [a−, a+]∗[b−, b−] ∨ [0, c].

Thus the first component of a ∗ b does not depend on b+ (and similarly, by commu-
tativity, does not depend on a+). So [a−, a+]∗[b−, b+] = [a− ∗− b−, a+ ∗+ b+]. �

It is easy to see that ∗− and ∗+ are two continuous t-norms such that ∗− ≤ ∗+.
So, given an IV-t-norm ∗ we can write ∗ = [∗−, ∗+] were ∗− and ∗+ are two contin-
uous t-norms such that ∗− ≤ ∗+. In fact ∧ = [∧,∧] and · = [·, ·].

Following the ideas of interval-valued fuzzy set and continuous IV-t-norm Y.Shen,
H.Li and F.Wang introduced in [11] a notion of interval-valued fuzzy metric space

587



Francisco Castro-Company et al./Ann. Fuzzy Math. Inform. 12 (2016), No. 6, 585–590

(in the following IV-fuzzy metric space) which is a generalization of fuzzy metric
space in the sense of George and Veeramani [3] and they showed, as in the case of
fuzzy metric spaces, that every IV-fuzzy metric space generates a Hausdorff first
countable topology. In the next section we show that every IV-fuzzy metric space
(X,M, ∗) induces two fuzzy metrics spaces (X,M−, ∗−) and (X,M+, ∗+) and that
the topology τM generated by the IV-fuzzy metric space (X,M, ∗) coincides with the
topology τM− generated by the fuzzy metric space (X,M−, ∗−), and thus, the results
obtained in [11] are consequences of well-known results for fuzzy metric spaces.

2. Interval-valued fuzzy metric spaces

Recall [3] that a fuzzy metric space is a triple (X,M, ∗) such that X is a (non-
empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X ×X × (0,∞) such
that for all x, y, z ∈ X; t, s > 0:

(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s),
(v) M(x, y, ) : (0,∞)→ (0, 1] is continuous.

An alternative definition of fuzzy metric space can be found in [1].

If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) (or simply M) is a
fuzzy metric on X.

Our basic reference for general topology is [2].

George and Veeramani proved in [3] that every fuzzy metric (M, ∗) on X generates
a Hausdorff first countable topology τM on X which has as a base the family of open
sets of the form {BM (x, r, t) : x ∈ X, r ∈ (0, 1), t > 0}, where BM (x, r, t) = {y ∈
X : M(x, y, t) > 1 − r} for all x ∈ X, r ∈ (0, 1) and t > 0. Actually, the following
result is proved in [4].

Theorem 2.1 ([4]). Let (X,M, ∗) be a fuzzy metric space. Then (X, τM ) is a
metrizable topological space.

As a natural generalization of fuzzy metric space Y.Shen, H.Li and F.Wang gave
in [11] the following definition of IV-fuzzy metric space.

Definition 2.2 ([11]). An IV-fuzzy metric space is a triple (X,M, ∗) such that X is
a non-empty set, ∗ is a continuous IV t-norm and M is a fuzzy set on X×X×(0,∞)
such that for all x, y, z ∈ X; t, s > 0:

(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 if and only if x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, z, t+ s) ≥M(x, y, t)∗M(y, z, s),
(v) M(x, y, ) : (0,∞)→ (I] is continuous,
(vi) limt→∞M(x, y, t) = 1.
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In the previous definition M = [M−,M+] is called an interval-valued fuzzy met-
ric on X (IV-fuzzy metric in short). Following [11] the functions M−(x, y, t) and
M+(x, y, t) can be interpreted as the lower nearness degree and the upper nearness
degree between x and y with respect to t, respectively. This interpretation is con-
sistent with the original one of M(x, y, t) in the case of fuzzy metric spaces in the
sense of [7] and [3] (see for instance [3, Remark 2.3]). Taking into account that an
interesting class of fuzzy metric spaces were defined in [5] where M does not depend
on t and that the topology generated by a (IV-)fuzzy metric space can be defined
having t ∈ (0, ε), ε > 0, to our purposes here we are going to consider a more gen-
eral definition of (X,M, ∗) without condition (f). In fact, the equivalent condition is
not considered in the original definition of fuzzy metric space given by George and
Veeramani.

Conditions in Definition 2.2 together with Proposition 1.4, where ∗ = [∗−, ∗+],
imply that (X,M−, ∗−) and (X,M+, ∗+) are fuzzy metric spaces.

In [11] the authors proved that each IV-fuzzy metric M on X generates a Haus-
dorff first countable topology τM on X which has as a base the family of open sets
of the form {BM (x, r, t) : x ∈ X, 0 < r < 1, t > 0}, where BM (x, r, t) = {y ∈ X :

M(x, y, t) > 1− r} for all x ∈ X, 0 < r < 1 and t > 0.

Proposition 2.3. Let (X,M, ∗) = (X, [M−,M+], [∗−, ∗+]) be an IV-fuzzy metric
space. Then, for each x ∈ X, r ∈ (0, 1), t > 0 we have BM (x, r, t) = BM−(x, r, t).

Proof. If y ∈ BM (x, r, t), then M(x, y, t) = [M−(x, y, t),M+(x, y, t)] > 1− r. Thus
M−(x, y, t) > 1− r and y ∈ BM−(x, r, t). Now suppose that y ∈ BM−(x, r, t). Then
M−(x, y, t) > 1 − r. Since M+(x, y, t) ≥ M−(x, y, t) > 1 − r, we have M(x, y, t) =
[M−(x, y, t),M+(x, y, t)] > 1− r. So y ∈ BM (x, r, t). �

From Proposition 2.3 we deduce the following.

Theorem 2.4. Let (X,M, ∗) = (X, [M−,M+], [∗−, ∗+]) be an IV-fuzzy metric
space. Then the topologies τM and τM− coincide on X.

By Theorem 2.1 and Theorem 2.4 we obtain the following improvement of Theo-
rem 5 of [11].

Corollary 2.5. Let (X,M, ∗) = (X, [M−,M+], [∗−, ∗+]) be an IV-fuzzy metric
space. Then (X, τM ) is a metrizable topological space.
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