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Abstract. In this paper, we have given some characterizations of
T0-Q-topological spaces including the ‘so-called’ diagonal characterization
which is given by using a suitable closure operator in the category of T0-
Q-topological spaces. We have further showed that the category of T0-Q-
topological spaces is the epireflective hull of the Q-Sierpinski space in the
category Q-TOP of Q-topological spaces. We have also studied T0-objects
in the category Str-Q-TOP of stratified Q-topological spaces on the lines
of Lowen and Srivastava (in 1989) by using Marny’s notion of T0-objects
(in 1979).
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1. Introduction

In [15], Solovyov, while introducing the Q-topological spaces, also introduced the
notion of T0-ness for Q-topological spaces.

Now it is already known that in the category TOP of topological spaces, T0-
topological spaces are precisely the objects of the epireflective hull of the two-point
Sierpinski space. Also, it has been shown by Lowen and Srivastava in [9] that in the
category FTS of fuzzy topological spaces, T0-fuzzy topological spaces are precisely
the objects of the epireflective hull of the fuzzy Sierpinski space IS (of [16]). Apart
from the above, in [8], Khastgir and Srivastava, gave a few characterizations of T0-
ness for fuzzy topological spaces. Also, Lowen and Srivastava in [9] have shown
that T0-fuzzy topological spaces are the T0-objects in the category of stratified fuzzy
topological spaces.

In this paper, we have proved some results for Q-topological spaces, motivated
by the above-mentioned results. We have thus shown in particular that the category
of T0-Q-topological spaces is the epireflective hull of the Q-Sierpinski space in the
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category Q-TOP and have also obtained a few other characterizations of T0-Q-
topological spaces. In the last section of this paper, we have shown that within the
category Str-Q-TOP of stratified Q-topological spaces T0-objects are precisely the
T0-Q-topological spaces.

2. Preliminaries

For all undefined category-theoretic notions used in this paper, [1] may be
referred. All subcategories used here are assumed to be full.

We begin by recalling the notions of Ω-algebras and their homomorphisms (most
of the definitions in the preliminaries are given in [13, 14] also; we recall these here
for the sake of completeness); for details, cf. [10, 15].

Definition 2.1. Let Ω = (nλ)λ∈I be a class of cardinal numbers.

• An Ω-algebra is a pair (A, (ωAλ )λ∈I) consisting of a set A and a family of
maps ωAλ : Anλ → A. B ⊆ A is called a subalgebra of (A, (ωAλ )λ∈I) if
ωAλ ((bi)i∈nλ) ∈ B, for every λ ∈ I and every (bi)i∈nλ ∈ Bnλ . Given S ⊆ A,
〈S〉 denotes the subalgebra of (A, (ωAλ )λ∈I) ‘generated by S’, i.e., 〈S〉 is the
intersection of all subalgebras of (A, (ωAλ )λ∈I) containing S.
• Given Ω-algebras (A, (ωAλ )λ∈I) and (B, (ωBλ )λ∈I), a map f : A→ B is called

an Ω-algebra homomorphism provided that for every λ ∈ I, the following
diagram

Anλ

ωAλ
��

fnλ // Bnλ

ωBλ
��

A
f
// B

commutes.
Let Alg(Ω) denote the category of Ω-algebras and Ω-algebra homomor-
phisms (this category has products).
• A variety of Ω-algebras is a full subcategory of Alg(Ω), which is closed

under the formation of products, subalgebras, and homomorphic images.

Throughout this paper, Ω = (nλ)λ∈I denotes a fixed class of cardinal
numbers, V denotes a fixed variety of Ω-algebras and Q denotes a fixed
member of V.

Each function f : X → Y between sets X and Y provides two functions
f← : 2Y → 2X and f→ : 2X → 2Y , given by f←(B) = {x ∈ X | f(x) ∈ B}
and f→(A) = {f(x) | x ∈ A}, and also a function f←Q : QY → QX , given by

f←Q (α) = α ◦ f .

• Given a set X, a subset τ of QX is called a Q-topology on X if τ is a
subalgebra of QX , in which case the pair (X, τ) is called a Q-topological
space.
• Given two Q-topological spaces (X, τ) and (Y, η), a Q-continuous map from

(X, τ) to (Y, η) is a map f : X → Y such that f←Q (α) ∈ τ for every α ∈ η.
598
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• Given a Q-topological space (X, τ) and Y ⊆ X, (i←Q )→(τ) (= {p◦ i | p ∈ τ})
is called the Q-subspace topology on Y , where i : Y → X is the inclusion
map. We shall denote the Q-subspace topology on Y as τY .
• A Q-topological space (X, τ) is called T0 if for every distinct x, y ∈ X, there

exists p ∈ τ such that p(x) 6= p(y).

The meanings of homeomorphisms, embeddings, and products, etc. forQ-topological
spaces are on expected lines.

Let Q-TOP denote the category of Q-topological spaces and Q-continuous maps
between them.

Let (X, τ) be a Q-topological space, Y be a set and q : X → Y be a surjective
map. Then it can be noticed that {µ ∈ QY | q←Q (µ) ∈ τ} turns out to be a subalgebra

of the Ω-algebra QY and hence a Q-topology on Y .

Definition 2.2. Let (X, τ) be a Q-topological space, Y be a set and q : X → Y be
a surjective map. Then {µ ∈ QY | q←Q (µ) ∈ τ} is called the quotient Q-topology on

Y with respect to (X, τ) and q. We shall denote it as τ/q. The pair (Y, τ/q) will be
called the quotient Q-topological space with respect to (X, τ) and q.

Remark 2.3. In [15], it has been noted that Q-TOP, like TOP, has products.
Also, Q-TOP turns out to be a topological category (as pointed out in Remark
2.1 of [14]). Using Theorems 1.2.2.9 and 1.2.3.3 of [12], it follows that Q-TOP
is co-well-powered (epi, extremal mono)-category and well-powered (extremal epi,
mono)-category. Also, Q-TOP is initially complete (follows from the Definition
6.1.1 (2) and Example 5.2.2 (1) of [12]). Moreover, Q-TOP is complete, being a
topological category (follows from Theorem 1.2.1.10 of [12]); in particular, it has
equalizers which are constructed, at the set-theoretical level, in the same way as in
the category SET of sets.

3. Some characterizations of T0-Q-topological spaces

We first present a few characterizations of T0-Q-topological spaces which involve
the role of the Q-Sierpinski space (Q, ρ) (of [13]).

Theorem 3.1. A Q-topological space (X, τ) is T0 if and only if the family

F = {f : (X, τ)→ (Q, ρ) | f is Q-continuous}
separates points of (X, τ).

Proof. By Theorem 3.1 of [13], we find that τ is just F . The rest immediately
follows from the definition of T0-ness of Q-topological spaces. �

In [8], some characterizations of T0-fuzzy topological spaces were given. We now
proceed to give analogous characterizations of T0-Q-topological spaces. For this, we
use a closure operator (cf. [2, 3, 8]) in the category Q-TOP.

Let X = (X, τ) ∈ obQ-TOP and M ⊆ X. Let

[M ] =
⋂
{Eq(f, g) | f, g : X → Y are Q-continuous maps and

Y ∈ obQ-TOP0 with f |M = g|M},
where Eq(f, g) = {x ∈ X | f(x) = g(x)}.

Here M is said to be [ ]-closed if [M ] = M .
It can be easily seen that [[M ]] = [M ].
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Theorem 3.2. Let (X, τ) ∈ obQ-TOP and M ⊆ X. Then

[M ] =
⋂
{Eq(f, g) | f, g ∈ τ with f |M = g|M}.

Proof. For convenience, suppose CM =
⋂
{Eq(f, g) | f, g ∈ τ with f |M = g|M}. It

is clear that, [M ] ⊆ CM . To show that CM ⊆ [M ], it is sufficient to show that
if x /∈ [M ], then x /∈ CM . Let x /∈ [M ]. Then there is some (Y, δ) ∈ obQ-TOP0

and a pair of Q-continuous maps f, g : (X, τ) → (Y, δ) such that f |M = g|M with
f(x) 6= g(x). Now as f(x), g(x) ∈ Y and Y is T0, there is some ν ∈ δ such that
ν(f(x)) 6= ν(g(x)), i.e., ν ◦ f(x) 6= ν ◦ g(x). As ν : (Y, δ) → (Q, ρ) is Q-continuous,
ν ◦ f, ν ◦ g : (X, τ)→ (Q, ρ) are also Q-continuous. Thus ν ◦ f, ν ◦ g ∈ τ . Now note
that ν◦f |M = ν◦g|M , while ν◦f(x) 6= ν◦g(x), whereby x /∈ CM . So CM ⊆ [M ]. �

Theorem 3.3. For any Q-topological space X = (X, τ) the following statements are
equivalent:

(1) X is T0.
(2) for every Q-topological space Y = (Y, δ) and for every Q-continuous map

f : Y → X, the graph Gf = {(y, f(y)) | y ∈ Y } of f , is [ ]-closed in Y ×X.
(3) DX = {(x, x) | x ∈ X} is [ ]-closed in X ×X.

Proof. (1)⇒ (2): Let (X, τ) be a T0-Q-topological space. It is clear that Gf ⊆ [Gf ].
Suppose that (y0, x0) /∈ Gf . Then x0 6= f(y0). But, by T0-ness of X, we have some
µ ∈ τ such that µ(x0) 6= µ(f(y0)). Now µ : (X, τ) → (Q, ρ) is Q-continuous,
by Theorem 3.1 of [13]. Note that the product Q-topology on Y × X is equal to
〈{p1←Q (σ) | σ ∈ δ}

⋃
{p2←Q (σ) | σ ∈ τ}〉, where p1 : Y ×X → Y and p2 : Y ×X → X

are the two projection maps. Define g, h : Y × X → (Q, ρ) as g(y, x) = µ(x) and
h(y, x) = µ(f(y)), for every (y, x) ∈ Y ×X. It can be easily verified that g = p2

←
Q (µ)

and h = p1
←
Q (f←Q (µ)) (note that f←Q (µ) ∈ δ), whereby it follows that g and h are

Q-continuous. Now it can be easily seen that g|Gf = h|Gf , but g(y0, x0) 6= h(y0, x0).
Thus (y0, x0) /∈ [Gf ]. So [Gf ] ⊆ Gf . Hence [Gf ] = Gf .

(2) ⇒ (3): Suppose (2) holds. If we take f : X → X as the identity map, then
we have Gf = DX . Thus, by applying (2) to the identity map f , it can be seen that
DX comes out to be [ ]-closed in X ×X.

(3) ⇒ (1): Suppose that DX is [ ]-closed in X × X. If possible, suppose that
(X, τ) is not T0. Then there exist x, y ∈ X with x 6= y, such that µ(x) = µ(y),
for every µ ∈ τ , which implies that pj

←
Q (ν)(x, x) = pj

←
Q (ν)(x, y), for every ν ∈ τ

and j = 1, 2, where p1, p2 : X × X → X are the two projection maps. But then
µ̃(x, x) = µ̃(x, y), for every µ̃ ∈ 〈{pj←Q (ν) | ν ∈ τ, j = 1, 2}〉. Since x 6= y, (x, y) /∈
DX(= [DX ]). Thus, there is some T0-Q-topological space (Z, δ) and Q-continuous
maps g, h : X ×X → Z with the property that g|DX = h|DX and g(x, y) 6= h(x, y).
As (Z, δ) is T0, there is some σ ∈ δ such that σ(g(x, y)) 6= σ(h(x, y)). Now it is clear
that, g←Q (σ), h←Q (σ) ∈ 〈{pj←Q (ν) | ν ∈ τ, j = 1, 2}〉. So (g←Q (σ))(x, y) = (g←Q (σ))(x, x)

and (h←Q (σ))(x, y) = (h←Q (σ))(x, x). But (g←Q (σ))(x, y) = (h←Q (σ))(x, y) (as g|DX =

h|DX , σ(g(x, x)) = σ(h(x, x))). This implies that σ(g(x, y)) = σ(h(x, y)), a contra-
diction. Hence (X, τ) is T0. �
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4. Q-TOP0 as the epireflective hull of (Q, ρ) in Q-TOP

As pointed out earlier, FTS0 has been shown to be the epireflective hull of
the fuzzy Sierpinski space in FTS. We proceed to prove an analogous result for
Q-TOP0.

Theorem 4.1. Q-TOP0 is an epireflective subcategory of Q-TOP.

Proof. Let (X, τ) be a Q-topological space. Define a relation ∼ on X as follows:
for every x, y ∈ X, x ∼ y if µ(x) = µ(y), for every µ ∈ τ . It is easily verified that

∼ is an equivalence relation on X. Let X̃ = X/ ∼ and let τ̃ be the corresponding

quotient Q-topology on X̃ induced by the quotient map qX : X → X̃ and τ . Then
(X̃, τ̃) turns out to be a T0-Q-topological space and the map qX : (X, τ) → (X̃, τ̃)
an epimorphism in Q-TOP. Now for any T0-Q-topological space (Y, δ) and any Q-

continuous map f : (X, τ)→ (Y, δ), define a map f̃ : (X̃, τ̃)→ (Y, δ) by f̃(x̃) = f(x).

Then by the T0-ness of (Y, δ), it follows that f̃ is well-defined. It is easily observed

that f̃ is Q-continuous and f̃ ◦ qX = f . �

As pointed out earlier in Remark 2.3 that Q-TOP is co-well-powered (epi, ex-
tremal mono)-category, so, by using Theorem 1 (of [11]) we get the following corol-
lary.

Corollary 4.2. Q-TOP0 is closed under the formation of products and extremal
subobjects in Q-TOP.

Remark 4.3. We point out that the extremal subobjects of a Q-topological space
(X, τ) are precisely the Q-subspaces of (X, τ) (cf. Proposition 21.13 of [1]).

In the following, we state a result from [15].

Theorem 4.4. (Theorem 58 of [15]) A Q-topological space (X, τ) is T0 if and only
if (X, τ) is homeomorphic to a Q-subspace of a product of copies of (Q, ρ).

This result can also be restated as follows.

Theorem 4.5. (Q, ρ) H -cogenerates Q-TOP0, where H is the class of all Q-
TOP0-embeddings.

Taking into account Remarks 2.3 and 4.3 above and Theorem 2 (of [11]), the
following theorem restates Theorem 4.4 in category-theoretic terms.

Theorem 4.6. Q-TOP0 is the epireflective hull of (Q, ρ) in Q-TOP.

5. T0-objects in Q-TOP

In [11], an object A of a topological c-category (in the sence of Herrlich [7]) A
has been called by Marny a T0-object if and only if each A -morphism f : I2 → A is
constant, where I2 is an indiscrete A -object whose underlying set has two points.
In the category TOP, it is already known that T0-objects are precisely the T0-
topological spaces. Also, in the category Str-FTS, Lowen and Srivastava [9] have
studied T0-objects. Motivated by the above results in TOP and Str-FTS, we ex-
amine if T0-Q-topological spaces can also be viewed as ‘T0-objects’ and arrive at the
conclusion that these are T0-objects in the category of stratified Q-topological spaces
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(defined below). We note that in [9] also, T0-fuzzy topological spaces were shown to
be T0-objects in the category Str-FTS of stratified fuzzy topological spaces.

Definition 5.1 ([15]). A Q-topological space (X, τ) is said to be stratified if q̄ ∈ τ ,
for each q ∈ Q, where q̄ : X → Q is q-valued constant map.

For general Q-topological spaces, although the collection of all Q-topologies on a
set forms a complete lattice. But, unlike as in topology, we do not have a ‘satisfac-
tory’ counterpart of ‘indiscrete Q-topology’ on a set, in the sense that no explicit
description of its members is available, in general. This causes some hindrance in
proving some interesting ‘results’. To circumvent it, a convenient option is to work
with stratified Q-topologies only, for which an explicit description of an indiscrete
Q-topology is available.

From now onward in this paper, we consider only stratified Q-topological spaces.
Let Str-Q-TOP denote the category of all stratified Q-topological spaces.

Remark 5.2. It can be easily verified that the subcategory Str-Q-TOP of Q-TOP
is also a topological category; in fact, it is a topological c-category.

For any set X, QX is clearly the largest Q-topology on X, which will be referred
to the discrete Q-topology on X, while the indiscrete Q-topology on X is the Q-
topology ι, where ι = {q̄ | q ∈ Q}. Note that discrete and indiscrete objects (cf.
[1], pages 120, 121) in the category Str-Q-TOP are respectively the discrete and
indiscrete Q-topological spaces.

Proposition 5.3. For (X, τ), (Y, δ) ∈ obStr-Q-TOP, every constant map f :
(X, τ)→ (Y, δ) is Q-continuous.

Proof. Straightforward. �

Proposition 5.4. In the category Str-Q-TOP, T0-objects are precisely the stratified
T0-Q-topological spaces.

Proof. Let (X, τ) ∈ obStr-Q-TOP be a T0-object. If possible, suppose that (X, τ)
is not a stratified T0-Q-topological space. Then there exist some x, y ∈ X, with
x 6= y, such that µ(x) = µ(y), for every µ ∈ τ . Let (D, ι) be a two-point indiscrete
Q-topological space, with D = {a, b}. Consider the map f : (D, ι)→ (X, τ), defined
as f(a) = x and f(b) = y. Then f is non-constant. Now we notice that f is Q-
continuous, as, for every µ ∈ τ , f←Q (µ) = µ ◦ f ∈ ι ( because µ ◦ f(a) = µ(f(a)) =

µ(x) = µ(y) = µ(f(b)) = µ ◦ f(b)), which is a contradiction to the fact that (X, τ)
is a T0-object. Hence (X, τ) is T0.

Next, let (X, τ) ∈ obStr-Q-TOP be T0. If possible, suppose that there is some
non-constant Q-continuous map f : (D, ι) → (X, τ). So, f(a) 6= f(b). Since (X, τ)
is T0, there is some µ ∈ τ such that µ(f(a)) 6= µ(f(b)), i.e., f←Q (µ)(a) 6= f←Q (µ)(b).

So, f←Q (µ) 6= q̄, for any q ∈ Q. Hence f←Q (µ) /∈ ι, contradicting the Q-continuity of

f . Hence (X, τ) is a T0-object. �

Let Str-Q-TOP0 denote the subcategory of Str-Q-TOP, consisting of all T0-
objects of stratified Q-topological spaces. Then by using Proposition 1 of [11], we
get the following result.

Proposition 5.5. Str-Q-TOP0 is extremal epireflective in Str-Q-TOP.
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6. Conclusion

In this paper, we have given some characterizations of T0-Q-topological spaces
and have also shown that the category of T0-Q-topological spaces is not only an
epireflective subcategory of the category Q-TOP of Q-topological spaces but is also
the epireflective hull of the Q-Sierpinski space in the category Q-TOP.

We point out that along with reflective subcategories, coreflective subcategories
have also received much attention and have been studied extensively by many authors
(cf. e.g., Herrlich and Strecker [4, 5, 6]) in the categories which occur in topology
(e.g., like the categories of topological spaces, uniform spaces, etc.).

In the category FTS of fuzzy topological spaces, the coreflective hull of the fuzzy
Sierpinski space has also been determined by V. Singh [17].

It would therefore be interesting to determine the coreflective hull of the Q-
Sierpinski space in the category Q-TOP.
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provements. The authors are also thankful to the Editor-in-Chief for his valuable
advice.
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