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Abstract. In this study, we induce some topological structures in the
covering rough set models, and construct their closure operators by using
the covering upper approximation operators. Furthermore, we show that
the minimum set of each of these topological structures is their base, and a
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1. Introduction

Rough set theory is an extension of set theory to deal with vagueness and
uncertainty of imprecise data. It was firstly proposed by Pawlak [15]. This theory
has been widely applied to feature selection, decision analysis, pattern recognition
and knowledge discovery in databases [13, 14, 19]. In Pawlak’s rough set theory,
equivalence relation is the foundation of its object classification, the lower and upper
approximation operators are two core notions. In real word databases, equivalence
relations is not suitable in several situations because it can only deal with complete
data [13, 15, 17, 27]. So from the angle of applications, it is important to extend
equivalence relation to some other relations, such as arbitrary binary relation [9, 16,
21], fuzzy relation [1, 8, 12] and coverings [1, 2, 3, 11, 18, 26].

Topology theory has independent theoretical framework, which is an important
mathematical tool for the study of information systems [5]. Such theory played
an important role and presented various research perspectives in rough set theory
study. Hence, the combination of the rough set theory and topology theory have
obtained a lot of attention [4, 6, 11, 18, 20, 24, 28, 31, 32]. Zakowski used coverings
instead of partitions to generate the classical rough set theory [26]. Such gener-
alization leads to various covering approximation operators, then the combination
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of covering rough set and topology have both theoretical and practical important
[5, 10, 16, 21, 22, 25, 30]. In [34],Zhao constructed a type of topology called the
topology induced by the covering on a covering approximation space, and investi-
gated the topological properties of the space such as separation, connectedness. In
[30], Zhu explored the topological properties of rough sets and constructed axiomatic
systems for the lower approximation operation and the upper approximation oper-
ation. In [31, 33], Zhu and Wang discussed the relationship among four types of
covering rough sets by using properties of covering upper approximation operators.
These four operators are denoted by FH, SH, TH and RH respectively. Meanwhile,
characterizations of the closure operators by the covering upper approximation op-
erators was studied. In [5], Ge et al. discussed the problems on characterizations of
coverings for upper approximation operators being closure operators in depth. Spe-
cially, the general, topological and intuitive characterizations of coverings for these
operators being closure operators were given. These researchers focused on exploring
the characterizations of covering for covering-based upper approximation operators
to be closure operators [5, 29, 31], but they did not investigated the corresponding
topological structures. In this paper, we will induce some topological structures
in the covering-based rough set models in order to combine the topology with the
covering rough sets.

Pawlak [15] indicated that

(1.1) T = {X ⊆ U |R(X) = X}.

is a clopen topology on U , which is induced by equivalence relation R, and Pawlak
rough upper approximation operator R is the closure operator of topology T . Gen-
erally, if we replace R with covering upper approximation operators FH, SH, TH
and RH, respectively, in the formula (1.1), we can obtain four types of sets. Some
natural questions thus arise: Is it possible for each of the four sets to be a topology?
If the answer is“yes”, then what are the conditions under which covering-based up-
per approximation operator to be closure operator? In this study, we will discuss
these problems.

The rest of the paper is organized as follows. In Section 2, some basic concepts
and results about covering rough sets and topology are reviewed. In Section 3, we in-
vestigate some topological structures in covering approximation spaces. Conclusion
is given in Section 4.

2. Preliminaries

In this section, we review some fundamental concepts related to covering rough
sets and topology.

In the following discussion, we always assume that the universe of discourse U is
finite. P (U) is the family of all subsets of U . For every X ⊆ U , ∼ X denotes the
complement set of X in U , i.e., ∼ X = U \X.

Definition 2.1 (Covering [29]). Let U be a universe and C is a family of subsets of
U . If none of subsets in C is empty, and ∪C = U , then C is called a covering of U .

The ordered pair (U, C) is called a covering approximation space.
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Definition 2.2 (Md(x), Friends(x) and CFriends(x) [2, 29, 31]). Let C be a
covering of U , x ∈ U . Denote

Md(x) = {C ∈ C|x ∈ C ∧ (∀S ∈ C ∧ x ∈ S ⊆ C ⇒ S)},
Friends(x) =

⋃
{C|x ∈ C ∈ C},

CFriends(x) =
⋃
Md(x).

We call Md(x), Friends(x) and CFriends(x) are the minimal description of x,
the indiscernible neighborhood of x and the closed friends of x, respectively.

Definition 2.3 (Unary [29]). Let C be a covering of U , x ∈ U . If |Md(x)| = 1, C is
called unary.

Let (U, C) be a covering-based approximation space. In this paper, we will discuss
the following types of covering approximation operators.

Definition 2.4 (Covering lower approximation operators CLC [26]). Let C be a
covering of U . The lower approximation operators CLC is defined as follows:

∀X ⊆ P (U), CLC(X) =
⋃
{C ∈ C | C ⊆ X}.

Definition 2.5 (Covering upper approximation operators FHC [31], SHC [31], THC
[31] and RHC [29]). Let C be a covering of U . Operators FHC , SHC , THC , RHC :
P (U)→ P (U) are defined as follows: ∀X ⊆ P (U),

FHC(X) =CLC(X) ∪ (
⋃
{
⋃

Md(x) : x ∈ (X − CLC(X))})

=CLC(X) ∪ (
⋃
{CFriends(x) : x ∈ (X − CLC(X))}),

SHC(X) =
⋃
{C ∈ C | C ∩X 6= ∅} =

⋃
{Friends(x) : x ∈ X},

THC(X) =
⋃
{
⋃

Md(x) : x ∈ X} =
⋃
{CFriends(x) : x ∈ X},

RHC(X) =CLC(X) ∪ (
⋃
{C ∈ C : C ∩ (X − CLC(X)) 6= ∅})

=CLC(X) ∪ (
⋃
{Friends(x) : x ∈ (X − CLC(X))}).

The basic concepts of topology have been widely used in many areas. The follow-
ing topological concepts and facts are elementary and we list them below to facilitate
our discussion. For more details, we refer to [7, 16, 23].

Definition 2.6 (Topology [25]). Let U be a non-empty set. Let T be a family of
subsets of U , which satisfies the three conditions:

(T1) ∅, U ∈ T ,
(T2) If A,B ∈ T , then A ∩B ∈ T ,
(T3) If A ⊆ T , then

⋃
A∈AA ∈ T .

Then we call T is a topology on U . The pair (U, T ) is called a topological space.

The members of the topology T are called open set, and a subset of U is called
closed if its complement is open set. A topology T is called a clopen topology if
every open set is also closed.

A subset X in a topological space (U, T ) is a neighborhood of a point x ∈ U if X
contains an open set to which x belongs.
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Definition 2.7 (Closure operator [16, 23]). An operator Cl on P (U) is a closure
operator on U , if Cl satisfies the following conditions: ∀A,B ⊆ U ,

(C1) Cl(∅) = ∅,
(C2) A ⊆ Cl(A),
(C3) Cl(Cl(A)) = Cl(A),
(C4) Cl(A ∪B) = Cl(A) ∪ Cl(B).

In a topological space (U, T ). A family B ⊆ T is called a base for T if every
non-empty open subset of T can be represented as union of a subfamily of B.

Theorem 2.8 ([21]). Let (U, T ) be a topological space. A family B ⊆ T is a base
for T if and only if for each point x of the space, and each neighborhood X of x,
there is a member V of B such that x ∈ V ⊆ X.

Definition 2.9 (Topological covering [20]). Let T is a topology on U . T \ {∅} is a
covering, then we call T \ {∅} is a topological covering, and (U, T \ {∅}) is called a
topological covering approximation space.

3. The topological structure induced by covering-based upper
approximation operators

In this section, we investigate topological structures induced by covering-based
upper approximation operators FHC , SHC , THC and RHC respectively. In particu-
lar, topological structure induced by SHC is discussed in depth.

3.1. The topological structure induced by SHC.
According to Definition 2.5 and the formula (1.1), we introduce a topological

structure as follows.

TSC = {X ⊆ U | SHC(X) = X}.(3.1)

Definition 3.1 (The minimal set [33]). Let A ⊆ P(U). One can denote

Min(A) = {X ∈ A | ∀Y ∈ A, ifY ⊆ X, thenX = Y }.

Proposition 3.2. Let (U, C) be a covering-based approximation space. Then TSC is
a topology on U , where TSC is defined by the formula (3.1).

Proof. We only need to prove that TSC satisfies the conditions in Definition 2.6.
(T1) It is easy to check that ∅, U ∈ TSC .
(T2) Let X,Y ∈ TC . By Proposition 6 of [30], SHC(X∩Y ) ⊆ SHC(X)∩SHC(Y ) =

X ∩ Y and X ∩ Y ⊆ SHC(X ∩ Y ). Thus, we have X ∩ Y ∈ TSC .
(T3) Let X,Y ∈ TC . By Proposition 6 of [30], SHC(X∪Y ) = SHC(X)∪SHC(Y ) =

X ∪ Y . Thus, we have X ∪ Y ∈ TSC . So, TSC is a topology on U . �

Proposition 3.2 guarantees that TSC is a topology for any covering C of U . More-
over, the following results illustrates that TSC is a clopen topology.

Proposition 3.3. Let (U, C) be a covering-based approximation space. If X ∈ TSC,
then ∼ X ∈ TSC.
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Proof. By the formula (3.1), we only need to prove that SHC(∼ X) =∼ X. Ob-
viously, ∼ X ⊆ SHC(∼ X). If we assume that ∼ X $ SHC(∼ X), then there is
t ∈ U such that t ∈ SHC(∼ X) and t /∈∼ X. Since t ∈ SHC(∼ X), there exists
C ∈ C such that t ∈ C and C ∩ (∼ X) 6= ∅. By t /∈∼ X, t ∈ X. Thus, t ∈ C ∩X,
i.e., C ∩X 6= ∅. So, C ⊆ SHC(X) = X, which means that C ∩ (∼ X) = ∅. This
contradicts C ∩ (∼ X) 6= ∅. Hence, SHC(∼ X) =∼ X. Therefore, ∼ X ∈ TSC . �

Corollary 3.4. Let (U, C) be a covering-based approximation space. If X,Y ∈ TSC
and Y ⊆ X, then X − Y ∈ TSC.

Proof. Since Y ∈ TSC , by Proposition 3.3, ∼ Y ∈ TSC . By Proposition 3.2, TSC is a
topology. Thus X ∩ (∼ Y ) ∈ TSC , i.e., X − Y ∈ TSC . �

Proposition 3.5. Let (U, C) be a covering-based approximation space. For any
x ∈ U , there is an Xi ∈Min(TSC \ {∅}) such that x ∈ Xi.

Proof. Let SHC({x}) = X1, SHC(X1) = X2, SHC(X2) = X3, . . ., SHC(Xn−1) =
Xn. For every X ⊆ U , X ⊆ SHC(X). Then {x} ⊆ X1 ⊆ X2 ⊆ ... ⊆ Xn. Since U is
finite, there exists a t ∈ U such that Xt = Xt+1 = Xt+2 = ... = Xn. Thus
SHC(Xt) = Xt+1 = Xt. So, we prove that x ∈ Xt and Xt ∈ TSC .

Take Xt as the minimum set of TSC , which contains x. Then we only need to
prove that Xt ∈Min(TSC \{∅}). If Xt /∈Min(TSC \{∅}), then there exists Y $ Xt

such that Y ∈ TSC \ {∅}. Since Xt is the minimum set of TSC , which contains x,
then x /∈ Y , and it follows that x ∈ Xt − Y . By Corollary 3.4, Xt − Y ∈ TSC . It is
obvious that x ∈ Xt − Y $ Xt, which contradicts the fact that Xt is the minimum
set of TSC , which contains x. Hence, Xt ∈Min(TSC \ {∅}). �

Proposition 3.6. Let (U, C) be a covering-based approximation space. Then
Min(TSC \ {∅}) is a partition on U .

Proof. According to Proposition 3.5, it is evident that U ⊆
⋃
Min(TSC \ {∅}).

Obviously,
⋃
Min(TSC \ {∅}) ⊆ U . Then, we have

⋃
Min(TSC \ {∅}) = U . Now,

we start to prove that if X,Y ∈ Min(TSC \ {∅}) and X ∩ Y 6= ∅, then X = Y .
Assume that X 6= Y . Then X ∩ Y & X or X $ Y . If X,Y ∈Min(TSC \ {∅}), then
X,Y ∈ TSC . Thus, by Proposition 3.2, X ∩ Y ∈ TSC . Furthermore, by X ∩ Y 6= ∅,
X ∩ Y ∈ TSC \ {∅}. If X ∩ Y & X, by Definition 3.1, X /∈ Min(TSC \ {∅}), which
contradicts X ∈Min(TSC \{∅}). If X $ Y , by Definition 3.1, Y /∈Min(TSC \{∅}),
which contradicts Y ∈Min(TSC\{∅}). These contradictions show that if X∩Y 6= ∅,
we have X = Y . So, we prove that Min(TSC \ {∅}) is a partition on U . �

The following result illustrates that Min(TSC \ {∅}) is a base for topology TSC .

Proposition 3.7. Let (U, C) be a covering-based approximation space. Then
Min(TSC \ {∅}) is a base for topology space (U, TSC).

Proof. Obviously, Min(TSC \ {∅}) ⊆ TSC . ∀X ∈ TSC and x ∈ X, since Min(TSC \
{∅}) is a partition of U , there exists Y ∈ Min(TSC \ {∅}) such that x ∈ Y . Thus
x ∈ X ∩ Y and Y ∈ TSC . By Definition 3.1, we find that x ∈ Y ⊆ X. So, by
Theorem 2.8, Min(TSC \ {∅}) is a base for (U, TSC). �
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Let C1, C2 be two different coverings of U . If SHC1 and SHC2 generate the same
topology on U , that is, TSC1 = TSC2 , then what is the relationship between C1 and
C2?

In order to investigate this problem, we give the following example.
Example 3.1. Let U = {a, b, c, d}, C1 = {{a, b}, {b, c}, {d}}, C2 = {{a, b}, {a, c}, {d}}.
By the formula (3.1), TSC1 = TSC2 = {∅, {a, b, c}, {d}, U}. By Definition 3.1, we have
Min(TSC1 \ {∅}) = Min(TSC2 \ {∅}) = {{a, b, c}, {d}}.

Proposition 3.8. Let C1, C2 be two coverings of U . TSC1 = TSC2 if and only if
Min(TSC1 \ {∅}) = Min(TSC2 \ {∅}).

Proof. The necessity holds obviously. Now we consider the sufficient condition.
∀X ∈ TSC1 \ {∅}, by Proposition 3.7, there exist X1, X2, . . . , Xk ∈Min(TSC1 \ {∅})

such that X =
k⋃

i=1

Xi(1 ≤ k ≤ n). Since Min(TSC1 \ {∅}) = Min(TSC2 \ {∅}),

X1, X2, . . . , Xk ∈ Min(TSC2 \ {∅}), which means that X ∈ TSC2 \ {∅}. Thus,
TSC1 \ {∅} ⊆ TSC2 \ {∅}. Similarly, we can prove that TSC2 \ {∅} ⊆ TSC1 \ {∅}.
So, TSC1 = TSC2 . �

Proposition 3.8 shows a necessary and sufficient condition under which different
coverings generate the same topology. Based on this conclusion, we define the family
[C] as follows:

[C] = {Ci | TSCi = TSC ,∀C ∈ Ci, C 6= ∅}.(3.2)

Proposition 3.9. Let (U, C) be a covering-based approximation space. For any
Ci ∈ [C], Ci is a covering of U .

Proof. Since C is a covering of U , by Proposition 3.2, TSC is a topology, and it
follows that U ∈ TSC . Since Ci ∈ [C], TSCi = TSC , so U ∈ TSCi , which implies
SHCi(U) =

⋃
{C ∈ Ci|C ∩ U 6= ∅} = U . Thus,

⋃
C∈Ci

C = U . So, by the definitions

of covering and [C], Ci is a covering of U . �

Combining with Propositions 3.8, 3.9 and the formula (3.2), we have the following
conclusion:

Proposition 3.10. Let (U, C) be a covering-based approximation space. For any
Ci ∈ [C], then Min(TSCi \ {∅}) = Min(TSC \ {∅}).

Proposition 3.10 guarantees that if two different covering generate the same topol-
ogy, then the minimum sets of their topological coverings are the same partition on
U .

Proposition 3.11. Let (U, C) be a covering-based approximation space. For any
C1, C2 ∈ [C], then C1 ∪ C2 ∈ [C].

Proof. In order to prove this conclusion, by the formula (3.2) and Proposition 3.8, it
is enough to prove that Min(TS(C1∪C2) \ {∅}) = Min(TSC \ {∅}). ∀C1, C2 ∈ [C], by
Proposition 3.10, we have Min(TSC1 \ {∅}) = Min(TSC2 \ {∅}) = Min(TSC \ {∅}).
Since Min(TSC \ {∅}) is a partition,
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Min(TSC \ {∅}) = Min(TSC1 \ {∅}) ⊆Min(TS(C1∪C2) \ {∅})
⊆Min(TSC1 \ {∅}) ∪Min(TSC2 \ {∅})
= Min(TSC \ {∅}).

Therefore, Min(TS(C1∪C2) \ {∅}) = Min(TSC \ {∅}), which follows that TS(C1∪C2) =
TSC . Thus, by the definition of [C], we have C1 ∪ C2 ∈ [C]. �

Proposition 3.11 illustrates that [C] is additive. However, [C] is not multiplicative.
The following example demonstrates this point.
Example 3.2. Let U = {a, b, c, d, }, C = {{a, b}, {b, c}, {a, c}, {d}},
C1 = {{a, b}, {b, c}, {d}} and C2 = {{a, b}, {a, c}, {d}}. We have C1∩C2 = {{a, b}, {d}}.
Obviously, C1∩C2 is not a covering of U . Therefore, by Proposition 3.9, C1∩C2 /∈ [C].

By Proposition 3.2, for any covering C of U , TSC is a topology. However, SHC
may not be the closure operator of TSC . The following example demonstrates this
point.
Example 3.3. Let U = {a, b, c, d} and C = {{a, b}, {b, c}, {d}}. We have SHC({a}) =
{a, b} and SHC({a, b}) = {a, b, c}. Obviously, SHC(SHC({a})) 6= SHC({a}). By
Definition 2.7, SHC is not a closure operator.

It is an interesting question of whether we can give a covering C0 induced by
covering C, such that SHC0 is the closure operator of TSC? Furthermore, what’s
the relationship between C0 and C? In the following section, we will discuss these
problems.

We denote:

C0 =
⋃

[C].(3.3)

C′ =
⋃
{P(X) \ {∅}|X ∈Min(TC \ {∅})}.(3.4)

Obviously, C0 and C′ are coverings of U . It is easy to verify that C0 ∈ [C]. Then, we
will discuss the relationship between C0 and C′.

In [5], the intuitive characterization for SHC to be a closure operator was given.

Definition 3.12 (Triangle Chain with three points [5]). Let C be a covering of
U. ∀x, y, z ∈ U , if either there exist C1, C2, C3 ∈ C, such that x, y ∈ C1, y, z ∈ C2

and z, x ∈ C3, then we say that there is a triangle chain with three points x, y, z.

Theorem 3.13 (Triangle Chain condition [5]). SHC is a closure operator if and
only if covering C divides U into disjoint parts U1, U2, . . . , Un on U , such that for
each Ui(1 ≤ i ≤ n) and ∀x, y, z ∈ Ui, there is a Triangle Chain with three points
x, y, z.

The description in Theorem 3.13 is illustrated by the following example.
Example 3.3. Let C = {{a, b}, {b, c}, {a, c}, {d, e, f}, {e, f, g}, {d, g}} and U =
{a, b, c, d, e, f, g}. Covering C divides U into two disjoint parts U1 = {a, b, c} and
U2 = {d, e, f, g}. It is obvious that points of U1 or U2 satisfy the Triangle Chain
condition.

In order to explore the relationship between C0 and C′, we prove the following
Lemmas first.
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Lemma 3.14. Let C be a covering of U . For any X ∈ Min(TSC \ {∅}), then
SHC′(X) = X, where C′ is defined by the formula (3.4).

Proof. ∀x ∈ SHC′(X), there exists C ∈ C′ such that x ∈ C and C ∩ X 6= ∅.
Since C ∈ C′, by the formula(3.4), there exists Y ∈ Min(TSC \ {∅}) such that
C ∈ P(Y ) \ {∅}, which implies that C ⊆ Y . In order to prove SHC′(X) ⊆ X, it is
enough to verify C ⊆ X. Assume that C * X. Then X 6= Y . Due to C ∩X 6= ∅
and C ⊆ Y , then Y ∩X 6= ∅, which contradicts the fact that Min(TSC \ {∅}) is a
partition on U . Thus, we have C ⊆ X, and it follows that x ∈ X. So, SHC′(X) ⊆ X.
It is obvious that X ⊆ SHC′(X). Hence, SHC′(X) = X. �

Lemma 3.15. Let C be a covering of U , for any Ci ∈ [C] and C ∈ Ci. Then there
exists an X ∈Min(TSC \ {∅}) such that C ⊆ X.

Proof. Assume the contrary. If there exists Ci ∈ [C] and C ∈ Ci, ∀X ∈ Min(TSC \
{∅}), we have C * X. Since Ci ∈ [C], by Proposition 3.10, Min(TSCi \ {∅}) =
Min(TSC \ {∅}), and it follows that ∀X ∈Min(TSCi \ {∅}), we have C * X. Since
Min(TSCi \{∅}) is a partition on U , there exist Y,Z ∈Min(TSCi \{∅}) and Y 6= Z
such that C ∩ Y 6= ∅ and C ∩Z 6= ∅. By Definition 2.5, we find that C ⊆ SHCi(Y )
and C ⊆ SHCi(Z). It follows that C ⊆ SHCi(Y ) ∩ SHCi(Z) = Y ∩ Z = ∅, which
contradicts to the definition of covering. �

Based on the above lemmas, we can prove the following result.

Proposition 3.16. Let (U, C) be a covering-based approximation space. Then

C0 =
⋃
{P(X) \ {∅}|X ∈Min(TSC \ {∅})}.

Proof. To prove the conclusion, it is enough to prove C′ = C0. Firstly, we prove C′ ⊆
C0, by the formula (3.3), which is enough to prove C′ ∈ [C]. Then, by Proposition
3.10, we only need to prove Min(TSC′ \ {∅}) = Min(TSC \ {∅}).
∀X ∈ Min(TSC′ \ {∅}), we have SHC′(X) = X. Since Min(TSC \ {∅}) is a

partition on U , there exists Y ∈ Min(TSC \ {∅}) such that X ∩ Y 6= ∅. We can
take an x ∈ X ∩ Y , by Proposition 6 of [30], SHC′({x}) ⊆ SHC′(X) = X. Since
Y ∈ Min(TSC \ {∅}), by the formula (3.4), Y ∈ C′. Meanwhile, we have x ∈ Y , by
the definition of SH, Y ⊆ SHC′({x}), and it follows that Y ⊆ X. By Lemma 3.14,
SHC′(Y ) = Y . So Y ∈ TSC′ \ {∅}. Since X ∈ Min(TSC′ \ {∅}), Y ∈ TSC′ \ {∅}
and X ∩ Y 6= ∅, X ⊆ Y . Therefore, X = Y ∈ Min(TSC \ {∅}). It follows that
Min(TSC′ \ {∅}) ⊆Min(TSC \ {∅}).
∀X ∈Min(TSC\{∅}), by the formula (3.4), X ∈ C′. By Lemma 3.14, SHC′(X) =

X. Then X ∈ TSC′ \ {∅}. If Y ∈ TSC′ \ {∅} and Y ⊆ X, we have SHC′(Y ) = Y .
Since X ∈ C′ and Y ⊆ X, X ⊆ SHC′(Y ) = Y . Thus, X = Y . So, by the definition
of the minimum set of TSC′ \ {∅}, X ∈Min(TSC′ \ {∅}). Hence, Min(TSC \ {∅}) ⊆
Min(TSC′ \ {∅}). Therefore, Min(TSC′ \ {∅}) = Min(TSC \ {∅}).

Next, we prove that C0 ⊆ C′, which is enough to prove that ∀Ci ∈ [C], Ci ⊆ C′.
∀Ci ∈ [C] and C ∈ Ci, by Lemma 3.15, there exists an X ∈Min(TSC \ {∅}) such

that C ⊆ X, so C ∈ P(X) \ {∅}. Thus, by the formula(5), C ∈ C′, which implies
Ci ⊆ C′. So,

⋃
{Ci|Ci ∈ [C]} ⊆ C′. �

According to Proposition 3.16, covering C0 induced by covering C satisfies the
condition of Theorem 3.13, then we have the following result.
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Proposition 3.17. Let (U, C) be a covering-based approximation space. SHC0 is a
closure operator.

Next, we will prove that SHC0 is the closure operator of topology TSC .

Proposition 3.18. Let (U, C) be a covering-based approximation space. SHC0 is the
closure operator of topology TSC0 .

Proof. By Proposition 3.17, SHC0 is a closure operator. Then SHC0 is the closure
operator of topology T = {∼ X ⊆ U | SHC0(X) = X}. By Proposition 3.3, TSC0 is a
clopen topology. By the formula (3.1), we have TSC0 = {∼ X ⊆ U | SHC0(X) = X},
and it follows that TSC0 = T . Therefore, SHC0 is the closure operator of topology
TSC0 . �

By the formula (3.4) and Proposition 3.11, we find that C0 ∈ [C]. Thus, by the
formula (3.2), TSC = TSC0 . Based on these conclusions and Proposition 3.18, we
have the following result.

Corollary 3.19. Let (U, C) be a covering-based approximation space. Then SHC0
is the closure operator of topology TSC.

At the end of this section, we present the relationship among the approximation
operators CL and SH generated by the coverings of [C].

Remark 3.20. Denote C1 = Min(TSC \ {∅}) ∈ [C] and let X ⊆ U . Then for any
Ci ∈ [C], it is easy to verify that:

CLC1(X) ⊆ CLCi(X) ⊆ CLC0(X) ⊆ X ⊆ SHCi(X) ⊆ SHC0(X) = SHC1(X).

3.2. The topological structures induced by FHC, THC and RHC.
In the above subsection, TSC is generated by the upper approximation operator

SHC . Similarly, we can construct the sets TFC , TTC and TRC using upper approx-
imation operators FHC , THC and RHC respectively. Whether the three sets are
topologies? In the following subsection, we will investigate this problem.

TFC = {X ⊆ U | FHC(X) = X}.(3.5)

TTC = {X ⊆ U | THC(X) = X}.(3.6)

TRC = {X ⊆ U | RHC(X) = X}.(3.7)

Similar to the proof in Proposition 3.2, we can easily prove the following result.

Proposition 3.21. Let (U, C) be a covering-based approximation space. Then TTC =
{X ⊆ U | THC(X) = X} is a topology on U .

The above result illustrates that for any covering C of U , TTC is a topology.
However, TFC or TRC may not be a topology. The following example demonstrates
this point.
Example 3.4. Let U = {a, b, c, d} and C = {{a, b}, {b, c}, {d}}. By formulas (3.5),
(3.7) and Definition 2.5, TFC = TRC = {∅, {d}, {a, b}, {b, c}, U}. According to the
definition of topology, we have that TFC and TRC are not topologies.

In order to explore the conditions for FHC or RHC to be a topology, we introduce
the following theorems.
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Theorem 3.22 ([29]). Let C be a covering of U . ∀X,Y ∈ U , FHC(X ∪ Y ) =
FHC(X) ∪ FHC(Y ) if and only if C is unary.

Theorem 3.23 ([29]). Let C be a covering of U . ∀X,Y ∈ U and X ⊆ Y , FHC(X) ⊆
FHC(Y ) if and only if C is unary.

Theorem 3.24 ([29]). Let C be a covering of U . ∀X,Y ∈ U , RHC(X ∪ Y ) =
RHC(X) ∪RHC(Y ) if and only if C is unary.

Theorem 3.25 ([29]). Let C be a covering of U . ∀X,Y ∈ U and X ⊆ Y , RHC(X) ⊆
RHC(Y ) if and only if C is unary.

Proposition 3.26. Let C be a covering of U . TFC = {X ⊆ U | FHC(X) = X} is a
topology on U if and only if C is unary.

Proof. Since TFC is topology, ∀X,Y ∈ TFC , FHC(X ∪Y ) = FHC(X)∪FHC(Y ). By
Theorem 3.22, we find that C is unary.

For the sufficient condition, we only need to prove that TFC satisfies the conditions
in Definition 2.6.

(T1) It is easy to check that ∅, U ∈ TFC .
(T2) ∀X,Y ∈ TFC , by Theorem 3.23, FHC(X∩Y ) ⊆ FHC(X)∩FHC(Y ) = X∩Y .

Obviously, X ∩ Y ⊆ FHC(X ∩ Y ). Thus X ∩ Y ∈ TFC .
(T3) Since C is unary, ∀X,Y ∈ TFC , by Theorem 3.22, FHC(X ∪Y ) = FHC(X)∪

FHC(Y ) = X ∪ Y . Thus, X ∪ Y ∈ TFC . �

With a similar argument, by Theorems 3.24 and 3.25, we can prove the following
result.

Proposition 3.27. Let C be a covering of U . TRC = {X ⊆ U | RHC(X) = X} is a
topology on U if and only if C is unary.

4. Conclusions

In this study, we investigated four classes of topological structures induced by
covering upper approximation operators FH, SH, TH and RH. We obtained that
the minimum set of topological structure generated by SH is not only a base for
the topology, but also a partition on U , and we constructed the closure operator of
the topology by means of SH. The relationships between topological structures and
unary covering were discussed in the last part. This study only investigate a class
of topological structure induced by covering rough sets. In [21], Wang and Wang
presented four methods to induce topological structures by relation-based rough
sets. Similarly, we can get the other topological structures using these methods
in covering-based rough set model. In the future, we will study the relationship
between these topological structures and covering rough sets.
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