Annals of Fuzzy Mathematics and Informatics Volume 12, No. 4, (October 2016), pp. 605–614 ISSN: 2093–9310 (print version) ISSN: 2287–6235 (electronic version) http://www.afmi.or.kr

© FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

On separation axioms in fuzzy rough topological spaces

K. SARANYA, N. KRITHIKA, B. AMUDHAMBIGAI

Received 17 November 2015; Accepted 9 February 2016

ABSTRACT. The purpose of this paper is to introduce the concept of fuzzy rough regular semi α -open sets and study its applications on fuzzy rough regular semi α -connected spaces, fuzzy rough regular super semi α -connected spaces, fuzzy rough regular semi α -ultranormal spaces, fuzzy rough regular semi α -completely ultranormal spaces and fuzzy rough regular semi α -quasi-normal spaces.

2010 AMS Classification: 54A40, 03E72

Keywords: Fuzzy rough regular semi α -open sets, Fuzzy rough regular semi α -connected spaces, Fuzzy rough regular super semi α -connected spaces, Fuzzy rough regular semi α -connected spaces, Fuzzy rough regular semi α -completely ultranormal spaces, Fuzzy rough regular semi α -quasi-normal spaces.

Corresponding Author: K.Saranya (saranyamath88@gmail.com)

1. INTRODUCTION

Zadeh [14] innovated the concept of a fuzzy set. The concept of fuzzy topological spaces was introduced and developed by Chang [4]. The definition of rough set was introduced by Pawlak [12]. Nanda and Majumdar [7] studied the concept of fuzzy rough set. The concept of fuzzy rough topological space was introduced by Padmapriya, Uma and Roja [9]. The concepts of fuzzy semi-closed sets and fuzzy α open sets were introduced by Bin Shahna [2] and the concept of fuzzy regular closed set was introduced by Azad [1]. The concept of fuzzy normality was introduced by Bruce Hutton[3]. The concept of fuzzy connectedness was introduced by Fatteh and Bassan [5]. The concept of fuzzy semi-connectedness was introduced by Uma, Roja and Balasubramanian [13]. The concept of topology of intuitionistic fuzzy rough sets was introduced by Hazra, Samanta and Chattopadhyay [6]. The purpose of this paper is to introduce the concept of fuzzy rough regular semi α -open sets and study its applications on fuzzy rough regular semi α -ultranormal spaces, fuzzy rough regular semi α -ultranormal spaces, fuzzy rough regular semi $\alpha\text{-completely}$ ultranormal spaces and fuzzy rough regular semi $\alpha\text{-quasi-normal spaces}.$

2. Preliminaries

Unless otherwise stated consider (V, \mathcal{B}) to be a rough universe where V is a nonempty set and \mathcal{B} is a Boolean subalgebra of the Boolean algebra of all subsets of V. Also consider a rough set $X = (X_L, X_U) \in \mathcal{B}^2$ with $X_L \subset X_U$.

Definition 2.1 ([6]). A fuzzy rough set (briefly FRS) in X is an object of the form $A = (A_L, A_U)$, where A_L and A_U are characterized by a pair of maps $A_L : X_L \to \mathcal{L}$ and $A_U : X_U \to \mathcal{L}$ with $A_L(x) \leq A_U(x) \forall x \in X_U$ where (\mathcal{L}, \leq) is a fuzzy lattice (i.e complete and completely distributive lattice whose least and greatest elements are denoted by 0 and 1 respectively with an involutive order reversing operation $': \mathcal{L} \to \mathcal{L}$).

Definition 2.2 ([8]). In particular \mathcal{L} could be the closed interval [0, 1].

Definition 2.3 ([6]). For any two fuzzy rough sets $A = (A_L, A_U)$ and $B = (B_L, B_U)$ in X,

(i) $A \subset B$ iff $A_L(x) \leq B_L(x)$, $\forall x \in X_L$ and $A_U(x) \leq B_U(x)$, $\forall x \in X_U$.

(ii) A = B iff $A \subset B$ and $B \subset A$.

If $\{A_i : i \in J\}$ be any family of fuzzy rough sets in X, where $A_i = (A_{iL}, A_{iU})$, then (iii) $E = \bigcup_i A_i$ where $E_L(x) = \lor A_{iL}(x), \forall x \in X_L$ and $E_U(x) = \lor A_{iU}(x), \forall x \in X_U$.

(iv) $F = \bigcap_i A_i$ where $F_L(x) = \wedge A_{iL}(x), \forall x \in X_L$ and $F_U(x) = \wedge A_{iU}(x), \forall x \in X_U$.

Definition 2.4 ([6]). If A and B are fuzzy rough sets in X_L and X_U respectively where $X_L \subset X_U$. Then the restriction of B on X_L and the extension of A on X_U (denoted by $B_{>L}$ and $A_{<U}$ respectively) are denoted by $B_{>L}(x) = B(x), \forall x \in X_L$ and

$$A_{\leq U}(x) = \begin{cases} A(x), & \forall x \in X_L, \\ \forall_{\xi \in X_L} \{A(\xi)\}, & \forall x \in X_U - X_L. \end{cases}$$

Complement of a FRS $A = (A_L, A_U)$ in X are denoted by $\overline{A} = ((\overline{A})_L, (\overline{A})_U)$ and is defined by $(\overline{A})_L(x) = (A_{U>L})'(x), \forall x \in X_L$ and $(\overline{A})_U(x) = (A_{L<U})'(x), \forall x \in X_U$. For simplicity we write $\overline{A}_L, \overline{A}_U$ instead of $((\overline{A})_L, (\overline{A})_U)$.

Definition 2.5 ([10]). The null fuzzy rough set and whole fuzzy rough set in X is defined by $\tilde{0} = (0_L, 0_U)$ and $\tilde{1} = (1_L, 1_U)$.

Definition 2.6 ([10]). Let (V, \mathcal{B}) and (V_1, \mathcal{B}_1) be two rough universes and f: $(V, \mathcal{B}) \rightarrow (V_1, \mathcal{B}_1)$. Let $A = (A_L, A_U)$ be a fuzzy rough set in X. Then $Y = f(X) \in \mathcal{B}_1^2$ and $Y_L = f(X_L)$, $Y_U = f(X_U)$. The image of A under f, denoted by $f(A) = (f(A_L), f(A_U))$ is defined by

$$f(A_L)(y) = \bigvee \left\{ A_L(x) : x \in X_L \cap f^{-1}(y) \right\}$$
 for every $y \in Y_L$

and

$$f(A_U)(y) = \bigvee \left\{ A_U(x) : x \in X_U \cap f^{-1}(y) \right\} \text{ for every } y \in Y_U.$$

606

Definition 2.7 ([8]). Let $B = (B_L, B_U)$ be a fuzzy rough set in Y where $Y = (Y_L, Y_U) \in \mathcal{B}_1^1$ is a rough set. Then $X = f^{-1}(Y) \in \mathcal{B}_1^2$, where $X_L = f^{-1}(Y_L)$, $X_U = f^{-1}(Y_U)$. Then the inverse image of B under f, denoted by $f^{-1}(B) = (f^{-1}(B_L), f^{-1}(B_U))$ is defined by

$$f^{-1}(B_L)(x) = B_L(f(x))$$
 for every $x \in X_L$

and

$$f^{-1}(B_U)(x) = B_U(f(x))$$
 for every $x \in X_U$.

Proposition 2.8 ([8]). If $f : (V, \mathcal{B}) \to (V_1, \mathcal{B}_1)$ be a mapping, then for all fuzzy rough sets $A, A_1, A_2 \in X$, we have

(i)
$$f(A') \supset (f(B))'$$
,

(ii) $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2).$

Proposition 2.9 ([11]). Let $f : (V, \mathcal{B}) \to (V_1, \mathcal{B}_1)$ be a mapping such that $f^{-1}: (V_1, \mathcal{B}_1) \to (V, \mathcal{B})$. Then for all fuzzy rough sets, $B, B_i \in Y$, $i \in J$, we have

(i) $f^{-1}(B') = f^{-1}(B')$, (ii) $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$, (iii) $f^{-1}(\cup_i B_i) = \cup_i f^{-1}(B_i)$, (iv) $f^{-1}(\cap_i B_i) = \cap_i f^{-1}(B_i)$, (v) $f(\cup_i B_i) = \cup_i f(B_i)$, (vi) $f(\cap_i B_i) \subset \cap_i f(B_i)$.

Proposition 2.10 ([11]). Let $f : (V, \mathcal{B}) \to (V_1, \mathcal{B}_1)$ be a mapping such that $f^{-1}: (V_1, \mathcal{B}_1) \to (V, \mathcal{B})$. Then for all fuzzy rough sets A in X and B in Y, we have

(i) $B = f(f^{-1}(B)),$

(ii) $A \subset f^{-1}(f(A))$.

Definition 2.11 ([8]). A fuzzy rough topology (in short, FRT) is a family τ of fuzzy rough sets in $X = (X_L, X_U)$ satisfying the following axioms:

- (i) $\tilde{0}$ and $\tilde{1} \in \tau$,
- (ii) $\lambda_1 \cap \lambda_2 \in \tau$ for any $\lambda_1, \lambda_2 \in \tau$,

(iii) $\cup \lambda_i \in \tau$ for any arbitrary family $\{\lambda_i, i \in J\} \in \tau$.

In this case the pair (X,τ) is called a fuzzy rough topological space (in short, *FRTS*) and any fuzzy rough set in τ is known as a fuzzy rough open set(in short, *FROS*) in X.

Definition 2.12 ([11]). A fuzzy rough set is a fuzzy rough closed set (in short, FRCS) if and only if its complement is a fuzzy rough open set (in short, FROS).

Definition 2.13 ([11]). Let (X,τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough set in $X = (X_L, X_U)$. Then the fuzzy rough interior of A is denoted by FRint(A) and is defined by

 $FRint(A) = \cup \{B : B = (B_L, B_U) is a fuzzy rough open set in X and B \subseteq A\}.$

Definition 2.14 ([11]). Let (X,τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough set in $X = (X_L, X_U)$. Then the fuzzy rough closure of A is denoted by FRcl(A) and is defined by

$$FRcl(A) = \cap \{B : B = (B_L, B_U) is a fuzzy rough closed set in X and B \supseteq A\}.$$

607

Definition 2.15 ([11]). Any fuzzy rough set A in a fuzzy topological space (X,τ) is said to be *FR*-clopen if it is both *FR*-open and *FR*-closed.

Remark 2.16 ([11]). (*i*) $FRint(A) \subseteq A \subseteq FRcl(A)$. (*ii*) $A \subseteq FRint(FRcl(A)) \subseteq FRcl(A)$. (*iii*) If A is a fuzzy rough open set, then FRint(A) = A. (*iv*) If A is a fuzzy rough closed set, then FRcl(A) = A.

Remark 2.17. Let $A = (A_L, A_U)$ and $B = (B_L, B_U)$ be any two fuzzy rough sets in a fuzzy rough topological space (X, τ) .

(i) If $A \subseteq B$, then $FRcl(A) \subseteq FRcl(B)$ and $FRint(A) \subseteq FRint(B)$.

(ii) FRint(FRint(A)) = FRint(A).

(iii) FRcl(FRcl(A)) = FRcl(A).

Proposition 2.18 ([11]). A function f from a fuzzy rough topological space (X, τ) to a fuzzy rough topological space (Y, σ) is said to be a fuzzy rough continuous function if $f^{-1}(A)$ is a fuzzy rough open (resp. closed) set in X for each fuzzy rough open (resp. closed) set A in Y.

Proposition 2.19 ([11]). Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy rough continuous function. Then $f(FRcl(A)) \subseteq FRcl(f(A))$, for each fuzzy rough set A in (X, τ) .

Proposition 2.20 ([11]). Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy rough continuous function. Then $FRcl(f^{-1}(A)) \subseteq f^{-1}(FRcl(A))$, for each fuzzy rough set A in (Y, σ) .

3. Separation axioms in fuzzy rough topological spaces

In this section, the concept of fuzzy rough regular semi α -open sets and its applications on fuzzy rough regular semi α -connected spaces, fuzzy rough regular super semi α -connected spaces, fuzzy rough regular semi α -ultra-normal spaces, fuzzy rough regular semi α -quasi-normal spaces are discussed.

Definition 3.1. Any fuzzy rough set A in a fuzzy rough topological space (X, τ) is said to be:

(i)Fuzzy rough α -closed (in short $FR \alpha$ -closed) if $A \supseteq FRcl(FRint(FRcl(A)))$. Its complement is said to be a $FR \alpha$ -open set.

(ii)Fuzzy rough semi-closed (in short FR semi-closed) if $A \supseteq FRint(FRcl(A))$. Its complement is said to be a FR semi-open set.

Definition 3.2. Let (X, τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough set in $X = (X_L, X_U)$. Then the fuzzy rough α -interior of A is denoted by $FR\alpha$ -int(A) and is defined by

 $FRaint(A) = \bigcup \{B : B = (B_L, B_U) \text{ is a fuzzy rough } \alpha \text{-open set in X and } B \subseteq A \}.$

Definition 3.3. Let (X, τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough set in $X = (X_L, X_U)$. Then the fuzzy rough α -closure of A is denoted by $FR\alpha$ -cl(A) and is defined by

 $FR\alpha cl(A) = \cap \{B : B = (B_L, B_U) \text{ is a fuzzy rough } \alpha \text{-closed set in X and } B \supseteq A\}.$

Definition 3.4. Let (X, τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough set in $X = (X_L, X_U)$. Then the fuzzy rough semi-interior of A is denoted by FRsint(A) and is defined by

 $FRsint(A) = \bigcup \{B : B = (B_L, B_U) \text{ is a fuzzy rough semi-open set in X and} B \subseteq A \}.$

Definition 3.5. Let (X, τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough set in $X = (X_L, X_U)$. Then the fuzzy rough semi-closure of A is denoted by FRscl(A) and is defined by

 $FRscl(A) = \cap \{B : B = (B_L, B_U) \text{ is a fuzzy rough semi-closed set in X and} B \supseteq A\}.$

Remark 3.6. \mathcal{L}^X and \mathcal{L}^Y denote collection of all fuzzy rough sets in X and Y.

Definition 3.7. Let (X, τ) be a fuzzy rough topological space. Any fuzzy rough set $A \in \mathcal{L}^X$ is said to be fuzzy rough regular semi α -open [in short $FRrs\alpha - open$] iff $A = FRsint(FR\alpha cl(A))$. The complement of a fuzzy rough regular semi α -open set is said to be a fuzzy rough regular semi α -closed set [in short $FRrs\alpha$ -closed]. Any fuzzy rough set A in a fuzzy rough topological space (X, τ) is said to be a fuzzy rough regular semi α -clopen set [in short $FRrs\alpha$ -closed] and $FRrs\alpha$ -closed.

Example 3.8. Let $X = \{a, b, c\}$. Let $X_L = \{a, b\}$ and $X_U = \{a, b, c\}$. Let $A, B \in \mathcal{L}^X$ be defined as A = ((a/0.2, b/0.3), (a/0.3, b/0.3, c/0.3)) and B = ((a/0.4, b/0.5), (a/0.4, b/0.5, c/0.5)). Define the fuzzy rough topology τ on X as $\tau = \{\tilde{0}, \tilde{1}, A, B\}$. Let $C \in \mathcal{L}^X$ be defined as, $C = (C_L, C_U) = ((a/0.6, b/0.5), (a/0.6, b/0.5, c/0.5))$. Thus $FRsint(FR\alpha cl(C)) = C$. So C is a fuzzy rough regular semi α -open set.

Definition 3.9. Let (X, τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough regular semi α -open set in $X = (X_L, X_U)$. Then the fuzzy rough regular semi α -interior of A is denoted by FRrsaint(A) and is defined by

 $FRrsaint(A) = \bigcup \{B : B = (B_L, B_U) isaFRrs \ \alpha \text{-open set in } X \text{ and } B \subseteq A \}.$

Definition 3.10. Let (X, τ) be a fuzzy rough topological space and $A = (A_L, A_U)$ be a fuzzy rough regular semi α -open set in $X = (X_L, X_U)$. Then the fuzzy rough regular semi α -closure of A is denoted by FRrsacl(A) and is defined by

 $FRrsacl(A) = \bigcap \{B : B = (B_L, B_U) isaFRrs \ \alpha \text{-closed set in } X \text{ and } B \supseteq A \}.$

Definition 3.11. (i) If $A \neq \tilde{0}$ then either $A_L \neq 0_L$ or $A_U \neq 0_U$ or both. (ii) If $A \neq \tilde{1}$ then either $A_L \neq 1_L$ or $A_U \neq 1_U$ or both.

Definition 3.12. Let (X, τ) be a fuzzy rough topological space. Let A be any $FRrs\alpha$ -open set in (X, τ) . Then A is said to be proper if $A \neq \tilde{0}$ and $A \neq \tilde{1}$.

Definition 3.13. A fuzzy rough topological space (X, τ) is said to be fuzzy rough regular semi α -connected [in short $FRrs\alpha$ -connected] iff (X, τ) has no proper $FRrs\alpha$ open sets A and B such that $A_L(x) + (B_{U>L})(x) = 1, B_L(x) + (A_{U>L})(x) = 1 \forall x \in X_L$ and $A_U(x) + (B_{L<U})(x) = 1, B_U(x) + (A_{L<U})(x) = 1 \forall x \in X_U$.

Proposition 3.14. For a fuzzy rough topological space (X, τ) the following statements are equivalent: (i) (X, τ) is fuzzy rough regular semi α -connected.

(ii) There exist no $FRrs\alpha$ -open sets $A, B \in \mathcal{L}^X$ where $A \neq \tilde{0}$ and $B \neq \tilde{0}$ such that $A_L(x) + (B_{U>L})(x) = 1, B_L(x) + (A_{U>L})(x) = 1 \forall x \in X_L$ and $A_U(x) + (B_{L<U})(x) = 1, B_U(x) + (A_{L<U})(x) = 1 \forall x \in X_U$.

(iii) There exist no $FRrs\alpha$ -closed sets $C, D \in \mathcal{L}^X$ where $C \neq \tilde{1}$ and $D \neq \tilde{1}$ such that $C_L(x) + (D_{U>L})(x) = 1$, $D_L(x) + (C_{U>L})(x) = 1 \forall x \in X_L$ and $C_U(x) + (D_{L<U})(x) = 1, D_U(x) + (C_{L<U})(x) = 1 \forall x \in X_U$.

(iv) (X, τ) contains no fuzzy rough set $A \neq \tilde{0}$ and $A \neq \tilde{1}$, such that A is both $FRrs\alpha$ -open and $FRrs\alpha$ -closed.

Proof. (i) \Rightarrow (ii). Assume that (i) is true. Then (ii) follows from the Definition 3.13.

(ii) \Rightarrow (iii). Assume that (ii) is true. Suppose that there exist fuzzy rough regular semi α -closed sets $A \neq \tilde{1}$ and $B \neq \tilde{1}$ such that

$$A_L(x) + (B_{U>L})(x) = 1, B_L(x) + (A_{U>L})(x) = 1 \forall x \in X_L$$

and

$$A_U(x) + (B_{L < U})(x) = 1, \ B_U(x) + (A_{L < U})(x) = 1 \forall x \in X_U.$$

Then, $C = \bar{A} \neq \tilde{0}$ is a $FRrs\alpha$ -open set. Similarly, $D = \bar{B} \neq \tilde{0}$ is a $FRrs\alpha$ -open set such that

$$C_L(x) + (D_{U>L})(x) = 1, \ D_L(x) + (C_{U>L})(x) = 1 \forall x \in X_L$$

and

$$C_U(x) + (D_{L < U})(x) = 1, D_U(x) + (C_{L < U})(x) = 1 \forall x \in X_U$$

which is a contradiction to our assumption. Thus (iii) holds.

(iii) \Rightarrow (iv). Assume that (iii) is true. Suppose that (X, τ) contains a fuzzy rough set $A \neq \tilde{0}$ and $A \neq \tilde{1}$ which is $FRrs\alpha$ -clopen. Then \bar{A} is a proper $FRrs\alpha$ -closed set. Also, by assumption, A is $FRrs\alpha$ -closed. Thus,

$$A_L(x) + (\bar{A}_{U>L})(x) = 1, (\bar{A}_L)(x) + (A_{U>L})(x) = 1 \forall x \in X_L$$

and

$$A_U(x) + (\bar{A}_{L < U})(x) = 1, (\bar{A}_U)(x) + (A_{L < U})(x) = 1 \forall x \in X_U$$

which is a contradiction to our assumption. So (iv) holds.

(iv) \Rightarrow (i). Assume that (iv) is true. Suppose that (X, τ) is not $FRrs\alpha$ -connected. Then, (X, τ) has proper $FRrs\alpha$ -open sets A and B such that

$$A_L(x) + (B_{U>L})(x) = 1, \ B_L(x) + (A_{U>L})(x) = 1 \forall x \in X_L$$

and

$$A_U(x) + (B_{L < U})(x) = 1, B_U(x) + (A_{L < U})(x) = 1 \forall x \in X_U.$$

That is, there exist $FRrs\alpha$ -closed set \bar{A} and a $FRrs\alpha$ -closed set \bar{B} such that,

$$\bar{A}_L(x) + (\bar{B}_{U>L})(x) = 1, (\bar{B})_L(x) + (\bar{A}_{U>L})(x) = 1 \forall x \in X_L$$

and

 $(\bar{A})_U(x) + (\bar{B}_{L < U})(x) = 1, (\bar{B})_U(x) + (\bar{A}_{L < U})(x) = 1 \forall x \in X_U.$

This implies that (X, τ) has a $FRrs\alpha$ -open set $A = \overline{B} \neq 0, 1$ which is both $FRrs\alpha$ open and $FRrs\alpha$ -closed which is a contradiction to our assumption. Thus (i) holds.

Definition 3.15. A fuzzy rough topological space (X, τ) is said to be fuzzy rough regular super semi α -connected [in short $FRrss\alpha$ -connected] if it has no proper $FRrs\alpha$ -open set.

Proposition 3.16. If (X, τ) is any fuzzy rough topological space, then $((i)) \Rightarrow ((ii))$ and $((ii)) \Rightarrow ((iii))$, where,

- (i) (X, τ) is a FRrss α -connected space.
- (ii) If $0 \neq A$ is a FRrs α -open set then, FRrs $\alpha cl(A) = 1$.
- (iii) If $\tilde{1} \neq A$ is a FRrs α -closed set then, FRrs α int $(A) = \tilde{0}$.

Proof. (i) \Rightarrow (ii). Assume that (X, τ) is a fuzzy rough regular super semi α -connected space. Suppose that there exists a fuzzy rough regular semi α -open set $A \neq \tilde{0}$ such that $FRrs\alpha cl(A) \neq \tilde{1}$. Then $FRrs\alpha int(FRrs\alpha cl(A)) \neq \tilde{1}$. But since A is a fuzzy rough regular semi α -open set and $FRrs\alpha int(FRrs\alpha cl(A)) \neq \tilde{1}$, it is seen that $A \neq \tilde{1}$. Thus we find that (X, τ) has a proper $FRrs\alpha$ -open set A, which is a contradiction.

(ii) \Rightarrow (iii). Assume that(ii) holds. Suppose that there exists a fuzzy rough regular semi α -closed set $A \neq \tilde{1}$ such that $FRrs\alpha int(A) \neq \tilde{0}$. Now $B = \bar{A} \neq \tilde{0}$ and B is a non-zero fuzzy rough regular semi α -open set. Then, $FRrs\alpha cl(B) = \tilde{1} - FRrs\alpha int(\bar{B}) = \tilde{1} - FRrs\alpha int(A) \neq \tilde{1}$, since $FRrs\alpha int(A) \neq \tilde{0}$. Thus we get a contradiction.

Definition 3.17. Let (X, τ) and (Y, σ) be any two fuzzy rough topological spaces. Any function $f: (X, \tau) \to (Y, \sigma)$ is called fuzzy rough regular semi α -irresolute [in short, $FRrs\alpha$ -irresolute] if $f^{-1}(A) \in \mathcal{L}^X$ is $FRrs\alpha$ -open [resp. $FRrs\alpha$ -closed] for every $FRrs\alpha$ -open[resp. $FRrs\alpha$ -closed] set $A \in \mathcal{L}^Y$.

Proposition 3.18. Let (X, τ) and (Y, σ) be any two fuzzy rough topological spaces and let $f : (X, \tau) \to (Y, \sigma)$ be a bijective $FRrs\alpha$ -irresolute function. If (X, τ) is $FRrs\alpha$ -connected then (Y, σ) is also $FRrs\alpha$ -connected.

Proof. Suppose that (Y, σ) is not $FRrs\alpha$ -connected. Then there are $FRrs\alpha$ -open sets $C = (f(A_L(x)), f(A_U(x))), D = (f(B_L(x)), f(B_U(x))) \in \mathcal{L}^Y$ where $C, D \neq \tilde{0}$ such that

$$f(A_L(x)) + f((B_{U>L})(x)) = 1, \ f(B_L(x)) + f((A_{U>L})(x)) = 1 \forall x \in X_L$$

and

$$f(A_U(x)) + f((B_{L < U})(x)) = 1, \ f(B_U(x)) + f((A_{L < U})(x)) = 1 \forall x \in X_U.$$

Since f is bijective and $FRrs\alpha$ -irresolute, $f^{-1}(C), f^{-1}(D) \in \mathcal{L}^X$ are $FRrs\alpha$ -open sets where $f^{-1}(C), f^{-1}(D) \neq \tilde{0}$ such that

$$f^{-1}(f(A_L(x))) + f^{-1}(f(B_{U>L})(x)) = 1,$$

611

$$f^{-1}(f(B_L(x))) + f^{-1}(f(A_{U>L})(x)) = 1 \forall x \in X_L$$

and

$$f^{-1}(f(A_U(x))) + f^{-1}(f(B_{L < U})(x)) = 1,$$

$$f^{-1}(f(B_U(x))) + f^{-1}(f(A_{L < U})(x)) = 1 \forall x \in X_U.$$

This is a contradiction to the fact that (X, τ) is a $FRrs\alpha$ -connected space. Hence, (Y, σ) is a $FRrs\alpha$ -connected space.

Definition 3.19. A fuzzy rough set A of a fuzzy rough topological space (X, τ) is called a fuzzy rough ζ - open set of (X, τ) if it is a finite union of $FRrs\alpha$ - open sets of (X, τ) . The complement of a fuzzy rough ζ - open set is called fuzzy rough ζ - closed set.

Definition 3.20. A fuzzy rough topological space (X, τ) is said to be

(i) fuzzy rough regular semi α -normal, [in short, $FRrs\alpha$ -normal] if for any FRclosed set A and FR-open set B such that $A \subseteq B$, there exists a $FRrs\alpha$ -open set C such that $A \subseteq FRrs\alpha int(C) \subseteq FRrs\alpha cl(C) \subseteq B$.

(ii) fuzzy rough regular semi α -quasi-normal, [in short, $FRrs\alpha$ -quasi-normal] if for any $FR\zeta$ -closed set A and $FR\zeta$ -open set B such that $A \subseteq B$, there exists a $FRrs\alpha$ -open set C such that $A \subseteq FRrs\alpha int(C) \subseteq FRrs\alpha cl(C) \subseteq B$.

(iii) fuzzy rough regular semi α -ultra-normal, [in short, $FRrs\alpha$ -ultra-normal] if for any fuzzy rough closed set A and fuzzy rough open set B such that $A \subseteq B$, there exists a $FRrs\alpha$ -clopen set C such that $A \subseteq C \subseteq B$.

(iv) fuzzy rough regular semi α -completely ultra-normal, [in short, $FRrs\alpha$ -completely ultranormal] if for any fuzzy rough set A and fuzzy rough set B such that $FRcl(A) \subseteq B$ and $A \subseteq FRint(B)$ there exists a $FRrs\alpha$ -clopen set C such that $A \subseteq C \subseteq B$.

Definition 3.21. Let (X, τ) and (Y, σ) be fuzzy rough topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be a fuzzy rough regular semi α -open function, in short $FRrs\alpha$ -open [resp. fuzzy rough regular semi α -closed function, in short $FRrs\alpha$ -closed] function if f(A) is $FRrs\alpha$ -open [resp. $FRrs\alpha$ -closed] set of (Y, σ) for each $FRrs\alpha$ -open [resp. $FRrs\alpha$ -closed] set of (X, τ) .

Definition 3.22. Let (X, τ) and (Y, σ) be fuzzy rough topological spaces. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be a fuzzy rough regular semi α -clopen function [in short $FRrs\alpha$ -clopen] if f(A) is $FRrs\alpha$ -clopen set of (Y, σ) for each $FRrs\alpha$ -clopen set of (X, τ) .

Proposition 3.23. Let (X, τ) and (Y, σ) be any two fuzzy rough topological spaces. Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy rough continuous and FRrs α -clopen function from (X, τ) onto (Y, σ) . If (X, τ) is FRrs α -ultranormal then (Y, σ) is also FRrs α -ultranormal.

Proof. Let (X, τ) be a $FRrs\alpha$ -ultranormal space and let A and B be, respectively FR-closed and FR-open sets of (Y, σ) such that $A \subseteq B$. Since f is fuzzy rough continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are respectively, fuzzy rough closed and fuzzy rough open sets of (X, τ) such that $f^{-1}(A) \subseteq f^{-1}(B)$. Since (X, τ) is $FRrs\alpha$ -ultra-normal,

there exists a $FRrs\alpha$ -clopen set C in (X, τ) such that $f^{-1}(A) \subseteq C \subseteq f^{-1}(B)$. By surjectivity of f,

$$A = f(f^{-1}(A)) \subseteq f(C) \subseteq f(f^{-1}(B)) = B.$$

Since f is $FRrs\alpha$ -clopen function, f(C) is $FRrs\alpha$ -clopen set of (Y, σ) . Thus, (Y, σ) is $FRrs\alpha$ -ultranormal.

Proposition 3.24. Let (X, τ) and (Y, σ) be any two fuzzy rough topological spaces. Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy rough continuous and FRrs α -clopen function from (X, τ) onto (Y, σ) . If (X, τ) is FRrs α -completely ultranormal then (Y, σ) is also FRrs α -completely ultranormal.

Proof. Let (X, τ) be a $FRrs\alpha$ -ultranormal space and let A and B be, respectively FR-closed and FR-open sets of (Y, σ) such that $FRcl(A) \subseteq B$ and $A \subseteq FRint(B)$. Then $f^{-1}(A)$ and $f^{-1}(B)$ are fuzzy rough sets of (X, τ) such that $f^{-1}(FRcl(A)) \subseteq f^{-1}(B)$ and $f^{-1}(A) \subseteq f^{-1}(FRint(B))$. Since f is fuzzy rough continuous, $f^{-1}(FRcl(A))$ is fuzzy rough closed set in (X, τ) and $f^{-1}(FRint(B))$ is fuzzy rough open set in (X, τ) . It is seen that $f^{-1}(FRcl(A))$ is a fuzzy rough closed set such that $f^{-1}(A) \subseteq f^{-1}(FRcl(A))$. Thus,

$$FRcl(f^{-1}(A)) \subseteq f^{-1}(FRcl(A)) \subseteq f^{-1}(B).$$

Similarly,

$$f^{-1}(A) \subseteq f^{-1}(FRint(B)) \subseteq FRint(f^{-1}(B))$$

Since (X, τ) is $FRrs\alpha$ -completely ultranormal, there exists a $FRrs\alpha$ -clopen set C such that $f^{-1}(A) \subseteq C \subseteq f^{-1}(B)$. By surjectivity of f,

$$A = f(f^{-1}(A)) \subseteq f(C) \subseteq f(f^{-1}(B)) = B$$

such that

$$FRcl(A) = f(f^{-1}(FRcl(A))) \subseteq f(f^{-1}(B)) = B$$

and

$$A = f(f^{-1}(A)) \subseteq f(f^{-1}(FRint(B))) = FRint(B).$$

Also, f(C) is a $FRrs\alpha$ -clopen set, since f is a $FRrs\alpha$ -clopen function. Thus, (Y, σ) is $FRrs\alpha$ -completely ultranormal.

Definition 3.25. Let (X, τ) and (Y, σ) be fuzzy rough topological spaces. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be a fuzzy rough ζ - continuous, if $f^{-1}(A)$ is a $FR\zeta$ -open [resp. $FR\zeta$ -closed] set of (X, τ) for every fuzzy rough open [resp. fuzzy rough closed] set of (Y, σ) .

Proposition 3.26. Let (X, τ) and (Y, σ) be any two fuzzy rough topological spaces. Let (X, τ) be a FRrs α -quasi-normal space and $f : (X, \tau) \to (Y, \sigma)$ be a surjective function such that f is fuzzy rough ζ -continuous, and f takes FRrs α -open sets of (X, τ) to FRrs α -clopen sets of (Y, σ) then (Y, σ) is FRrs α -ultranormal.

Proof. Let A and B be, respectively fuzzy rough closed and fuzzy rough open sets of (Y, σ) such that $A \subseteq B$. Then $f^{-1}(A)$ and $f^{-1}(B)$ are respectively fuzzy rough ζ -closed and fuzzy rough ζ -open sets of (X, τ) such that $f^{-1}(A) \subseteq f^{-1}(B)$, since f is fuzzy rough ζ -continuous. By $FRrs\alpha$ -quasi-normality of (X, τ) , there exists a $FRrs\alpha$ -open set C such that $f^{-1}(A) \subseteq C \subseteq FRrs\alpha cl(C) \subseteq f^{-1}(B)$. By surjectivity of f,

$$A = f(f^{-1}(A)) \subseteq f(C) \subseteq f(FRrsacl(C)) \subseteq f(f^{-1}(B)) = B.$$

Thus, $A \subseteq f(C) \subseteq B$, where f(C) is $FRrs\alpha$ -clopen set of (Y, σ) . So, (Y, σ) is $FRrs\alpha$ -ultranormal.

References

- K. K. Azad, On fuzzy Semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981) 14–32.
- [2] A. S. Bin Shahna, On fuzzy strongly semi-continuity and fuzzy pre-continuity, Fuzzy Sets and Systems 44 (1991) 303-408.
- [3] Bruce Hutton, Normality in Fuzzy Topological Spaces, J. Math. Anal. Appl. 50 (1975) 74–79.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [5] U. V. Fatteh and D. S. Bassan, Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl. 111 (1985) 449–464.
- [6] H. Hazra, S. K. Samanta and K. C. Chattopadhyay, Topology of Intuitionistic Fuzzy Rough Sets, Scientia Magna 7 (3) (2011) 18–30.
- [7] S. Nanda and S. Majumdar, Fuzzy rough sets, Fuzzy sets and Systems 45 (1992) 157-160.
- [8] S. Padmapriya, M. K. Uma and E. Roja, Fuzzy rough topological transformation groups, Ann. Fuzzy Math. Inform. 8 (5) (2014) 839–851.
- [9] S. Padmapriya, M. K. Uma and E. Roja, Fuzzy rough topological entropy of fuzzy rough continuous functions, American Journal of Mathematics and Sciences 3 (1) (2014) 141–144.
- [10] S. Padmapriya, M. K. Uma and E. Roja, Fuzzy rough topological entropy structure spaces, Ann. Fuzzy Math. Inform. 10 (3) (2015) 417–425.
- [11] S. Padmapriya, M. K. Uma and E. Roja, Compactness in Fuzzy Rough Topological Spaces, The Journal of Fuzzy Mathematics 23 (3) (2015) 595–610.
- [12] Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences 11 (5) (1982) 341–356.
- [13] M. K. Uma and E. Roja and G. Balasubramanian, Semi connectedness in Fuzzy Topological spaces, Kochi J. Math. 4 (2009) 9–19.
- [14] L. A. Zadeh, Fuzzy Sets, Information and control 8 (1965) 338–353.

K. SARANYA (saranyamath880gmail.com)

Department of Mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

N. KRITHIKA (krithikasureshkumar.idp@gmail.com)

Department of Mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India

B. AMUDHAMBIGAI (rbamudha@yahoo.co.in)

Department of Mathematics, Sri Sarada College for Women, Salem - 16, Tamil Nadu, India