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1. Introduction

We introduce, in this paper, the concept of extra strong path to find the
strength of line graph of various fuzzy graphs. The notion of a fuzzy subset was
introduced for the first time in 1965 by Lofti A. Zadeh [13]. Azriel Rosenfeld [9],
in 1975, defined the fuzzy graph based on definitions of fuzzy sets and relations.
He was the one who developed the theory of fuzzy graphs. The crux of this paper,
fuzzy line graph was introduced by J. N. Mordeson in the year 1993 [5]. He together
with Premchand S. Nair [7] studied different operations on fuzzy graphs and their
properties. The concept of strength of connectivity between two vertices of a fuzzy
graph was introduced by M. S. Sunitha [10] and extended by Sheeba M. B. [11], [12]
to arbitrary fuzzy graphs. Sheeba called it, strength of the fuzzy graph and deter-
mined it, in two different ways, of which one is by introducing weight matrix of a
fuzzy graph and other by introducing the concept of extra strong path between its
vertices.
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2. Preliminaries

A fuzzy graph G = (V, µ, σ) [1, 9] is a nonempty set V together with a
pair of functions µ : V −→ [0, 1] and σ : V × V −→ [0, 1] such that for all
u, v ∈ V , σ(u, v) = σ(uv) ≤ µ(u) ∧ µ(v). We call µ the fuzzy vertex set of G

and σ the fuzzy edge set of G. Here after we denote the fuzzy graph G(µ, σ)
simply by G and the underlying crisp graph of G by G∗(V,E) with V as vertex
set and E = {(u, v) ∈ V × V : σ(u, v) > 0} as the edge set or simply by G∗.
The fuzzy graph H = (ν, τ) is called a partial fuzzy subgraph of G = (µ, σ) if
ν ⊆ µ and τ ⊆ σ. The fuzzy graph [8] H = (P, ν, τ) is called a fuzzy subgraph
of G = (V, µ, σ) if P ⊆ V , ν(x) = µ(x) for all x ∈ P and τ(x, y) = σ(x, y) for all
x, y ∈ P. If for (u, v) ∈ E, we say that u and v are adjacent in G∗. In that case
we also say that u and v are adjacent in G. An edge uv is strong [2] if and only if
σ(uv) = µ(u) ∧ µ(v). A fuzzy graph G is complete [7] if σ(uv) = µ(u) ∧ µ(v) for
all u, v ∈ V . A fuzzy graph G is a strong fuzzy graph [6] if σ(uv) = µ(u) ∧ µ(v),
∀uv ∈ E. The fuzzy line graph [5] L(G), of G, is the graph with vertex set Z

and edge set W , where Z = {{x} ∪ {ux, vx}|x ∈ X,ux, vx ∈ V, x = {ux, vx}} and
W = {(Sx, Sy)|Sx∩Sy 6= φ, x ∈ X, x 6= y} and where Sx = {x}∪{ux, vx}, x ∈ X . Let
(µ, σ) be a partial fuzzy subgraph of G. Define the fuzzy subsets λ, ω of Z,W , respec-
tively, as follows: ∀Sx ∈ Z, λ(Sx) = σ(x); ∀(Sx, Sy) ∈ W,ω(Sx, Sy) = σ(x)∧σ(y). A
fuzzy subgraph (λ, ω) of L(G) is called the line graph corresponding to (µ, σ). The
line graph of a fuzzy graph is always a strong fuzzy graph [3].

A path P of length n−1 in a fuzzy graph G [9] is a sequence of distinct vertices
v1, v2, v3, . . . , vn, such that σ(vi, vi+1) > 0, i = 1, 2, 3, . . . , n−1. If v1 = vn and n ≥ 3
we call P a cycle and cycle P is called a fuzzy cycle if it contains more than one
weakest edge. The strength of a path in a fuzzy graph is defined as the weight of the
weakest edge of the path [7] which is ∧n

i=1σ(vi−1vi). A path P is said to connect the
vertices u and v of G strongly if its strength is maximum among all paths between u

and v. Such paths are called strong paths [7]. Any strong path between two distinct
vertices u and v in G with minimum length is called an extra strong path between
them [11]. There may exists more than one extra strong paths between two vertices
in a fuzzy graph G. But, by the definition of an extra strong path each such path
between two vertices has the same length. The maximum length of extra strong
paths between every pair of distinct vertices in G is called the strength of the graph
G [12]. For a fuzzy graph G, if G∗ is the path P = v1v2 . . . vn on n vertices then the
strength of the graph G is its length (n− 1) [11].

Here after we denote the strength of a fuzzy graph G by S (G).

Theorem 2.1. [12] If G is a complete fuzzy graph, then S (G) is one.

The following theorems determine the strength of a fuzzy cycle in terms of the
order of its crisp graph and the number of weakest edges.

Theorem 2.2 ( [11]). In a fuzzy cycle G of length n, suppose there are l weakest
edges, where l ≤ [n+1

2 ]. If these weakest edges altogether form a subpath then S (G)
is n− l.
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Theorem 2.3 ( [11]). Let G be a fuzzy cycle with crisp graph G∗ a cycle of length
n, having l weakest edges which altogether form a subpath. If l > [n+1

2 ], then S (G)
is [n2 ].

Theorem 2.4 ( [11]). Let G be a fuzzy cycle with crisp graph G∗ a cycle of length
n, having l weakest edges which do not altogether form a subpath. If l > [n2 ] − 1,
then the strength of the graph is [n2 ].

Theorem 2.5 ( [11]). In a fuzzy cycle of length n suppose there are l < [n2 ] − 1
weakest edges which do not altogether form a subpath. Let s denote the maximum
length of a subpath which does not contain any weakest edge. If s ≤ [n2 ], then the
strength of the graph is [n2 ] and if s > [n2 ], then the strength of the graph is s.

A fuzzy wheel graph Wn [4] is the join [7] of the fuzzy cycle Cn−1 and the fuzzy
vertex K1. The following theorems determine the strength of a strong fuzzy wheel
graph.

Theorem 2.6 ( [4]). For n ≥ 4, let Wn = Cn−1 ∨K1 be a strong fuzzy wheel graph
with the fuzzy hub h and u1u2 . . . un−1u1 the fuzzy cycle Cn−1. If µ(h) < µ(ui), ∀i =
1, 2, . . . , n− 1, then the strength of Wn is the strength of Cn−1.

Theorem 2.7 ( [4]). Let Wn be as in Theorem 2.6. If µ(h) ≥ µ(ui), ∀i = 1, 2, . . . , n−
1, then the strength of Wn is one when n = 4 and two when n > 4.

Theorem 2.8 ( [4]). Let Wn be as in Theorem 2.2. Suppose that µ(h) ≤ µ(ui) for
some but not all the vertices ui, i = 1, 2, . . . , n − 1. Let P be one of the maximal
paths of Cn−1 with the property that each edge of which has strength greater than
µ(h). Let l be the length of P . Then

S (Wn) =

{

l if l ≥ 2
2 if l = 1.

Definition 2.9 ( [4]). A finite sequence of fuzzy graphs G1, G2, . . . , Gm with the
property that V (Gi) ∩ V (Gj) is nonempty only if |j − i| ≤ 1, 1 ≤ i, j ≤ m is
called a properly linked sequence or simply properly linked. It is n− linked if the
crisp graph induced by V (Gi) ∩ V (Gj) is Kn, a complete graph on n vertices, if
|j − i| = 1, 1 ≤ i, j ≤ m.

Theorem 2.10 ( [4]). Let G be a properly linked fuzzy graph with the complete
fuzzy graphs G1, G2, . . . , Gm as its parts. Suppose for i = 1, 2, . . . ,m− 1, < V (Gi)∩
V (Gi+1) >= Kni

, a complete graph on ni vertices. Then the strength of G is m,
the diameter of G.

3. Main results

First of all we consider the strength of line graph of a strong fuzzy butterfly graph.

Theorem 3.1. The strength of the line graph of a strong fuzzy butterfly graph [4]
is three.

Proof. The line graph L(G) of a strong fuzzy butterfly graph G is a 2−linked fuzzy
graph with parts G1, G2, and G3, where G1 and G3 are fuzzy triangles and G2 is
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fuzzy complete graph on 4 vertices (A butterfly graph and its line graph are shown
in figure 1). Then by Theorem 2.10, the strength of L(G) is 3.
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Figure 1. A strong fuzzy Butterfly graph G (left) and its line graph L(G)(right)

�

Theorem 3.2. The strength of the line graph of a strong fuzzy star graph [4] is one.

Proof. In a strong fuzzy star graph Sn, all the edges are adjacent. Then the line
graph of the strong fuzzy star graph is a complete fuzzy graph. Thus by Theorem
2.1, the strength of the line graph of a strong fuzzy star graph is one. �

Theorem 3.3. The strength of the line graph of a strong fuzzy bull graph [4] is 2.

Proof. The line graph of a strong fuzzy bull graph is a strong fuzzy butterfly graph
( A bull graph G and its line graph are shown in Figure 2). Then by Theorem 2.10,
the strength of the line graph of a strong fuzzy bull graph is 2.
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Figure 2. A strong fuzzy Bull graph G (left) and its line graph L(G)(right)

�

Theorem 3.4. The strength of line graph of a strong fuzzy diamond graph [4] is 2.

Proof. The line graph of a strong fuzzy diamond graph is a strong fuzzy wheel graph
on 5 vertices as shown in figure 6. Then by Theorems 2.6, 2.7, 2.8 strength of line
graph of a strong fuzzy diamond graph is 2.
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Figure 3. A strong fuzzy diamond graph G (left) and its line graph L(G)(right)

�

Proposition 3.5. In a strong fuzzy cycle of length n suppose there are l = [n2 ]− 1
weakest edges which do not altogether form a subpath. Let s denote the maximum
length of a subpath which does not contain any weakest edge. Then

S (G) =

{

[n2 ] if s ≤ [n2 ],

s if s > [n2 ].

Proof. Let u, v be two non-adjacent vertices of G. Then in G there are two paths
joining u and v. If both the paths contain a weakest vertex then the extra strong
path joining u and v is the shortest path joining u and v in its underlying crisp
graph, which is of length ≤ [n2 ]. If u and v are the end vertices of a path having
length [n2 ] then the extra strong path joining u and v is of length = [n2 ].

Otherwise, there is a u−v path P having no weakest vertices. Then P is an extra
strong path joining u and v. The length of P , by hypothesis, is ≤ s. If u and v are
the end vertices of the maximal subpath which does not contain any weakest edge
in G then the length of P is s. Hence the proof is complete. �

Now we consider the case of the strength of line graph of a fuzzy cycle. To
determine this we introduce the following definitions:

Definition 3.6. Two paths P1 and P2 of a fuzzy cycle C are said to be vertex disjoint
or simply disjoint, if V (P1) ∩ V (P2) = φ and edge disjoint, if E(P1) ∩ E(P2) = φ.

Definition 3.7. Suppose P1 and P2 are two disjoint paths of a fuzzy cycle C

with respective end points u1, v1 and u2, v2. Then, < (V (C) \ (V (P1 ∪ P2)) ∪
{u1, u2, v1, v2}) > is a union of two disjoint paths of C, called complementary paths
relative to the paths P1 and P2.

Definition 3.8. Let G(V, µ, σ) be a fuzzy graph. A path P in G with all its edges
have weight equal to w where w =min{σ(uv) : σ(uv) > 0} is called a weakest path.
A weakest path which is not a proper subpath of any other weakest path in the fuzzy
graph is called a maximal weakest path in G.

Hereafter we denote the weight of weakest paths of any fuzzy graph G by w.
589
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Note 3.9. A graph may have more than one maximal weakest paths. For example,
in the strong fuzzy cycle G in Figure 1 u2u3u4u5u6u7u8 and u8u9u10u11u12 are
maximal weakest paths of G.
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Figure 4. A strong fuzzy cycle G

Definition 3.10. Two paths of the collection P of pairwise disjoint paths in a fuzzy
cycle C are said to be consecutive, if one of the complementary paths relative to
them contains all other paths of P .

Definition 3.11. A collection P of pairwise disjoint paths in a fuzzy cycle C is said
to form a chain, if its members can be arranged in a sequence P1, P2, . . . , Pn such
that (P1, P2), (P2, P3), . . . , (Pn−1, Pn) and (P1, Pn) are consecutive.

Proposition 3.12. Let G be a strong fuzzy path (or a strong fuzzy cycle), then its
fuzzy line graph L(G) is also a strong fuzzy path (strong fuzzy cycle).

Proof. Let G be a strong fuzzy path. Let G∗ be its crisp graph with vertex set
{v1, v2, . . . , vn} and edge set {e1, e2, . . . , en}, where ei = vivi+1, i = 1, 2, . . . , n − 1.
Since for 1 < i < n− 1 the edge ei in G∗ is adjacent only to the edge ei−1 and ei+1,
the vertex ei of the crisp graph L∗(G) of L(G) is adjacent only to the vertices ei−1

and ei+1 of L∗(G). Since the edge e1 of G∗ is adjacent only to the edge e2 of G∗ and
the edge en of G∗ is adjacent only to the edge en−1 of G∗, the vertices e1 and en
of L∗(G) are adjacent only to its vertices e2 and en−1 respectively. Thus L∗(G) is
a path with vertices e1, e2, . . . , en and edges e1e2, e2e3, . . . , en−1en. The lemma now
follows from the definition of L(G). �

Similar is the case of a fuzzy cycle.

Proposition 3.13. If P is a weakest path of length k in a strong fuzzy graph G,
then in the fuzzy line graph L(G) of G the path P ′ corresponding to the path P of G
with vertex set as edge set of P is a weakest path in L(G) of length k − 1.

Theorem 3.14. Let G be a strong fuzzy cycle of length n. Suppose there are l

weakest edges which form m maximal weakest paths in G, where 2 ≤ m ≤ [ l2 ]. Then
in the line graph L(G) of G there are l +m weakest edges.

Proof. By Proposition 3.13, for a weakest path P of G with strength w and length l,
the path P ′ of L(G) with vertex set as edge set of P is a path of length (l− 1) with
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weight w. Note that the end vertices of u and v of P ′ are also have weight w. Then
the edges of the complementary paths 3.10 incident with u and v in L(G) are also
have weight w. Thus each maximal weakest path P in G of length l gives a weakest
path in L(G) of length l+1.So for m such weakest paths, there are (l+m) weakest
edges in L(G).

Also if P ′

1 and P ′

2 are two paths of L(G) obtained as explained above, correspond-
ing to two distinct maximal paths P1 and P2 of G, then they are edge disjoint. [Note
that the path P ′ of L(G) thus obtained need not be maximal. See Figure 2]. �
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Figure 5. A fuzzy cycle G of length 6 with 4 weakest edges (Left) and
its line graph L(G) (Right).

Proposition 3.15. Suppose P1 and P2 are two disjoint weakest paths of lengths n1

and n2 respectively in the fuzzy cycle C. Suppose one of the complementary paths
relative to these paths is of length one, then there exist a weakest path of length
(n1 + n2) in L(G) with edges of P1, P2 and P as vertex set.

Theorem 3.16. Let G be a strong fuzzy cycle of length n. Suppose G contains
exactly one maximal weakest path of P . Let its length be l. Then the strength
S (L(G)) of the line graph L(G) of G is

S (L(G)) =

{

S (G)− 1 if l ≤ [n−1
2 ],

S (G) if l > [n−1
2 ].

Proof. Since P is a path of length l in G by Proposition 3.13, the path P ′ of L(G)
with vertex set as edge set of P is a weakest path of L(G) of length l−1. If l = n−1,
then all edges in G but one is weakest. In this case, all the edges of L(G) are weakest.
Thus by 2.3, S (L(G)) = [n2 ] = S (G). Let us suppose that l < n− 1. Since all the
vertices of P ′ are weakest, the edges incident to the vertices of P ′ are also weakest
edges and all the other edges are non-weakest. So there are l+1 edges incident with
the vertices of P ′ by Theorem 3.14. Hence the maximal weakest path of L(G) is of
length l + 1. Therefore by Theorem 2.2,

S (L(G)) =

{

n− (l + 1) if l+ 1 ≤ [n+1
2 ],

[n2 ] if l+ 1 > [n+1
2 ],

=

{

S (G)− 1 if l ≤ [n−1
2 ],

S (G) if l > [n−1
2 ].

�
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Theorem 3.17. Let G be a strong fuzzy cycle of length n. Let there be m maximal
weakest paths P1, P2, . . . , Pm in G, where m ≥ 1. Suppose, for i = 1, 2, . . . ,m − 1
one of the complementary paths Qi between Pi and Pi+1 is of length one such that
P1Q1P2Q2 . . . Pm−1Qm−1Pm is a path of length l+m. Then the strength S (L(G))
of L(G) is

S (L(G)) =

{

S (G)−m if l ≤ [n+1
2 ]−m,

[n2 ] if l > [n+1
2 ]−m.

Proof. Let Q be the complementary path between Pm and P1 which does not contain
any of the paths P1, P2, P3, . . . , Pm. If Q is of length one then in L(G) either both
ends of each edge are weakest vertices or one of the ends is a weakest vertex. Thus
every edge in L(G) in this case is a weakest edge. Hence S (L(G)) = [n2 ] = S (G) by
Theorem 2.3 . Now suppose that the length of Q is not one. Note that the vertices of
L(G) corresponding to the edges of P1, P2, . . . , Pm are weakest. Though the vertices
of L(G) corresponding to the edges in Q1∪Q2∪. . .∪Qm−1 are not weakest, the edges
incident with them have weakest vertices on the other end. Thus all edges of the
path in L(G) with vertex set as edge set of the path P1Q1P2Q2 . . . Pm−1Qm−1Pm

together form a weakest path P of length l+m− 1. Since there are more than one
edge in Q, the edge e1 of Q incident with P1 and the edge e2 of Q incident with the
path Pm are different in L(G). The vertex of L(G) corresponding to the edge e1
of G is adjacent to one end vertex of P by a weakest edge and the vertex of L(G)
corresponding to the edge e2 is adjacent to the other end of P by a weakest edge.
All other edges of L(G) are of non weakest. Hence L(G) contains only one maximal
weakest path of length l +m. Therefore the strength S (L(G)) of L(G) is

S (L(G)) =

{

n− (l +m) if l ≤ [n+1
2 ]−m,

[n2 ] if l > [n+1
2 ]−m.

=

{

(n− l)−m if l ≤ [n+1
2 ]−m,

[n2 ] if l > [n+1
2 ]−m.

=

{

S (G)−m if l ≤ [n+1
2 ]−m,

[n2 ] if l > [n+1
2 ]−m.

Hence the proof. �

Theorem 3.18. Let G be a strong fuzzy cycle of length n. Suppose there are l

weakest edges in G which do not altogether form a subpath in G. Let P1, P2, . . . , Pm

be the chain of all m maximal weakest paths in G. Suppose there exists atleast
two indices i < j such that the complementary paths between Pi, Pi+1 and Pj ,
Pj+1 which do not contain any of the Pk’s are of length greater than one (when
j = m,Pj+1 = P1). Let s denote the maximum length of the subpath which does not
contain any weakest edge of G. Then if l < [n2 ]− (m+ 1) the strength S ((L(G)) of
the line graph L(G) of G is

S (L(G)) =











S (G) if s ≤ [n2 ] or s > [n2 ] + 1

or s = [n2 ] + 1 and n even,

S (G)− 1 if s = [n2 ] + 1 and n odd.
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Proof. Since the l weakest edges of G are distributed to form m maximal weakest
paths in G, then there are l +m weakest edges in L(G). Also the maximum length
of paths in L(G) which do not contain any weakest edge is clearly s−1. By applying
the Theorem 2.5 the strength S (L(G)) of L(G), when l +m < [n2 ]− 1

S (L(G)) =

{

[n2 ] if s ≤ [n2 ] + 1,

s− 1 if s > [n2 ] + 1.

Consider the case s ≤ [n2 ]+1. Then either s ≤ [n2 ] or s = [n2 ]+1. Also l+m < [n2 ]−1
implies that l < [n2 ]− 1. So when s ≤ [n2 ], S (G) = [n2 ] = S (L(G)).

When s = [n2 ] + 1,

S (G) = [
n+ 1

2
] =

{

[n2 ] if n even,

[n2 ] + 1 if n odd.

where as S (L(G)) = [n2 ] which implies

S (L(G)) =

{

S (G) if n even,

S (G) − 1 if n odd.

When s > [n2 ] + 1, s > n
2 . Therefore S (G) = S (L(G)). Therefore

S (L(G)) =











S (G) if s ≤ [n2 ] or

s > [n2 ] + 1 or s = [n2 ] + 1 and n even,

S (G)− 1 if s = [n2 ] + 1 and n odd.

Hence the proof. �

Theorem 3.19. Let G be a strong fuzzy cycle of length n. Suppose there are l

weakest edges in G which do not altogether form a subpath in G. Let us suppose that
these weakest edges form a chain of paths P1, P2, . . . , Pn. Also suppose there exist
atleast two indices i < j such that the complementary paths between Pi, Pi+1 and
Pj, Pj+1 which do not contain any one of the Pks are of length greater than one
(when j = m,Pj+1 = P1 in G). Let s denote the maximum length of the subpaths
which do not contain any weakest edge in G. Then if l > [n2 ]− (m+ 1) the strength
S (L(G)) of the line graph L(G) of G is

S (L(G) =

{

S (G) if l > [n2 ]− 1, or if l ≤ [n2 ]− 1 and s ≤ [n2 ],

S (G)− 1 if l ≤ [n2 ]− 1, and s > [n2 ].

If l = [n2 ]− (m+ 1) then

S (L(G)) =











S (G) if l < [n2 ]− 1, s ≤ [n2 ] and n is odd,

S (G) + 1 if l < [n2 ]− 1, s ≤ [n2 ] and n even,

S (G)− 1 if l < [n2 ]− 1, s > [n2 ].

Proof. For l > [n2 ]− (m+ 1), consider the following cases.

Case 3.20. l > [n2 ]− 1.

Here, by applying the Theorem 2.4 we get S (L(G)) = [n2 ] which is equal to
S (G).
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Case 3.21. l ≤ [n2 ]− 1 < l +m

Then by Lemma 3.5 and by Theorem 2.5

S (G) =

{

[n2 ] if s ≤ [n2 ],

s if s > [n2 ].

That is if s ≤ [n2 ] then s − 1 ≤ [n2 ] which gives S ((L(G)) = [n2 ] = S (G).( See
Figure 6 with n = 12, l = 4,m = 2 and Figure 7 with n = 13, l = 5,m = 2). If
s > [n2 ] then s − 1 = [n2 ]. So S (L(G)) = [n2 ] = s − 1 = S (G) − 1. (See Figure 8
with n = 13, l = 4,m = 2.)
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Figure 6. A fuzzy graph G with 12 vertices and 4 nonconsecutive weak-
est edges.
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Figure 7. A fuzzy graph G with 13 vertices and 5 nonconsecutive weak-
est edges.
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Figure 8. A fuzzy graph G with 13 vertices and 4 nonconsecutive weak-
est edges.
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Consider the case l = [n2 ] − (m + 1) then S (L(G)) = [n+1
2 ]. Since m ≥ 2,

l < [n2 ]− 1. By applying the Theorem [11] S (G) = [n2 ] if s ≤ [n2 ]. So

S (L(G)) = [
n+ 1

2
] =

{

[n2 ] if n even,

[n2 ] + 1 if n odd.

Therefore

S (L(G)) =

{

S (G) if n even,
S (G) + 1 if n odd.

If l < [n2 ]− 1 then if s > [n2 ], S (G) = s. So S (L(G)) = s− 1 = S (G) − 1. Hence
the proof. �

4. Applications

In many real world problems, we get partial information about that problem. So
there is a vagueness in the description of the objects or in its relationships or in
both. The fuzzy graph seems to be a relevant mathematical model for solving it.
The theorems discussed in this paper have vital applications in the following areas:
• Mobile transmission network.
• Decision making theory.
• Geographical Information Systems (GIS) based road network analysis, GIS based
water supply network etc.

5. Conclusions

In this paper we determined the strength of the line graphs of strong fuzzy but-
terfly graph, strong fuzzy star graph, strong fuzzy bull graph, strong fuzzy diamond
graph, strong fuzzy path and strong fuzzy cycle.
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